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I. INTRODUCTION I

4-dimensional Grand Unified Theory (GUT) with N = 1
- Supersymmetry (SUSY) is.very interesting:

e Unification of SU(3)¢ x SU(2); x U (1)y gauge interactions in the
Standard Model (SM). '

° GaUg_e coupling unification in Minimal Supersymmetric Standard Model
(MSSM).

e Gauge hierarchy problem.
° Charge quantizatibn.

e Radiative electroweak symmetry breaking due to large top quark Yukawa
coupling.

e Weak mixing angle at weak scale M.

e Neutrino masses by see-saw mechanism.



Existing problems in the 4D SUSY GUT with gauge
symmetries broken by the Higgs mechanism:

e Proton decay problem

e Higgs doublet-triplet splitting problem

?

o How_to explain the fermion masses and mixings? For example in SU(5)
Me /M, = mg/mg.

e How to break the GUT gauge symmetry down to the SM gauge
symmetry?

These problems in 4D GUT can be solved neatly in the high dimensiona.

orbifold GUT models 2.

- 2Y, Kawamura; G. Altarelli and F. Feruglio; L. Hall and Y. Nomura; A. Hebecker and J. March-Russell; T.
Li; R. Dermisek and A. Mafi; 1. Gogoladze, Y. Mimul_'a and S. Nandi.




Electroweak symmetry breaking (EWSB) is still a mystery in
particle physics. -

Technicolor t'héory explains the EWSB elegantly due to the

condensations of one or several pairs of fermions 2.
Can we construct the orbifold GUTs with dynamical EWSB?

Embedding non-SUSY models with dynamical EWSB ® into

orbifold non-SUSY GUT, we have to give up the naturalness in |
SUSY.

The Minimal Supersymmetric fat Higgs Model (MSFHM).

3S. Weinberg; L. Susskind; C. T. Hill and E. H. Simmons.
PT. Appelquist and R. Shrock; C. T. Hill and E. H. Simmons.




II. BRIEF REVIEW OF THE MSFHM |

e A new gauge interaction SU(2)y that becomes strong at Ay
o New fields T%, PL, P2, Q, Q?, S and &'
The superpotential is

W:'W1+W2+W3

Wi = y1ST'T? + o, S'T°T*
Wo = —mT°T® +m/T'T®

Wi = ysPY(T', T*T® + yo PX(T", THT®
+ys T (T3, THQ? + yeT8(T?, TH Q'

The scale of electroweak symmetry breaking vy and the
spectator masses are
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The quantum numbers of T, P, P?, Q!, Q?, S and S’ under
SU(2)p x SU(2)g and SU(2), x U(1)g1 x U(1)ge x U(1)g
The U(1)y subgroup of SU(2), is gauged.

Superfields | SU(2)r | SU(2)g | SU(2), | U(1)a U(1)92:U(1)R
(T TH=T| 2 2 1 0 0 0
(13,74 | 1 2 2 0 0 0
T 1 2 1 1 0 1
T 1 2 1 1| o 1
T" 1 2 1 0 | 1 1
T8 1 2 1 0 ~1 1
p! 2 1 1 1 0 1
p? 2 1 1 ~1 0 1
Q! 1 1 2 1 0 1
Q? 1 1 2 ~1 0 1
S 1 1 1 0 0 2
S’ 1 1 1 0 0 2




Fermion masses:

e Four additional chiral multiplets are introduced

_ 1 _ 1
¢U7¢d(1727+§) : Pd, (pu(]-727—§)

o Superpotgntial is
Wi = Mi(pupu + Gapa) + y10a(TT*) + ys@ou(TT?)
+hIQsuj0u + B Qidjpq + B Liejpa

(Ag/A)YV? ~d4m Myp~m' ~ Ay

* Yukawa superpotential below compositeness scale is

Wy = hyl Qiu;H, + hiQid;Hy+ h¥ Lie; H,



Gauge Coupling Unification.
S functions:
bi (T4234 1 PL2 L QM2 4 o4+ Gua) = bi(4 Hy + 4 Hy)
The condition for- gauge coupling »uniﬁcation is
b; (éhiral fields) = b;(Hy + Hq) mod bi(‘.SU(5) Multiplets)
We introduce D; and D; with (3,1,1/3) and (3,1, —1/3).
The Superpotential for D; and D; is

3
Wp, = ZmDiDiEia
i=1

with mMp, ~ Mp, ~ Mf ~ m/, and Mp, ~ m’/47r.



Questions:
o 71234 PL2 and Q2 can not be obtained from a complete

GUT repreSent_ation, how to embed it into GUTs?

e New p problem: why are ‘m, m' and M f> Of mp, not at the
Plank scale or GUT scale? And why

Mff\gm' ~ Mp, ~ Mp, , Mp, ~m [4x

mm/
(4m)?

vg ~

e How to explain the fermion masses and mixings?



