Notes on grid-enabling PostgreSQL
S. Eckmann
2006 August 30
Table of Contents

11.
Introduction

12.
Summary of test results

33.
Test details

33.1
MySQL

33.2
MySQL + Globus + “vio” patch

33.3
PostgreSQL

33.4
PostgreSQL + Globus + “vio” patch

53.5
PostgreSQL + Globus + “vio” patch + GSI_CALLBACK activate

63.6
PostgreSQL + GridSite

73.7
PostgreSQL + GridSite + GRSTx509VerifyCallback patch

84.
Miscellaneous notes

84.1
Software versions used

84.2
GridSite installation notes

94.3
Candidate remaining tasks

List of Tables

2Table 1. Summary of test results

8Table 2. Software versions used

1. Introduction

This note summarizes my work to grid-enable PostgreSQL by incorporating the grid-proxy-aware Globus and GridSite libraries. Section 2 summarizes test results for various configurations, including MySQL with and without the “vio” patch for comparison. Section 3 provides more details about what the configurations include, how they were built, and how they were tested. Section 4 contains miscellaneous notes related to the testing that has been accomplished, including the version of each software package that was used, GridSite installation details, and a list of candidate remaining tasks.
2. Summary of test results
Table 1 summarizes the most interesting test results by indicating for each test case whether the certificate was accepted or rejected, and whether that was the correct behavior. The client and server used for tests were the actual patched or unpatched database client and server: mysql and mysqld for MySQL tests, psql and postmaster for PostgreSQL tests. Server certificates were generated for both database servers using SimpleCA. Servers were configured to require SSL, so that connection attempts were rejected if a client failed to specify a user certificate and key, and a CA certificate file.

Tests were done with a grid end-entity certificate and a grid proxy certificate. The grid End-Entity certificate was generated by using SimpleCA for user eckmann. The grid proxy certificate was generated from my grid EE certificate using grid-proxy-init with default parameters, and was regenerated as needed to keep it fresh (i.e., valid with respect to its notBefore and notAfter times).

The grid EE certificate had the default validity interval: one year from its creation time. The grid proxy certificate also had the default validity interval: 12 hours from its creation time. Certificates were artificially caused to be “not yet valid” or “expired” by setting the system clock two years behind or two years ahead, respectively.
The key below the table describes what each cell entry means. The tested configurations are explained in the following section.
Table 1. Summary of test results

	
	Grid EE certificate
	Grid Proxy certificate

	Configuration tested
	not yet valid
	valid
	expired
	not yet valid
	valid
	expired

	mysql
	R
	A
	a
	a
	A
	a

	mysql-gt4 (“vio” patch)
	a
	A
	a
	a
	A
	a

	pgsql
	R
	A
	R
	–
	r
	–

	pgsql-gt4 (like “vio” patch)
	a
	A
	a
	a
	A
	a

	pgsql-gt4 + callback activate
	R
	A
	R
	–
	r
	–

	pgsql-grst (like “vio” patch)
	R
	A
	R
	–
	r
	–

	pgsql-grst + patch
	R
	A
	R
	R
	A
	R

	Key:
	A
	the certificate is accepted, as expected

	
	a
	the certificate is accepted but should be rejected

	
	R
	the certificate is rejected, as expected

	
	r
	the certificate is rejected but should be accepted

	
	–
	the certificate is rejected, as expected, but for the wrong reason

Several observations about the results are worth noting:
· The unpatched MySQL application correctly accepts the valid EE certificate and rejects the not-yet-valid EE certificate, but incorrectly accepts the expired EE certificate and always accepts the proxy certificate. The first surprise here is that the expired EE certificate is accepted. I did not investigate that result and have no explanation for it. The second surprise is that the grid proxy certification was always accepted. We expected grid proxy certificates to not be understood by the unpatched application, and therefore to be rejected. Due to a bug in the vio verify callback, however, any certificate verification error at depth greater than 0 causes the certificate to be accepted.

· The unpatched PostgreSQL application correctly accepts the valid EE certificate and rejects the invalid EE certificates, but always rejects the proxy certificate. This result confirms that grid EE certificates are understood by the PostgreSQL application but grid proxy certificates are not.

