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Abstract. Employing modal analysis, an accurate formulation to represent the electromagnetic
wakefields generated by an electron charge bunch traveling along an off-center axis in a
dielectric loaded rectangular waveguide accelerating structure is presented. The resulting x-
dipole and y-dipole modes are described in detail. Specific analytical results were obtained for
the dispersion characteristics, the transverse force, and the longitudinal wakefields.

I. INTRODUCTION

Following the successful wakefield analysis of center-beam excited dielectric-loaded
rectangular waveguides [1], an effort has been made to investigate the case of off-
center excitation. Based on Fourier theorem, the wakefield resulted from traveling
electron bunch can be decomposed into an infinite series of normal modes, each
satisfying the boundary conditions required by the waveguiding structure [2]. Such a
representation is more accurate than the single monopole mode approach, and is a
necessity to account for the asymmetry in the total field caused by an off-center charge
beam. At the same time, the analysis and computation become inevitably more
involved. From a computation standpoint, the summation over the normal modes must
be truncated at some point. Under the assumption of a very small off-center
displacement for the charge beam, it can be expected that the monopole and the dipole
modes should be adequate to provide an accurate account of the wakefields for
practical considerations.

It is known [3] that the modes in a dielectric-loaded rectangular waveguide can be
classified as LSM (longitudinal section magnetic) and LSE (longitudinal section
electric) modes that have no H or E components normal to the interface respectively.
This corresponds to assuming the transverse direction to the interface normal vector to
be the direction of propagation. Applied to our case, when a short bunch moves
through dielectric-loaded rectangular waveguide at transverse position (x0, yo) instead
of on-axis where the coordinate is (0,0), the modes contributing to the longitudinal
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wake field should consist of monopole modes LSMin plus LSEin [1] and the dipole
mode in x-direction, (which we denote as x-dipole) and the dipole mode in y-direction
(y-dipole). Here, we neglect the other higher order modes because we assume that the
bunch trajectory does not deviate far from the axis, and keeping terms to this order is
sufficient to ensure the accuracy of the final results. We have verified this by
comparing our analytical results with a numerical simulation using a commercial EM
code.

The organization of this paper is as follows. In section II, we obtain the analytical
expressions for the EM field components of multipole modes through potential
functions, and then we calculate R over Q [R/Q], a very important structure parameter,
for each related mode. Because R/Q has a very simple relation to the loss factor ki of
beam loading [4], we can obtain the longitudinal component of the wakefield
amplitude excited by a charged particle traveling beam easily, rather than computation
of the wakefield using the Panofsky-Wenzel theorem as [5].

II. EIGENMODES

The field components of some special accelerating modes in a dielectric-loaded
rectangular waveguide have been analyzed using a mode matching method in our
previous work [1]. The cross-section of a dielectric-loaded rectangular waveguide is
shown in Figure 1. The general structure considered here is limited to the case of two
//-plane slabs placed symmetrically. In [1], we only considered those modes with
nonvanishing longitudinal electric components at the central point since any other
modes will not couple to an on-axis beam. This implies that the central plane in the y-
z view is an open plane. Using symmetries, the remaining modes with vanishing
longitudinal electric field components on axis can be obtained by considering the
central plane in the y-z view as a short plane.

Fig.l Dielectric-loaded rectangular guide
The transverse equivalent circuit corresponding to open and short planes for this

symmetrical H-plane waveguide can be established as shown in Fig.2 (a) and (b)
respectively. In this paper, we will use the superscript (open) and (short) to represent
these modes with and without the longitudinal electric components nonvanishing at the
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central point. To clarify our procedure, we summarize all fundamental electromagnetic
field physics in this kind of H-plane dielectric slab loaded rectangular waveguide. First
of all, we obtain dispersion relations of the open and short central plane cases
respectively by using transverse resonance method [6].