(5)

IILI. 6-D N =2 SUSY ORBIFOLD SU(5) MODEL ;

General setup:

e 6D space-time M* x S* x S, zh (n=0,1,2,3), y = z°

and z = z5.

e Radii for the circles along y direction and z direction are R;
and R;. |

e The orbifold S'/Z, x S'/(Z, x ZL) is obtained by S x S
moduloing the equivalent classes

Yy~ —yY, 2~ —2, 2 ~ =2
where 2’ = z — TRy/2.

e 4 fixed points: (y =0,z = O)', (y=0,z=mRy/2),
(y=mR1,2=0)and (y = 7Ry, 2 = mRy/2)
4 fixed lines: y =0,y =mR;,z=0and z = 7Ry /2.



e In order to make sure that the 5D masses for the
hypenhultiplets on the 4-brane at z = 0 are smaller than the
unification scale or cut-off scale, we consider a local Z
discrete symmetry 2.

p' We introduce a 4-brane at

and assume a local Z} Symmetry in the neighborhood of this
.4-brane

y ~ —y  wherey =y —s

e The effective radius r;

2R,
T =
p+q

o lThe masses of KK modes depend on the effective radius ry
instead of R;, and then, the KK modes can be relatively

e The relatively large extra dimension and arbitrarily heavy
KK modes # can be arranged.

© *T.Li.



e The 6D N =2 vector multiplet can be decomposed to be
- one vector superfield, V', and three chiral superfields, Y5, g
and ¢ in the 4D N = 1 SUSY language.

~e 3 global Z, parity operators, P,, P,, and P, and 1 local Z,
parity operator P, |

Py:y~—y, Py ~—y

P,:z~—2z P :2~-Z2
Under P, the vector multiplet transforms as
V(x“, —7Y, Z) — PyV(.’IJ“, Y, z)(Py)—l
Ys(xh, —y, z) = —P,Ys(z*, y, 2)(P,) 7!
Ye(xh, —y, 2) = P,Yg(z*,y, 2)(P,)~*
(I)(CL"U' —Y, Z) — _qu)( Yy < )( )

- For P, and P’ we just interchange the subscripts: y <> 2
~and 5 < 6.



' To break SU(5), we choose the following representations for
P, P;, P,,and P,

Py = (1,41, 41, 41, 1), P =(+1,+1,+1,-1,-1)
P =1, 41,41,-1,-1), Py=(+1,+1,+1,+1,+1)

e Under P, or P, the gauge generators for SU (5) are
separated into two sets: T° and T, the generators for SM
and SU(5) /Gy

a P'-1 _ ma a p'-1 _ a
P/Ts P-l=T% P'T¢p-'=_T%
PzTapglzTa,PzT&Pz_lz—T&



e For all the KK modes:
- 4D N = 1 SUSY is preserved on the 3-branes
- 4D N =2 SUSY is preserv_ed on the 4-branes

e The surviving gauge group on each 3-brane or 4-brane is
SU(5) or SU(3) x SU(2) x U(1).

e For the zero modes, the bulk 4D N = 4 supersymmetric
SU(5) gauge symmetry is broken down to the N = 1
supersymmetric SU(3) x SU(2) x U(1).



Parity assignment and masses (n > 0, m > 0) for the vector multiplet in the
supersymmetric orbifold SU(5) model.

(PY, PY, P%, P¥) | Field | Mass

(4 +) | Ve V2 T Cm) RS

(=, =, ) va \/(2n+1)2/r§+(2m+1)2/R;

o | /Cn 2+ emt 2R

®* | /(20 +1)2/r + (2m +1)*/R3

(= =+H+) | 22| VEn+22/ri+ 2m)? /R
(—+,—,+) 22 | /(2n+1)2/r2 + (2m + 1)2/ R}
(+4,——) | 2 | VO I Om iR
(+

(

(

)

=6 =) | B8 | V(e +1)2/r{+ (2m +1)2/R;
)
)




At the fixed point (y =0,z =0), (y = 8,2 = 0), (y = 7R,z =0),
(y=0,2=7Ry/2), (y =s,2=7Ry/2),0r (y = TRy, z = wRy/2).

3-Brane Position Fields | SUSY | Gauge Symmetry
(0,0) or (TRy,0) . |V, 54| N=I ey
(0,7Ry/2) or (wRy, 7Ry/2) | VA | Nel SU(5)
(s, 0) Ve, 8 | N=l Gsm
(ls,7rR2/2) Ve, 381 N=1. Gsum

On the 4-brane which is located at the fixed liney =0, z =0,y = s,
Yy = 7TR1, or z = 7TR2/2.

