Cosmas Zachos DOE 4/27/07 [hep-th/0609148]

A CLASSICAL BOUND ON QUANTUM ENTROPY
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0 < Sg<in(%)
involving the variance o2 in phase space of the classical limit distribution
of a given arbitrary quantum system. No Hamiltonian required.

An upper bound on the lack of information. Black Hole entropic
behavior: collective flow of information in need of robust estimates. ~»
Through gross geometrical and semiclassical features of the system—
instead of toilsome, subtler, detailed accounts of quantum states.

~» Combines upper bound for the entropy of classical continuous dis-
tributions (Shannon, 1949) with classical limit of intricate quantum sys-
tems in phase space (Braunss 1994). Tracks the information loss in-
volved in smearing away quantum effects. ~ The quantum entropy of a
system is majorized by that of its ‘ignorant’ classical limit.



T he sum over states gives the von Neumann entropy for a density matrix,
0< Sqg=—-Trp Inp=—(Inp) .

= ‘Transcribes in phase space through the Wigner transition map to
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where Groenewold’s (1946) x-product,
define x-functions.

Braunss has argued that, for Sq+Inh — S,, and as Planck's h — O,

ogsqgsd—lnh.l

h This upper bound reflects the loss of quantum information involved
in the smearing implicit in the classical limit.

~» Combined with Shannon’s bound, this now vields the inequality pro-
posed: the entropy is bounded above by an expression involving the
variance of the corresponding classical limit distribution function.



® The quantum entropy is recognized as an expansion
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The leading term, n = 1, 1-Trp2 = (1 — hf), is the impurity. Like
the entropy itself, it vanishes for a pure state, for which p? = p, or,
equivalently, fx f = f/h. Each term in the expansion projects out p, or

~hf, respectively, so pure states saturate the lower bound on 5.

o Illustration by the elementary physics paradigm of a Maxwell-
Boltzmann thermal bath of oscillator excitations of one degree of free-
dom: its phase-space representation happens to be a (maximal entropy
~ chaos ~ disorder) Gaussian. The Gaussian Wigner Function of arbi
trary half-variance E,
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(Oscillator with mean energy E = (* "2“’ ) )

For E = h/2, the distribution reduces to just fg, the Wigner Func-
tion for a pure state (the ground state of the harmonic oscillator). &



fox fo= fO. Since fp is x-orthogonal to each of the terms in the sum,
Sq = 0: saturation of the maximum possible information content.

For generic width FE, the Wigner Function f is not that of a pure state,
but it still happens to always amount to a x-exponential
( ef=14+a+axa/2'+a*xa*xa/3!'4+ ... ) as well,

hf = e—mQQ_EpQ—Hn(h/E) _ e*—%(w2+p2)+|n(% cosn(B/h))
where an “inverse temperature” variable G(E,h) is useful to define,

tanh(ﬁ/Q)E;;gl = B:Inifgs :
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Se(E,h) = £1in (35 4+ 5 In ()2 - %) =5 coth(B/2) — In(2sinh(3/2)).

% monotonically nondecreasing function of FE, attaining the lower
bound O for the pure state £ — h/2 (8 — oo, zero temperature).

The classical limit, h — 0 (8 — 0, infinite temperature) follows,

Sqg— 14+ In(E/h) =In(we2E) —Inh = S,(E) —Inh .



Explicitly seen to bound the above expression for all E; saturates it for
large E >> h, in accordance with Braunss' bound. & the upper bound
is saturated for Gaussian quantum Wigner functions with o2 >> .

% The region E < h/2, corresponding to ultralocalized spikes excluded
by the uncertainty principle, was not allowed by the above derivation
method, since, in this region, no x-Gaussian can be found to represent
the Gaussian. (It would amount to complex 8 and Sy.)

M Applications in holographic BH physics and quantum computing; LHC
contact with gravitational physics confronting quantum randomness.
Compton wavelength invisible inside its own Schwarzschild horizon.



