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Apologies to those whose results we are not showing…



Overview

• Attendees: ~ 80; 32 talks
• Joint sessions with WG1&WG6
• Topics:

– Acceleration
– Guiding
– Injection
– Simulations
– Scaling laws
– Diagnostics
– Laser systems

Some of the questions:

-To guide or not to guide?

-Will simulations ever catch up
with experiments?

-How big should the laser be?



30 Sep 2004 issue of nature:
 Three groups report production of high quality e-bunches

• LBNL/USA: Geddes et al.
• Plasma Channel: 1-4x1019 cm-3

• Laser: 8-9 TW, 8.5 µm, 55 fs
• E-bunch: 2×109 (0.3 nC), 86 MeV, ΔE/E=1-2%, 3 mrad

• RAL/IC/UK: Mangles et al.
• No Channel: 2×1019 cm-3

• Laser: 12 TW, 40 fs, 0.5 J, 2.5×1018 W/cm2, 25 µm
• E-bunch: 1.4×108 (22 pC), 70 MeV, ΔE/E=3%, 87 mrad

• LOA/France: Faure et al.
• No Channel: 0.5-2x1019 cm-3

• Laser: 30 TW, 30 fs, 1 J, 18 µm
• E-bunch: 3×109 (0.5 nC), 170 MeV, ΔE/E=24%,10 mrad

AAC2004 Results: High Quality Bunches



Quasi mono-energetic beams
widely observed

• Results reported from:
– Michigan (S. Reed et al.)
– Taiwan (S.Y. Chen et al.)
– Japan (T. Hosokai et al., Kando et al., T.

Reiko, K. Koyama)
–  NRL (Kaganovich et al.)



Generation of 300 MeV Quasi-Monoenergetic
 Electron Beams from Laser Wakefield
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A. Maksimchuk et. al. submitted to Phys. Rev. Lett. (2006).
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ne=2.5x1019 cm-3

0 Low (2 pC) charge but high (10 mrad) 
angular stability of e- beam

Monoenergetic
beams



Reported by Z. Najmudin

E-Beam profile depends on laser polarization

LBNL/2004
RAL/IC 2004

LOA/2004



New trends in the field
• Stability:

– e.g. Pre-plasma control
• Injection control:

– Laser triggered
– Density transition
– Self-trapped with parameter control

• Sophisticated diagnostics
– Optical wake field diagnostics
– Bunch duration measurements in THz and optical

regime
• Engineered/machined plasmas

– Transverse -> guiding structures, optical element
– Longitudinal ->quasi-phase matching

• GeV channel guided accelerator
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Repeatable Beams: Colliding Pulse Injection
Concept: 
- slow wave structure to trigger trapping
- fast wave structure to accelerate

Two-pulse implementation-LOA



Courtesy: V. Malka



Repeatable Beams: Pre-plasma control



Stable 1 MeV beam:
focusing on plasma down-ramp

Laser
10 TW

Setup

Plasma n = 3x10Plasma n = 3x101919cmcm-3-3

Magnetic Spectrum
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LBNL; Geddes et al., submitted

Repeatable Beams: External injection&density transitions

Density transitions

External Injection

Controlling the ramps:
- plasma machining

P0 = 8 TW, τL = 67 fs, 
r0 = 30 µm, n0 = 5x1017 cm-3

Also: S. Kalmykov, UT Austin



Copper RF accelerator
cavities must be 

precision-engineered 
1Frequency Domain Holography
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2 Plasma Tomography & Channeling

Since 2004, we have learned
to see1 and engineer2 plasma

accelerating structures



Guiding techniques continue to improve
Next “frontier” is 0.5-1m long, low density channels (1017 cm-3)

Courtesy: 
S. Hooker



Machining the plasma structure

Machining the plasma:

- Transverse: channels, guiding

- Longitudinal: modulated density,

quasi-phase matching

- U-Maryland

- Taiwan

gas jet

two
cylindrical

 lenses

OAP

TFP

beam
dump

SLM

half-wave plates

machining 
beam

probe

1 mm

laser intensity side scattering
B. Layer&A. York

S.Y. Chen, C.T. Hsieh



Wake Oscillations

Ionization Front

Pump
Propagation

Diagnostics Highlights
• Laser Wake structure 
     (presented by Nicholas Matlis - U. Texas)

• Femtosecond Electron Bunches
       (summarized by Mitsuru Uesaka - U. Tokyo) 

Holographic Snapshots
of Laser Wakefields
   • immediate experimental feedback
     • new point of contact with simulations

Single-shot THz CTR from plasma-
vacuum boundary (LBNL-van Tilborg)

-50-200 fs bunches measured using 
 Coherent Transition Radiation (CTR)
 & Electro-Optic techniques



Wakefield Snapshots using Frequency Domain Holography
enrich experiment-theory dialog:

Chirped
Reference (2ω)Chirped

Probe (2ω)

Wakefield ne = n0 + δne(t)

Ionization
Front

 30 TW Pump (ω)
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Simulated wake 
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courtesy M. Uesaka - U. Tokyo

Laser-plasma accelerators produce femtosecond electron 
bunches:  we have made progress in characterizing them