From [6], we can deduce the dispersion relations as follows:
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Fig.2 a) open plane and its equivalent circuit b) short plane and its equivalent circuit
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are the values of the characteristic impedances of each mode, and the transverse
propagation constants are expressed in terms of the longitudinal propagation constant
pmn using the following conditions:
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Here k= 2nf/c is the propagation constant in free space and the notation of
superscript (0) or (1) indicates the vacuum or dielectric region of the waveguide
respectively.

Transcendental equation (1) is a complex function of pmn and f, which gives the field
components and dispersion relations of all the eigenmodes for a dielectric-loaded
rectangular waveguide. For the inhomogeneous guide considered here, the dispersion
relation must be solved at each frequency. An infinite number of discrete solutions
exist, but we are interested only in those consisting of monopole and dipole modes.

The field components of LSM(open), LSE(open), LSM(short) and LSE(sWt) modes in a
dielectric-loaded rectangular waveguide can be derived from the solution of vector
potential wave equations as the following formulations [6].

LSM mode: Ve=di i/se(x,y,z)

= . i ay.
cojue dxdy

'dy2

. i ay.
7 "- dydz

(3a)

LSE mode:

€ dz

E „ =

E, = - —

H = - i
(OfJ£ dxdy
O n •> ^ (3b)

H z = -je dx
where \|/e and \|/h must satisfy the scalar wave equations of

V2ys (x,y,z) + f}2\// (x,y,z) = 0 q = e,h. (4)
Applying the boundary conditions at the perfectly conducting guide walls (x=±w/2,

y=b) and the boundary condition at the magnetic or electric wall(y=0), the potential
function x|/e for open or short modes are

i——(
w
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In each region, the fields for the LSE(opeQ)
mn or LSE(short)

mn derive from an magnetic-
type potential function. Using the boundary conditions at the perfectly conducting
guide walls (x=±w/2, y=b) and the boundary condition at the magnetic or electric wall
(y=0), the potential function \|/h is

w

w 2

, 0<y<a

, a<y<b
(60)

coswin
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The corresponding field components derived from equation (3) are reviewed briefly
and listed separately as the Appendix of this paper.

III. TRANSVERSE WAKEFIELDS

The monopole and dipole modes are of greatest interest in determining beam
stability. We have shown that the LSM(open)n mode is the lowest luminal mode in our
the structures under consideration, and its longitudinal electric field is distributed
symmetrically in both x and y. In [1], the general acceleration properties of the
LSM^open\i mode had been calculated, such as the ratio of the peak surface electric
field to the axial acceleration field ES/E0, the group velocity vg, the attenuation constant
a, and R/Q which measures the efficiency of acceleration in term of the given stored
energy, etc. We also have analyzed the longitudinal wake fields of monopole modes
LSM(open)in+LSE(open)in. Some results are presented and compared with numerical
results from the MAFIA code and are found to be in good agreement.

In this paper, we will consider the transverse wake fields of dipole modes first by
using the same method as used in [1] for the longitudinal wake fields of the monopole
modes, then together with result from monopole analysis, we can obtain accurate wake
field numerical simulations.
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The longitudinal electric field components of LSM^U, LSE^U, LSM(short)

and LSE^^mn modes have the following form in the vacuum region:

(7a)

——si* £*-(* + -^) cos * <«i, y (7b)
w w 2

)* <?L sin ̂ f(* + y) sin * <»1 7 (7c)

sin ^L(* + f ) sin *<«! y (7d)
>v 2

Obviously, LSM(open)2n/LSE(open)
2n modes are the x-dipole modes and

We assume a Gaussian longitudinal beam shape (with bunch length az and charge e).
The transverse forces can be directly calculated from Ez by using the Panofsky-Wenzel
theorem [2]

(8)
dz

For synchronous x-dipole modes (k(0)
y=-j(27t/w)), the longitudinal electric field

component and transverse forces can be expressed as

2
27T= ̂ £0/ (% ,0) sin — x cosk^y cosfiz
W

where E0i(x0, 0) is the off-axis (x0, 0) accelerating/ decelerating gradient of the ith

mode. Thus,

Qi cos(—

For synchronous y-dipole modes (k(0)
y=-j(7r/w)), the longitudinal electric field

component and transverse forces can be expressed as

oi(0,y0)sm -(x + ^)si
w 2
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where E0i(0, yo) is the off-axis (0, yo) accelerating/ decelerating gradient of the ith

mode. Then,

F(Q,y0,z) = e^=l—— fY £w*<°> cos(*<°Vo)cos #(z-z';
(12)

However, since we have already obtained the field distribution, and the normalized
shunt impedance R/Q of each mode can be calculated using mode analysis [1], the
longitudinal component of the wakefield amplitude excited by a charged particle beam
traveling on axis can be easily obtained as follows [2].

