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The University of Maryland Electron Ring 
(UMER)

1.5 – 6.5Depressed Tune

7.6Zero-Current Tune

20-100 nsPulse length

200 nsCirculation time

0.6-100 mACurrent range

0.2-3 µmrms Emittance, nor

20 eVEnergy Spread

10-50 keVEnergy

3
02 ( )

qIK
m cπε βγ

=

• UMER will serve as a low-cost model of high intensity 
accelerators
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Motivation

• Test a new technique for mapping phase spaces based on 
tomography

• Extend it for beams with space charge
• Simulate it:

– Error sensitivities
– Different distributions
– Accuracy of space charge modeling

• Use it on experiments
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Computed Tomography (CAT Scan)

• Tomography is the technique of reconstructing an image 
from its projections (1826 Abel, 1917 Radon)

http://universe-review.cahttp://www.dbh.nhs.uk



Beam Phase Space Tomography

• We measure the beam phase space by combining a 
simple quadrupole-scan with tomography

Quad Monitor

McKee et al. 1995



Beam Phase Space Tomography
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Beam Phase Space Tomography



Equations of Motion
• Single particle equation

• No space charge: 

• Space charge: Calculations are very complicated and 
approximations need to be made in order to generate 
the transfer matrices.
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Space Charge Dominated Beams -
Assumptions

• Linear space charge: Calculation of the transfer matrix is 
easy. 

Problem: X and Y vary with z

• No emittance growth. The beam size will be calculated 
using the beam envelope equations.
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Tomography Set - Up
• We simulate the tomography process using the particle-

in-cell code WARP.

• Reconstructed phase space by Tomography will be 
compared to that generated by WARP.

Bends ignoredBends included

Image charge force 
ignored

Image charge forces

Constant emittanceEmittance growth

Linear space chargeNonlinear space charge

TomographyWARP



X

TomographyWARP

Phase Space Tomography -
No Space Charge

• ?=0.3, I=0.6mA
• Initial beam distribution: Semi-Gaussian

Uniform Gaussian

Stratakis et al. Physical Review ST - AB (submitted 2006)



X

TomographyWARP

Phase Space Tomography -
No Space Charge

• ?=0.3, I=0.6mA
• Initial beam distribution: Semi-Gaussian

Uniform Gaussian

Stratakis et al. Physical Review ST - AB (submitted 2006)



• ?=0.72, I=7mA 
• Initial beam distribution: Semi-Gaussian

Phase Space Tomography - With Space 
Charge

WARPTomography

Uniform Gaussian

Stratakis et al. Physical Review ST - AB (submitted 2006)



• ?=0.90, I=24 mA
• Initial beam distribution: Semi-Gaussian

Phase Space Tomography - With 
Extreme Space Charge

WARPTomography 



Phase Space Tomography - Different 
Distributions

• ?=0.72 , I=7mA (space charge)
• Initial Distribution: Five Beamlet
• Highly non-uniform distribution

WARP Tomography

Tomography can be used to map  the phase 
space of complex multi-beamlet distributions



Phase Space Tomography - Experiments 
in UMER

Set-up

Beam photo
capture

Beam photos were
collected with the aid 
of phosphor screen which
intercept the beam



Phase Space Tomography -
Experiments in UMER

• Phase space reconstruction of a low current beam 
(?=0.30) along the injector line
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Conclusions

• We designed a simple, portable technique to map the 
beam phase space based on tomography.

• Tomography accurately reproduces the beam phase 
space predicted by WARP simulations for both emittance 
and space charge dominated beams  

• Tomography can be used to map the phase space of 
more complex, non-equilibrium distributions 

• First experiments with tomography in UMER have been 
completed
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Computed Tomography (CAT scan)

• Radon Transform
We can recover an object in n-dimensional space from 
projections onto (n-1)-dimensional space. 
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Tomography Algorithm

• Fourier Slice Theorem
Fourier transform of a parallel projection is equal to a slice 
of the two-dimensional Fourier transform of the original 
object.
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Kak and Slaney, Principles of Computerized Tomographic Imaging



Tomography Algorithm

• Knowledge of the F(u,v) the object function f(x,y) can be 
recovered by using the inverse Fourier Transform 
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Filtered Backprojection Algorithm (FBA)

• A simple weighting  in the frequency domain is used to 
take is projection and estimate a pie-shaped wedge of 
the object's Fourier transform.

• We multiply the value of the Fourier transform of the 
projection of the projection and multiply it by the width of 
the wedge at that frequency  

• Apply inverse Fourier Transform of the filtered 
projections

Ideal situation Slice Theorem Weighting



Backprojection Algorithm



Beam Phase Space Tomography

• We can reconstruct the beam phase space distribution using 
its projections in real space.

• Variation of the quadrupole lens strength rotates the 
distribution in phase space generating a number of 
independent projections on the screen.

• There is a simple scaling equation that relates these profiles to 
the radon transform of the phase space.

Quad Monitor
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