4-Brane Position Fields SUSY | Gauge Symmectry
y —0or y = TR, VA 5¢ =2 - SU(5) |
z2=0 Vi, 25, a b =2 Gsm
y=s Ve, 5E, 5, 84| N=2 Gsm
2= 7Ry2 VA o4 =2 | SU®)




IV. EMBEDDING THE MSFHM |

On the 4-brane at the fixed line z = 0, we only have the 4D
N =2 SUSY and the Standard Model gauge symmetry.

We can put the minimal fat Higgs model on the 4-brane at 2 = 0.

The SU(2)y gauge interaction can be either in the 6D

space-time or on this 4-brane.



- The 5D N =1 SUSY action

For the gauge group G and a hypermultiplet (X and X*¢ as 4D N = 1 chiral
multlplets), in terms of the 4D N =1 SUSY: 2

/ dz / dy—Tr[ / d20(W“Wa+'H.C.)

T / d* ((\/565 + EDe ™ (—=v205 + Ts)e” + ase_vﬁgev)

wR; '
—l—/d"‘x/ dy [/d40 (X% X+ Xe TV X)
0

+ / d20 (Xc(85 +mO(s — y) — O(y — 5)) — i25)x + HC)] |

V2

where m%" is the 5D mass term.

N. Arkani-Hamed, T. Gregoire and J. Wacker.



e Under F, and P, the parities of X and X° are (+,+) and (—, —),
consequently X does not have zero mode

° _The 5D wave function for the zero mode Qf Xis?

ax e ™XY if 0 < y<s

fo (y) = .
ax e”™mx (25-Y) if o <y<7mR;
| - 2mip
a’X = bm bm
_ 1+ e2m¥ (mRy1—2s) - 9e~2mX"s

m57 is the 5D mass.

e The masses for the n-th KK modes of X and X¢ are

| n?

e We choose

So, we have

N. Arkani-Hamed and M. Schmaltz; E. A. Mirabelli and M. Schmaltz; D. E. Kaplan and T. M. Tait; R. Ki-
tano and T. Li; K. W. Choi, I. W. Kim and W. Y. Song; K. w. Choi.



Including the fields:

® Qi, u;, di, and T7, PF, QF, Puds Pud» D; and D; on the
4-brane at z = 0. | |

e The singlets S and .S’ on the 3-brane at (y = 0, z = 0).

® One pair of vector-like particles S; and S, with quantum
numbers (1,1,+1) and (1,1, —1) under the SM gauge
symmetry on the 4-brane at z = 0, and their parities under |
(Fy, P,) are (+,—) &

aT. Li and W. Liao.



P,, P,) parity assignment and the masses (n > 0).

Field

(PY, Pf‘/) Mass
()| Qo di, T3 P QE |\ f(mige)? + (2n)2/r?
Pu,d> ‘(pu,d, Dz’, _Ez
("H —) S1, Sz (2n + 1)/?"1
(—+) S5, S5 (2n + 1)/ry

;;, uC. d¢ ch, Pkc, ch

22 1?

V()2 + (20 + 227}

c =c c ¢
QOu,d’ (Pu,d’ Dz” Di




The 5D masses for the ﬁelds.

Field m%" | Localization

T T2 73,74 | 0 No

»T7, (Pu,d,_Dl’ D2 mg?(; (y = 0, z = O) .

T8, Puds D,, D, —_mlq’fg (y=s,2=0)

' T5, Pz, Q2’ D3. m’}’% (y = 07 z = 0) |

TG,PI,Ql,Tj?) _m% (y=3,z=0)‘

m ~ Mp, ~ m'/4x



The 5D localized superpotential is

W = (ST'T? + ST T Ri8(y)

Wy = —T5TS [y2.6(y) + y56(y — s) + yho(y — 7Ry)]
+T7T® [yns6(y) + 45, 6(y — ) + yLy0(y — TRy)]

W3(5) _ [y3P1(T1,T2)T6 + yeTS(T3 T4)Q1 5y — s)
| | m mbm
| Te'"" PQ

[ (T 4T, T LU
7 : / bm
Wi = (pufutGapa) [431,95) + Yir, Oy — 5) + he, 6y — 7R1)|

WR;‘&(?J —5)
\/ M
[ zJQqu(Pu + hZJQz iPd + h L; 6]90(1]

\/2—"_":5(3/)

W(s) Z D;D; [ymD ) + yani5(y —s)+ y,lnDi5(y - 7‘TR1)]

+ [y7Pa(TT*) + yspu(TT?)]