03)

Rwhere ( — ) ='Q coP
Ez(x0, yo) is the value of the longitudinal electrical field component at point (x0, yo), P
is the power flow in cross-section of waveguide />=i HEtxfftdxdy> an(^ vg *s me grouP
velocity.

We assume a Gaussian longitudinal beam shape (with bunch length az and charge
q). The longitudinal wake Wz(z) at distance z behind the drive electron beam is then

1 Z oo /2

given by Wz (z) = , j ̂  Eu cos A (z ~ z/) exP( ~ ~^^dz' (14)-

Together with the monopole mode [1], the whole wakefield generated by the electron
bunch traveling at the off-center position (x0, yo) can be obtained accurately.

IV. CALCULATED RESULTS

This section we will be concerned with presenting the data by applying the theory we
introduced above to a specific case. Here, the dimensions of the X-Band waveguide
are a =3 mm, b =5mm and w =23mm, and the dielectric constant =10. Fig.3 shows the
dispersion characteristics of x-dipole and y-dipole modes, and we found the
corresponding synchronous accelerating parameter for each mode, i.e. the intersection
points between the dispersion curve of each mode and the light speed line.
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Fig.3 a) dispersion characteristics of x-dipole mode b) dispersion characteristics of y-dipole mode

Table (1) shows the calculated results of x-dipole modes synchronous with and
acting upon an ultra-relativistic electron (p=27if/c), in which LSM(open)

2i, LSE(open)
2i,

LSMr°pen)
22, LSM(open)

23, LSM(open)
24, and LSE(open)

22 are considered.

TABLE 1. Parameters of x-dipole synchronous accelerating modes
Mode

LSM(open)
21

LSE(open)
21

LSM(open)
22

LSE(op%
LSM(open)

23

LSM(openJ
24

Freq. (GHz)
11.95
14.77
33.92
38.33
56.88
80.44

Pi(rad/m)
250.413
309.617
710.998
803.381

1192
1686

(R/Q)i
313.224
268.956
171.053
27.304
70.91
32.785

In Figure 4, the transverse wake fields obtained using equations (10) is shown. For
this example, a q =lnC bunch with length az =2mm located at x0 =lmm and yo =0 is
moving along the axis with a speed of light in dielectric-loaded waveguide. The first
six x-dipole modes are used in the sum over modes; higher order modes do not
contribute significantly.

549



A
A

-40 -32 -24 0
zfrtun)

Fig. 4. Calculated transverse wakefield in an X-Band structure of x-dipole mode (a=3mm, b=5mm,
w=23mm, er=10, and az=2 mm, q=lnc)

The corresponding results for y-dipole modes are shown in table (2), and here only
four modes are considered.

TABLE 2. Parameters of y-dipole synchronous accelerating modes
Mode

LSM(snort)
n

LSE(shon)
n

LSM(short)
12

LSE(snort)i2

Freq. (GHz)
7.319
15.44
27.45
38.68

Pi(rad/m)
153.392
323.512
575.244
810.657

(R/Q)i
461.556
227.808
24.98
20.542

The transverse wake fields obtained using equations (12) are shown in Figure 5. The
bunch is located at x0=0 and yo=lmm. The first four y-dipole modes are used in the
sum over modes, and again higher order modes do not contribute significantly.
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Fig. 5. Calculated transverse wakefield in an X-Band structure of y-dipole mode
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In Fig. 6, analytical simulation results for the longitudinal wake fields for x and y-
dipole modes obtained by using Eq.14 are shown respectively. It is evidently that the
x-dipole has a larger contribution to the bunch wakefield than the y-dipole.

