Massive Neutrinos and the
Cosmos

 Neutrinos affect Mass Distribution
e Measures of the Mass Distrtribution
e A way out
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Neutrinos are produced in the
early universe

Alpher, Herman, & Gamow 1953

« Neutrinos interact very weakly: need high
temperatures/energies

e Early on, the universe was much hotter, so,
e.g.

ee - vy
occurred frequently

Expect about as many neutrinos in the
universe today as photons (~100 cm3)




50 eV mass v would dominate the
energy density In the Universe

e There is non-baryonic dark matter in the
universe (i.e., something beyond the
standard model)

o Simplest extension which gives dark
matter IS neutrino mass

e But ...



Massive Neutrinos affect large
Scal e St rU Ctu re Bond, Efstathiou, & Silk 1980, Melott 1982; Bond &

Szalay 1983; White, Frenk & Davis 1983; Shandarin, Dorshkevich, & Zel'dovich 1983

e We know the neutrino
abundance In the Q,
universe:

e Neutrinos stream out
of overdense regions
when kT ~ 1 eV.
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(no neutrino mass)

If neutrinos are important, they
smooth out the distribution: no
small scale structure

Hot + Cold Dark Matter
(non-zero neutrino mass)

Cold Dark Matter / '

Colombi, Dodelson, & Widrow 1995



Musical Acoustics

e Middle C ¢
 Middle C ¢
on a piano

Analyser.exe



Quantitative Measure: Power
Spectrum
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Probes of the Power Spectrum

o Galaxy distribution

 Lyman alpha forest 4 MGQO

 Weak Lensing




Sloan Digital Sky Survey

» 2.5 meter telescope in
Apache Point, New
Mexico

» Collaboration of:
Fermilab, Princeton, U.
Chicago, U.Washington,
Johns Hopkins, New
Mexico State, Max Planck,
Japan, Pittsburgh, ...

» Scheduled to end in
2005; may be extended
until 2007; will cover ¥4 of
the sky




Two surveys In one

* Photometric survey: hundreds
of millions of objects in 5 bands

» Spectroscopic survey: ~1
million objects with spectra

» Spectroscopic survey targets
objects found in photometric
survey. Reduces systematic
effects (typically objects
targeted for redshifts are found
in different survey, leads to
complicated selection function).

SD5SS CAMERA




5 Filters very efficient
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Ultimately will get redshifts
for ~750,000 galaxies;
100,000 QSOs

0.4 -

I and z’ bands especially
important for high redshift
QSOs. Lyman alpha line
(1215 A) redshifted to
1215*(1+z) A. Can get z>6
QSOs.

System Kespaonse

s

1 | 1 1 1 ] 1
4000 &O0C Z000 104
Wavelength (&)




SDSS Galaxy Power Spectrum
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CMB
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Photons with
energy >
(n=1to n=2
transition
energy) get
absorbed
along the
line of sight
as they lose
energy due
to cosmic
redshift.

Every
absorption
line
corresponds
to cloud of
neutral
hydrogen.

Lyman alpha forest
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Fluctuations in density mimicked
by fluctuations in forest
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SDSS: Lyman Alpha Forest
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e Dashed lines are
from Keck;

solid from SDSS

» 3 sets of curves
from low (bottom) to
high (top) redshift

e SDSS goes to
larger scales, but
doesn’t have small
scales resolution

Results
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Good agreement with Keck!



Convert 1D Flux Spectrum to
3D Linear Matter Power
Spectrum

 Run many simulations with CDM-like
spectra

e Extract Flux power spectra from each
simulation

 Fit amplitude and slope of power at 1 Mpc

Lidz et al.



P(k) (h—3 Mpc?)

3D Power Spectrum
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Future

Weak Gravitational Lensing

Unlike galaxy surveys and Lyman alpha, lensing
directly probes mass distribution!



Lensing Is sensitive to neutrino
mass

« Break up background galaxies into distinct
redshift bins

* Probe time evolution of gravitational
potential (sensitive to neutrino mass)



Future

Measure power
spectrum
AND/OR
measure growth
of spectrum at
late time

e Sensitive to v
mass AND dark
energy

e Accelerator v
experiments will
teach us about
dark energy!

Weak Lensing
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Is there a way out?

* \We assumed neutrinos stop interacting at
1 MeV

 If they continued Iinteracting, staying in
equilibrium, their abundance would drop

as exp(-m/T)
e NO neutrinos around to inhibit structure
formation!

Beacom, Bell, & Dodelson 2004



This can be done ...

e ... If neutrinos interact with a massless
scalar field

L~ govv
v ()
v ()

* To enforce equilibrium, require

g'T>H(T) - g>10"°°



Extra degrees of freedom leave
minor impact on power spectrum

... but even large neutrino
massses are currently
allowed
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Conclusion

e Cosmological constraints on neutrino mass
(<1.8 eV total) arise from power spectrum

o Wide variety of technigues/experiments
needed to eliminate systematics

 We must all become familiar with: Big Bang
cosmology, large scale structure, dark energy,
Inflation, cosmic microwave background, ...
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