After compactification, we obtain 4D superpotential with

m o= V2 (yh + b+ ym) mPye
m = V2 (Y + yh + yi) mifpe "
My = V2 (48, + vy, + vy, ) mifme"Fo"
mp, = V2 (y?nDl + yfnpl.—i— y}npl) mgge-m%%s
hlpz = 2 (y&D2 + Y, T y,l,,Dz) m?ﬁe"m‘%s

bm —m%s

Mmp;, = \/i <y?nD3 + yTsnD3 + y71nD3) Mpg€
B = b f5%(0)43"(0)
] "ij p1Qs d;
R = hy fo%(0)f57(0)
R = hF f5(0)£57(0)

where

- 2 Ry mb™
X = « /e P £ X(0) — 1 My
0 (0) - FleO (O) \/1 T e2m§"(7rR1—-2$) . 26—-2%?%3




Vector-like particle masses:

e We assume that

| bm
m' ~ Mf ~ mp, ~mp, ~ mgfge (AN 10 TeV

_bm
M ~ Mp, ~ m’};"ée "PQ® ~ 1 TeV
‘o From the RGE running, mT(P ~ mpy ~ 10'° GeV.
e—mTSO 10_..]_]_ e—mPQS ~ 10—12

e Masses quantized in the unit of 1/7 R;

b _ 30

b 33
mT(p 71'_}21

mPQ:—

TRy



FQI'II]iOl’l mass matrices:

For u, d, and [ mass matrices, our goal is to produce the
following textures

h ~

with A"~ 0.22. For the left-handed neutrinos, the

(38 a5 a3 )
\ABYISY

‘\)\5 A2 1}

mass matrix 1is

iJ
b) h‘d ~

a3 a3 )
DYADEDY:

\ A 1 1)

(a2 2 2 )

Al 1

\r11)

ij
, e~

(a5 a3 )
A1

\ M A% 1)

5

Correct fermion mass hierarchies, CKM matrix and PMINS

matrices can be generated from the above fermion mass

matrices 2.

“H. K. Dreiner, H. Murayama and M. Thormeier.



Note:
hid
hi = h;J 5Q’<o>f3dj<o>'
RE = R f7(0)£,7(0)

I
D‘

;5
—
O
N—
-
“ <

.
N
-
S’

- | 2m Ry mb™
= /TR f(0) = \/ » L X
- 1 +ex

bm(rRy—2s) 26_2mX s
To generate the desired structure

0) = DAY R0 = A1)
“0) = (L1
(’)Li(o) = [)‘7171] 6%’(()) — [)‘47"\2,1]

Solved to get the quantized 5D masses for the SM fermions

ml* = [-6.5,—-4.5,0] mi™ = [-10.5,—4.5,0]

Uj

mim = [-2.5,0,0]

]

my" = [-2.5,0,0]  mi" = [-8.5, —4.5,0]

€;



Gauge Coupling Unification

The one-loop renormalization group equations are

ow) = o7 (Mp) %3% In2 = 0 — me)

- For simplicity, we assume

m~1TeV, m'= My =mp, = mp, ~ 25 TeV

'msusy ~ 360 GeV , Mgpec = mp, ~ 1 TeV
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With 1/R; = 1.0 x 10' GeV,

Mgyt ~ 2 x 10'° GeV

M ~ 0.955 x 10° GV mi ~ 1.05 x 10%° GeV

pr qg=1, mT(mePQ~3x1()15GeV



Some Comments:

(1) Either S U(2) H» gauge interaction is in the 6D space-time or
on the 4-brane at z = 0, the RGE running for SU(2) g is similar
to that in Ref 2. |

(2) No proton decay problem in the model because we can

define a continuous U (1) symmetry.

R. Harnik, G. D. Kribs, D. T. Larson and H. Murayama.



(3) We can generate common 5D mass ml:’p’(’; for 77, ¢Yud» D1 and
Ds; —-mr’jﬁg for.TS, @u.d» D1 and Dy; m’l’g"g2 for T°, P2, Q2 and
Djs; and —m’}% for T, P1, Q' and Dj by introducing and
breaking of extra U(1)" gauge symmetry.

(4) Anomaly Cancellation via a Chem-Sim{)ns term on the
4-brane at z = mR»/2 or a 6D topological term.

(5) Charge Quantization. The charge quantization can be
obtained due to: gauge invariance of the localized superpotential
@y D°®% on the 3-brane at (y = TR, /2, z = TRy/2) and Yukawa
superpotentials, and Anomaly cancellation.



VI. CONCLUSION. |

We embed the MSFHM into the 6D N = 2 SUSY orbifold

SU(5) model:
e The correct mass scales for the vector-like particles.
e The SM fermion masses and mixings.
e Charge Quantization.

e No proton decay problem.