· The MySQL and PostgreSQL database applications patched to use Globus verify callback functions correctly accept the valid proxy certificate, but further testing shows that the patch actually causes the applications to accept all certificates.

· Further investigation into the cause of all certificates being accepted indicated that Globus Toolkit modules are supposed to be “activated” before use. Because the GSI_CALLBACK module was not activated, all calls to the Globus verify callbacks were silently returning a success code without actually checking anything (except whether the module was activated).
 Inserting an “activate” call near the top of initialize_SSL() produced the results labeled “pgsql-gt4 + callback activate” in the table. Notice that these results are identical to those for the unpatched application: proxy certificates are simply rejected. This result is discussed in more detail in Section 3.5.

· Replacing the Globus verify callback with a GridSite verify callback resulted in the same behavior as for the unpatched application. This was unexpected.
· Investigation of the “pgsql-grst” result indicated that the openssl errors returned for grid proxy certs were not being handled. A patch that I made in the GridSite verify callback resulted in correct behavior for the cases that were included in testing. As discussed in Section 3.7, however, the patch is almost certainly not correct for other cases, so we might need to do more work on this, depending on our objective for PostgreSQL.
3. Test details

3.1 MySQL

Nothing interesting to say about this case, except it is surprising that the expired EE certificate was accepted.
3.2 MySQL + Globus + “vio” patch

The main point for this case was already made above: the patch essentially doesn’t work, since it causes all certificates to be accepted. The cause is discussed in Section 3.4 below.
3.3 PostgreSQL

Nothing interesting to say here, since EE certificates were handled correctly and proxy certificates were, as expected, not handled correctly.
3.4 PostgreSQL + Globus + “vio” patch

The MySQL “vio” patch was used as a guide to what needed to be changed to grid-enable PostgreSQL. The only changes on the server side were in be-secure.c. Here is the patch:
--- be-secure.c 2006/07/20 02:10:05 1.1

+++ be-secure.c 2006/08/31 00:40:35

@@ -92,6 +92,8 @@

 #ifdef USE_SSL

 #include <openssl/ssl.h>

 #include <openssl/dh.h>

+#include "globus_gsi_callback.h"

+#include "globus_error_openssl.h"

 #endif

 #include "libpq/libpq.h"

@@ -662,7 +664,55 @@

 static int

 verify_cb(int ok, X509_STORE_CTX *ctx)

 {

- return ok;

+ char buf[256];

+ X509* err_certificate;

+ int err,depth;

+ static int verify_depth = 3;

+ static int verify_error = X509_V_OK;

+

+ ereport(LOG, (errmsg("enter verify_cb: ok: %d, ctx: 0x%p", ok, ctx)));

+ err_certificate = X509_STORE_CTX_get_current_certificate(ctx);

+ err = X509_STORE_CTX_get_error(ctx);

+ depth = X509_STORE_CTX_get_error_depth(ctx);

+ ereport(LOG, (errmsg("verify: depth = %d, verify_depth = %d",

+ depth, verify_depth)));

+

+ X509_NAME_oneline(X509_get_subject_name(err_certificate),buf,sizeof(buf));

+ ereport(LOG, (errmsg("verify: subject = %s", buf)));

+ if (!ok)

+ {

+ ereport(LOG, (errmsg("error: verify error: num: %d, %s",

+ err,

+ X509_verify_certificate_error_string(err))));

+ if (depth > verify_depth)

+ /* report no verify error if chain is deeper than we want to look */

+ {

+ ok=1;

+ verify_error=X509_V_OK;

+ }

+ else

+ {

+ verify_error=X509_V_ERR_CERT_CHAIN_TOO_LONG;

+ }

+ }

+ switch (ctx->error) {

+ case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:

+ X509_NAME_oneline(X509_get_issuer_name(ctx->current_certificate),buf,256);

+ ereport(LOG, (errmsg("info: issuer = %s\n", buf)));

+ break;

+ case X509_V_ERR_CERT_NOT_YET_VALID:

+ case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:

+ ereport(LOG, (errmsg("error: notBefore error")));

+ break;

+ case X509_V_ERR_CERT_HAS_EXPIRED:

+ case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:

+ ereport(LOG, (errmsg("error: notAfter error")));