Single-Shot Technique for EO detection of THz pulses:
Information on every bunch

J. van Tilborg et al., PRL 2006

G. Berden et al., Phys. Rev. Lett. 93, 114802 (2004)

 < 50 fs bunches

3 ps

50 fs

Talk by C. Geddes, LBNL



Methods were proposed for measuring < 10 fs bunches

On-axis e- detector< 10 fs 
 bunch

Intense
laser pulse

Off-axis
e- detector

Laser deflection 
(D. Kaganovich NRL)

Staged laser acceleration
(V. Yakimenko - BNL)

2nd stage spectrum
characterizes bunch length

synchronized 2nd stage1st stage

Optical CTR (Y. Glinec - LOA)

• spectrum: modulations observed in
optical spectrum consistent with fs-
bunches
• time profile
• harmonics



Talks from B. Nagler, K. Nakamura; also D. Dimitrov on coupling



Stable 0.5 GeV Beam Generation

Density: 3.0~3.4x1018/cm3

Laser: 950(+-15%) mJ/pulse (compression scan)
Injection threshold: a0 ~ 0.65 (~9TW, 105fs)
Less injection at higher power

-Relativistic effect
-Self modulation

500 MeV Mono-energetic
beams:

a0 ~ 0.75 (11 TW, 75 fs)

Peak energy: 490 MeV
Divergence(rms): 1.6 mrad
Energy spread (rms): 5.6%
Resolution: 1.1%
Charge: ~50 pC

Stable operation
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225 µm diameter and 33 mm length capillary

Courtesy: K. Nakamura



Plasma Accelerator Progress
“Accelerator Moore’s Law”

RAL

LBNL
Osaka

UCLA

E164X

ILC

Current Energy Frontier

ANL

LBNL

From: T. Katsouleas -APS-DPP 2005 + new LBNL 1 GeV result



When will simulations catch up with experiments ?simulationsexperiments

• Previously simulations have
  been benchmarked against
  the “end” observables:
  e- energy, number, divergence 

• Now single-shot holographic
  measurements of wake structure
  provide an earlier point of contact
  between expt. & theory



c) Embed computationalists in experimental groups; threaten Guantan-
amo internment unless they reproduce the measured structure

“Lake Geneva” Convention on Experiment-Computational 
Enemy Combatants

Recn for 2008: Benchmark Simulations by “Differential” FDH
a) Slice out short sections of plasma by laser micro-machining (SY Chen-Taiwan)

b) Measure wake structures with engineered laser pulses & plasmas

FDH pulse sequence

time

ionization

 heating

evacuation

plasma

vacuum

hot plasma

gas

gas

gas



UCLA Bubble-Regime Scalings

W.Mori, F. Tsung, W. Lu, M. Tzoufras



1 GeV

10 GeV

100 GeV

1 TeVBubble
Results

Self-Guide

Channel-Guide

LBNL/Oxford



10 GeV Conceptual Design

AAC06

AAC08?
Spot Size 50-um

Channel Length
(capillary or cluster jet?)

0.5-1.0 meter

Density few x 1017 cm-3

Laser Energy 10-100 J

Pulse Width ~100-fs



Lasers for >10 GeV
Accelerators

Working Group Talk/Discussion:

•10-GeV Class lasers nearing completion
•Upgrade path for future:  fiber-based kHz kJ Petawatts

1 nC, 10 GeV = 10 Joules

10% Laser-Electron Coupling

100 J / 100 fs = 1 PW

Rep-Rated High-Energy PW Lasers are a key enabling
technology for 10-GeV high luminosity experiments.

(hint hint)



Laser room/ cleanroom

Capacitor 
room

Laser target area

Radiation 
shield wall

The Texas 
Petawatt facility

Laser control room

target 
preparation 
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200 J / 150 fs, “Single Shot”
OPCPA + NOVA Amps

Erhard Gaul, UT Austin

Key limiters:
•Inefficiency (quantum
defect)
•Heat removal (glass)
•Compressor Size
(damage)
•Long Focusing

“Dinosaur” technology on
PW fast-track.



Roland Sauerbrey, FZR/Jena •Significant new technology
development
•Diode-pumped Yb:glass
•Efficient (low quantum
defect)
•Rep-rated PW’s
•Spin-off: pump lasers for
few-cycle OPCPA PW



Single Fiber Solid Core
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Photonic Crystal
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Almantas Galvanauskas, UMich



Summary
• Another banner year for Advanced Acceleration R&D

– 1 GeV electron beams using a cm-scale capillary discharge channel guided
laser accelerator (LBNL/Oxford)

– Colliding pulse injection - two-pulse, counter-propagating (LOA)
– Single shot measurement of laser excited plasma wakes (UT Austin)-Fourier

domain holography
– Laser machined plasmas - transverse and longitudinal (U Maryland, Taiwan)
– Single shot measurement of the duration of laser accelerated bunches <50 fs

(LBNL)

• Next steps:
– Stability and control: injection, staging, diagnostics, plasma machining

– 10 GeV with Petawatt laser

– High fidelity simulations - benchmarking against experiments

THE “LAKE GENEVA CONVENTION” WILL BE UPHELD