1.5-10* 1J-1D*

-40 -32 -24
-1J-1D1

(a) (b)
Fig.6 Longitudinal wakefield analysis (a) x-dipole case (b) y-dipole case

The modes that we choose to compute the whole wakefield are with respect to the
contribution of (R/Q)i for each corresponding mode which includes both monopole
and dipole. The table (3) is the list of mode and their parameters we choose. Fig.7 is
final behavior of the wakefield including all contributions from the dipole modes.

TABLE 3. Modes used for calculating wakefield
Mode

LSM n
(mono)

LSM 12
(mono)

LSE n(mono)

LSM 13
(mono)

LSM 14
(monoJ

LSM 1/y-dip°1^
LSM 2/x-dlPoleJ
LSM 15

(mono)

LSE 2/x-dlP°leJ
LSE 1/y-dip°le'>
LSM 22^-dlPole^

Freq. (GHz)
11.17
33.28
13.19
56.24
79.84
7.319
11.95
103.9
14.77
15.44
33.92

Pi(rad/m)
234
697
276
1179
1673
153
250
2177
310
324
711

(R/Q)i
12610
3743
3009
1334
574
462
313
288
269
228
171
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Fig.7 (a)analytical result of full wakefield (b) contribution of dipole modes to wakefield

V. CONCLUSIONS

A exact solution for wakefields generated by a bunch traversing a dielectric loaded
rectangular waveguide accelerating structure off axis is developed. It is an extension of
the previous approach for the on axis beam case. The idea behind this effective and
accurate analytical method to solve the complicated problem of wakefields is based on
the fact that there exists an orthogonal EM field modal decomposition and the
dependence of wakefield on the linear combination of accelerating structure dimension
factors R/Q.
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APPENDIX
The formulas of EM components for inhomogeneous H-plane dielectric loaded

rectangular waveguide are listed here. The z dependence exp(-jpmnz) has been omitted
in these expressions for simplicity.
LSM(open)

Exmn =

Eymn = •

Ezmn = •

H xmn = •

H zmn =

i A tC 1where A
mn _ Kym

Bmn i

LSE(9pen)
nmmod

Exmn =

Ezmn =

H xmn

1

Hymn =

Hzmn =•

W

Amn ̂ Lk^ cos ̂ L(x + 2L) cos * (o) y, o < y < a
w w 2

Bmn
 mn *£> cos mn (x + W)s in *2i (* ?)> fl < 7 < bw w 2 y

Amnk]mn sin —— (* + — )sin *£> 7, 0 < 7 < a
w 2

B
mn

kLn sin -^-(* + — )cos kyn (b - y), a < y < b
~w 2

Amn (~jpmn )*£ sin ̂ -(jc + y)cos *£ ;,, 0 < y < a

B
mn (- JPM )*£i sin ^-(* + y) sin *£ (ft - y\ a<y<b'

w 2
- B cue Q£ ft sin —— (jc + — )cos k(l) (b - y), a < y < b

w 2 y

H^ = 0
/ . . mn mn . w . . , m^^(y^o)-^cos — — (x + y)sm k^y, 0 < y < a

B
mn (J®£ Q£r)— — cos — — (x + y)cos k^ (b - y\a < y < b

nsmk^n(b-a) Amn erCosk^n(b-a)
^cos^a '"; ^K s in^>« ' UJ

es:
Cm n (- jPmn ) cos ̂ -(^ + ̂ ) cos A:^ ^, 0 < y < a

Dmn (~ JPmn ) cos ̂ ^(x + ̂ ) sin A: <ii (6 - y\ a < y < b
w 2

E^ = 0

C.^-sin^-U + ^cost^j-, 0<y<a
^ mn . mn , w , , m ,,Z)mM ——— sm ——— (x + — )sm fr£l (6 - ^), <ar < ^ < 6