+ break;

+ }

+ ereport(LOG, (errmsg("before gsi: ok: %d", ok)));

+ ok = globus_gsi_callback_handshake_callback(ok, ctx);

+ ereport(LOG, (errmsg("exit verify_cb: ok: %d", ok)));

+ return ok;

 }

 /*

@@ -716,6 +766,7 @@

 initialize_SSL(void)

 {

 struct stat buf;

+ int result = (int) GLOBUS_SUCCESS;

 if (!SSL_context)

 {

@@ -730,9 +781,7 @@

 /*

 * Load and verify certificate and private key

 */

- if (!SSL_CTX_use_certificate_file(SSL_context,

- SERVER_CERT_FILE,

- SSL_FILETYPE_PEM))

+ if (SSL_CTX_use_certificate_chain_file(SSL_context, SERVER_CERT_FILE) <= 0)

 ereport(FATAL,

 (errcode(ERRCODE_CONFIG_FILE_ERROR),

 errmsg("could not load server certificate file \"%s\": %s",

@@ -773,6 +822,7 @@

 ereport(FATAL,

 (errmsg("check of private key failed: %s",

 SSLerrmessage())));

+ EVP_set_pw_prompt("Enter GRID pass phrase: ");

 }

 /* set up empheral DH keys */

@@ -801,9 +851,12 @@

 SSL_VERIFY_FAIL_IF_NO_PEER_CERT |

 SSL_VERIFY_CLIENT_ONCE),

 verify_cb);

+ SSL_CTX_set_certificate_verify_callback(SSL_context,

+ globus_gsi_callback_X509_verify_certificate,

+ NULL);

 }

- return 0;

+ return 0;

 }

 /*

@@ -827,6 +880,7 @@

 {

 int r;

 int err;

+ globus_gsi_callback_data_t callback_data;

 Assert(!port->ssl);

 Assert(!port->peer);

@@ -850,6 +904,16 @@

 return -1;

 }

+ if (globus_gsi_callback_data_init(&callback_data) != GLOBUS_SUCCESS)

+ {

+ ereport(COMMERROR,

+ (errcode(ERRCODE_PROTOCOL_VIOLATION),

+ errmsg("globus_gsi_callback_data_init failure")));

+ close_SSL(port);

+ return -1;

+ }

+ SSL_set_app_data(port->ssl, &callback_data);

+

 aloop:

 r = SSL_accept(port->ssl);

 if (r <= 0)

This patch, analogous to the “vio” patch for MySQL, resulted in all certificates being accepted. Investigation of the Globus code, and reading the limited GT4 documentation for the C API, indicated that GT modules are supposed to be “activated” before being used. Deep down the call chain within Globus, the function globus_error_put() silently returns success if its cache isn’t initialized, which happens if the appropriate modules are not activated.
3.5 PostgreSQL + Globus + “vio” patch + GSI_CALLBACK activate

Apparently it is necessary to activate the GSI_CALLBACK module to enable handling of openssl errors. This patch in initialize_SSL() does that:
--- be-secure.c 2006/08/31 00:46:37 1.4

+++ be-secure.c 2006/08/31 00:48:10

@@ -768,6 +768,13 @@

 struct stat buf;

 int result = (int) GLOBUS_SUCCESS;

+ result = globus_module_activate(GLOBUS_GSI_CALLBACK_MODULE);

+ if(result != GLOBUS_SUCCESS)

+ {

+ ereport(FATAL,

+ (errmsg("could not activate Globus GSI callback module")));

+ }

+

 if (!SSL_context)

 {

 SSL_library_init();

The surprising result after applying this patch is that all proxy certificates are rejected; the same behavior and with exactly the same openssl errors as for the unpatched PostgreSQL server. The GT4 verification functions are not “fixing” the grid proxy certificate errors, as expected. Further study of the relevant GT4 source code suggests that GT4’s handling of openssl errors is simply broken. GT4 wraps openssl errors in globus error “objects”,
 then passes these to the function globus_error_put(), which caches the input error object and then returns the index in the cache as a success/failure value, where zero means success and non-zero means failure. This success code is then converted to 1 for success and 0 for failure and returned back up to the application. Since the cache value is never zero, the return value is always “failure”, at least for the openssl errors passed in for grid proxy certificates. This cannot possibly be right, but that’s what the code does. What should be happening somewhere in GT4, but isn’t, is that when certain openssl errors occur that could be caused by openssl not understanding proxy certs, the certificate should be rechecked, and the openssl error “suppressed” when appropriate.
After spending hours looking at the relevant GT4 code, I decided to give up on Globus and try GridSite instead.
3.6 PostgreSQL + GridSite

The only essential change in PostgreSQL to use GridSite functions for certificate verification is in verify_cb() in be-secure.c. Simply replace:
return ok;
with

return GRSTx509VerifyCallback(ok, ctx);
However, to make the change more easily comparable to the MySQL “vio” patch and the analogous change in the GT4 version of PostgreSQL, I added a little more code to verify_cb(). Here is the patch:

--- /home/eckmann/src/postgresql-8.1.4/src/backend/libpq/be-secure.c 2006-08-30 18:12:17.000000000 -0600

+++ be-secure.c 2006-08-30 18:09:54.000000000 -0600

@@ -92,6 +92,7 @@

 #ifdef USE_SSL

 #include <openssl/ssl.h>

 #include <openssl/dh.h>

+#include "gridsite.h"

 #endif

 #include "libpq/libpq.h"

@@ -662,7 +663,43 @@

 static int

 verify_cb(int ok, X509_STORE_CTX *ctx)

 {

- return ok;

+ char buf[256];

+ X509* err_certificate;

+ int err,depth;

+ static int verify_depth = 3;

+ static int verify_error = X509_V_OK;

+

+ err_certificate=X509_STORE_CTX_get_current_certificate(ctx);

+ err= X509_STORE_CTX_get_error(ctx);

+ depth= X509_STORE_CTX_get_error_depth(ctx);

+

+ X509_NAME_oneline(X509_get_subject_name(err_certificate),buf,sizeof(buf));

+ if (!ok)

+ {

+ if (depth > verify_depth)

+ /* report no verify error if chain is deeper than we want to look */

+ {

+ ok=1;

+ verify_error=X509_V_OK;

+ }

+ else

+ {

+ verify_error=X509_V_ERR_CERT_CHAIN_TOO_LONG;

+ }

+ }

+ switch (ctx->error) {

+ case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:

+ X509_NAME_oneline(X509_get_issuer_name(ctx->current_certificate),buf,256);

+ break;

+ case X509_V_ERR_CERT_NOT_YET_VALID:

+ case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:

+ break;

+ case X509_V_ERR_CERT_HAS_EXPIRED:

+ case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:

+ break;

+ }

+ ok = GRSTx509VerifyCallback(ok, ctx);

+ return ok;

 }

 /*

@@ -730,9 +767,7 @@

 /*

 * Load and verify certificate and private key

 */

- if (!SSL_CTX_use_certificate_file(SSL_context,

- SERVER_CERT_FILE,

- SSL_FILETYPE_PEM))

+ if (SSL_CTX_use_certificate_chain_file(SSL_context, SERVER_CERT_FILE) <= 0)

 ereport(FATAL,

 (errcode(ERRCODE_CONFIG_FILE_ERROR),

 errmsg("could not load server certificate file \"%s\": %s",

@@ -803,7 +838,7 @@

 verify_cb);

 }

- return 0;

+ return 0;

 }

 /*

As noted above in Section 2, the results after applying this patch were not as expected. Postmaster still rejects a valid proxy certificate. After further review of GRSTx509VerifyCallback() and GRSTx509CheckChain(), it looks like those functions don’t automatically “fix” the errors returned by openssl for grid proxy certificates. The next section discusses a workaround.

3.7 PostgreSQL + GridSite + GRSTx509VerifyCallback patch

OpenSSL returns three errors for grid proxy certificates. Neither the GridSite verify callback example GRSTx509VerifyCallback() nor the GridSite certificate chain verification function GRSTx509CheckChain() handles these errors. I patched GRSTx509VerifyCallback() to “suppress” the three errors that openssl routinely returns for grid proxy certificates:
--- grst_x509.c
2006/08/26 17:41:40
1.2

+++ grst_x509.c
2006/08/30 03:14:10

@@ -356,7 +356,15 @@

 else if ((errdepth == 0) &&

 (errnum == X509_V_OK) &&

 (GRSTx509CheckChain(&first_non_ca, ctx) != X509_V_OK)) ok = FALSE;

-

+ // suppress 3 errors "erroneously" returned by openssl for proxy certificates
+ // TODO: need to check additional properties of certificates before suppressing

+ // these errors?