w w 2 *
^ k ^ mn . mn , w. . , ( 0 }

jcoju 0 w w 2

-) k(y™ m"sm mK (x+ W)cos £ (1 ) (b y), a<y<b
jd)ju 0 w w 2

Cmn
 k'mn cos m H (x + W ) cos k(

y^n y, 0 < y < a
jcoju 0 w 2

Z) *«" cos m;r ( j c + W)sin k(l) (b y), a< y < b
jcoju 0 w 2

c Pmn^n ^ m n ^ + W ^ ̂  0 < ^ < «

ftjt/ 0 w 2
r. P mn * ymn mn W i (1) / i \ L£™ cos (^ + )cos k(;mn (b y\ a < y < b

coju 0 w 2

h^Cma k®,<xxk®,(b-a) C sinO*-«) M,
"^ C^*> A. cosO ' (1)

(1)

(3)
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LSM(short) modes.

• -\- 1
E^ = \

[

E ™, = '
E

H xm, = •

" -I1
where _d

B

m n (Q) mn w . m-^L« —— *iJ cos —— (* + — )sin £)J.y,
w w 2

m ft r (D mn , w , . , rn ,. ,B mn —— &J^ cos —— O + — ) sin k(
mn (b - y),

w w 2

Amnk2
cmn sin ̂ (;t + — )cos k™y,

w 2
B.kL sin ̂ (* + ̂ ) cos *« (b-y),

W 2

Am jpm *£ sin H^-(X + ̂ ) sin k™ y,
w 2

'- (-#« )*iii «n ^L(» + |.) sin * <Ji (6 - ,),

- Am (OS Opm sin ̂ -(x + y) cos fc <!> y,
„ „ . m n , w , » m ^ r \- B coe Qe B sin —— ( ;c + — ) cos k ;̂ ; (6 - y ),

w 2
"3- =0

. mn mn , w , , r ( n
Amn (7^o) ————— COS ————— (* + —— )COS ^^ J,w w 2

T ^ X . . m n m n , w , , m x ,5 ww (jcoe Qer) —— cos —— ( ;c + — ) cos A; ̂  (b -
w w 2

„„ _ - C sin C (* - «) or Am _ er cos C (ft -
*2sin*2« ' 5™ cos*™«

0 < y < a

a < y < b

0 < y < a

a < y < b

0 < y < a

a < y < b

0 < y < a

a < y < b

0 < y < a

y), a < y < b

a)
t £.\—— , (o)

LSE(short)
mn modes

Exmn =

Ezmn --

(
Hxmn = •

H ymn =

H zmn = «

CmB (-7^^ )cos ^^(X + — )sin /t<^ y,w 2
Dm (~jpm) cos ^^(^ + ̂ )sin *^ (6 - j-Xw 2

E^n =0

_ mn . mn , w N . , r o ^C.« ——— sin ——— O + — ) sin £ <° >,, 0
_ w w 2

^ mn . mn , W N . , m x ,^.« ——— sin ——— (x + — )sm A:^i (6 - y),
w w 2

kvmn , mn . . mn , w , , r o ^: — Z^_(_ ——— )Sm ——— (x + — )cos k ( ) y,mn jcoju o w w 2 ymn

^ k vmn mn . mn , w , , m x ,£) — ̂ ^ ———— sin ——— (x + — )cos k ( ) (b - y\mn jcoju 0 w w 2 J""
^ ^i» mn , w . . , r o ^f 1 cmn pr»° i v 1 i °in Ir ^ ' T
C" 7^0 w U +

 2
)Sm^^'

DMW ^ cos m" (x+
 W)smk%n(b y\jcoju 0 w 2

c - ̂ ^ ^^r w (0)cm« cos {x + ;cos K y,
coju 0 w 2

D Pmnkymn m ft W (1)^ W H cos ^A -i- j cos A. {D y ),
coju 0 w 2

where C^ _-^co<(fe-fl) Cww_sin^

0 < y < a

a < y < b

< y < a

a < y < b

0 < y < a

a < y < b

0 < y < a

a < y < b

0 < y < a

a < y < b

>-a)" («\

(5)

(7)

sin£(0)a '
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