+ else if ((errdepth == 0) &&

+ ((errnum == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY) ||

+ (errnum == X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE) ||

+ (errnum == X509_V_ERR_CERT_UNTRUSTED)

+

))

+

ok = (GRSTx509CheckChain(&first_non_ca, ctx) == X509_V_OK);

 return ok;

This is the only configuration tested that produced the correct result for all six certificate test cases. For the purpose of getting correct results for the limited tests documented in Table 1 above, this patch is sufficient. However, this patch is almost certainly wrong, since there could be cases where each of the three suppressed errors should not be suppressed.
4. Miscellaneous notes

4.1 Software versions used
Table 2 identifies the version and URL for each software package that was included in any of the tests described above.

Table 2. Software versions used

	Package
	Version
	URL

	Fedora Core Linux
	5
	http://fedora.redhat.com/

	OpenSSL
	0.9.8a
	http://www.openssl.org/

	MySQL
	5.0.21
	http://www.mysql.com/

	Globus Toolkit
	4.0.2
	http://www.globus.org/toolkit/

	PostgreSQL
	8.1.4
	http://www.postgresql.org/

	GridSite
	1.3.1
	http://www.gridsite.org/

4.2 GridSite installation notes
My Fedora Core 5 installation was missing some packages that were needed by GridSite. Among them were http-devel, xml2-devel, apr, apr-devel, apr-util, and apr-util-devel. I chose to install the latest versions of each of those available from the Fedora update site, which required installing additional packages due to dependencies.

Three GridSite build problems were related to using newer packages than what the GridSite source code was apparently developed against:

· The GridSite Makefile had ‘apr-0’ hardcoded; I had to change that to ‘apr-1’.

· The apr file /usr/include/apr-1/apr.h used a type ‘off64_t’, which is not defined in any include file on my system, so I changed the definition in question to ‘long long’. Here is the patch:

--- /usr/include/apr-1/apr.h
2006-05-26 01:58:55.000000000 -0600

+++ apr.h
2006-08-29 21:30:33.000000000 -0600

@@ -267,7 +267,7 @@

 typedef size_t apr_size_t;

 typedef ssize_t apr_ssize_t;

-typedef off64_t apr_off_t;

+typedef long long apr_off_t;

 typedef socklen_t apr_socklen_t;

 #define APR_SIZEOF_VOIDP 4

· GridSite was apparently developed against OpenSSL 0.9.7. One change between 0.9.7 and 0.9.8a resulted in a compilation error, fixed with this patch:

--- mod_gridsite.c
2006/08/24 02:47:58
1.1

+++ mod_gridsite.c
2006/08/24 03:03:04

@@ -2596,7 +2596,13 @@

 X509_get_subject_name(x)) != 0)) return 1;

 /* If we haven't asked for issuer errors don't set ctx */

+#if OPENSSL_VERSION_NUMBER > 0x0090800fL

+
/* for openssl 0.9.8a+ */

+ if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK)) return 0;

+#else

+
/* for openssl 0.9.8- */

 if (!(ctx->flags & X509_V_FLAG_CB_ISSUER_CHECK)) return 0;

+#endif

 ctx->error = ret;

 ctx->current_certificate = x;

4.3 Candidate remaining tasks
· Clean up patches and instructions for building, configuring, and running tests, for sharing with others who might want to reproduce or extend the work.
· Determine whether GridSite patch is acceptable. What kinds of invalid certificates would pass because of my change?

· Determine whether linking libgridsite.so is the best approach to using GridSite for a demonstration, or should we extract the five GridSite functions needed and repackage them for easier integration into PostgreSQL?

� This is undesirable behavior in a security function!

� This is C code, not C++, so there aren’t really objects, but the structure is named “globus_error_object”.

PAGE
8

