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Supersymmetry predicts

e Lots of new particles to discover at LHC*
e A light Higgs't
e An era of perturbative controlt

I will discuss Strategy and Tactics for computing

physical masses at two loops and beyond, and
their implementation for the Higgs scalars.

*almost certainly
fprobably
thopefully



Masses are key observables in SUSY. Predictions
of specific models allow/require precise calculations.

Sparticle mass corrections are known at one
loop order. (Probably not adequate for gluino
and squarks, at least.)

Higgs sector: Full 2-loop effective potential +
partial 2-loop self-energy. ~ 1 GeV?

At LHC, Am,o ~ 100-200 MeV.
At LC, Am,o ~ 50 MeV.

Theory calculations must advance so as not to
be an obstacle to understanding.

If all other quantities held constant:
om0 ~ 0.4 120 GeV ( my )3 0g my
omsy M 1,0 175 GeV My

Need both accurate measurement of top mass,
and two-loop threshold corrections to top mass.




To calculate physical masses

Evaluate self-energy — sum of 1-particle irreducible
Feynman diagrams:

N(s) = N s) + @) + ...

The complex pole mass
Spole = M? — il M
IS the solution of:

det[m?.., + M(s) — s] = 0.

The pole mass is gauge invariant at each order
in perturbation theory, can be related to kinematic
masses as measured at colliders.

There are a finite number of two-loop, two-
point Feynman diagrams. Why not just do
them once, store the results, and get it over
with?



A key feature of the problem: many distinct
particles.

e 2-loop diagrams involve many different
mass scales simultaneously.
For example:
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LLarge, diverse hierarchies of ratios of squared
masses.

e Method should be generic, reuseable
from start to finish.
Do calculations for scalars, fermions, vectors
in a general field theory. Then apply to
Higgs, squarks, sleptons, and quarks, gluino,
charginos, neutralinos, ...




Strategy:

e Reduce all self-energies in general theory
to a few basis integrals

e Basis integrals contain DR’ (or MS) counter-
terms, so finite.

e Numerically evaluate basis integrals quickly
and reliably for arbitrary values of masses.

Tarasov’s basis and recurrence relations:

M
—(D— “Master integral”

S > STAY

T U

Can always reduce 2-loop self-energies to a
linear combination of these, with coefficients
rational functions of:

e s = p? = external momentum invariant

e z,vy,z,... = internal propagator masses



Inclusion of counterterms:

S(x,y,2) = @ —l[ O + O +Q}

A

taz(@+yt+z)+a.(s/2—x—y—2)
and similar for others.
These are finite as regulator removed (e — 0).

Tarasov’s recurrence relations are complicated,
but implemented in Tarcer (Mertig+Scharf).

Only need to be evaluated once for each diagram
in @ general renormalizable field theory.

108 diagrams for a general scalar self-energy.

Half are done: hep-ph/0312092.



To evaluate basis integrals:

Values at s = 0 are known analytically, in terms
of logs, dilogs.

o,
a—(basis integral) = (another self-energy integral)
S

(linear combination of
basis integrals)

So, we have a set of coupled, first-order, linear
differential equations.

Consider the Master integral M(z,y, z,u,v):
wi :y
< u

and the basis integrals obtained from it by
removing propagator(s):

U(aj7 Z7u7 U)? U(y7 u? Z? U)? U(Z, aj? y? v)? U(u7 y? x?”)?
S('/'E7 u? U)? T($7 u? U)? T(u7 m) U)) T(’U, x7u)7
S(g,Z,’U), T(y,z,’l}), T(Z7y7v)7 T(’U,y,Z)

Call these 13 integrals I,, (n=1,...,13).



Differential equations method for basis integrals

d
—1Ip = Z KomIm + Cn
ds o

Here K, are rational functionsof sand xz,y, z.. .,
and (), are one-loop integrals. These are obtained
by using Tarasov’'s recursion relations.

Solve for basis integrals I, using Runge-Kutta
integration in the complex s-plane, starting from
known values at s = 0.

Im[s] ¢
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Method implemented for S,71T,U type integrals
by Caffo, Czyz, Laporta, Remiddi.

I have extended the method to also work for M.



Examples:
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Black = real part
Red = imag. part

Note sharp
behavior near
thresholds!

Takes < 1 second on a modern workstation

to compute M(x,vy,z,u,v) and 12 subordinate
basis integrals U, S, 1T for generic masses.

Takes few seconds for some (pathological) special
cases.



Advantages of the method:

e Basis integrals can be computed for any
values of all masses and s, to arbitrary accuracy.

e All necessary basis integrals are obtained
simultaneously in a single numerical computation.

e Branch cuts automatically dealt with correctly
by choosing integration contour in upper-
half complex s plane.

e Simple checks on the numerical accuracy

follow from changing choice of contour.

SPM, hep-ph/0307101
SPM and D.G. Robertson, C program, to appear.

Mathematica program available now by request.
Slooooow. NO WARRANTY.



Applications

2-loop squark pole masses, in progress.
(Almost done.)

2-loop top-quark, gluino pole masses.
(This summer?)

Partial 2-loop self-energies, pole masses for all
MSSM Higgs scalars (h9, HO, AQ, H*).

All contributions to Higgs M(s) of order:

asytz7 OéSy[?7 Oésytyb7
2 / /12
asg , sgg, Osg
4 3 2 2 3 4 4 2 2
Yt 5 Yt Ybs YpYts YpYts Yps Y7+ YpYr

are now included.

Previous results used the effective potential
approximation, in which M(2)(s) is approximated
by M(2)(0) when computing the pole mass.
(That approximation relies on m%o < mg, m2.)



Technical notes:

e [ use the supersymmetric version of dimensional
reduction, DR’. (Epsilon-scalar masses are
removed by redefinition of scalar masses.)

e I expand around minimum of the two-loop
effective potential, not the tree-level potential.
(Therefore, tadpole graphs need not be
included.)

e I use Landau gauge for electroweak gauge
bosons, general gauge for gluons.



To find Higgs scalar pole masses:

det[m?. o, 4+ M(s) —s1] =0

Solutions to this eigenvalue equation are

sp = complex pole masses = M?2 — il M.

Here M(s) is a:
e 4x4 matrix for neutral scalars h9, HO, GO, AC.
e 2 x 2 matrix for charged scalars G, H*.

Note: CP conservation NOT assumed anywhere.



The diagrams:
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40 diagram topologies (counting fermion mass
insertions)



A Simple Limit

Let Mgysy = common squark, gluino mass,
and assume

M&ysy > mi > myg

Keep only leading term in os.

Result:
meLO,pOIe = m% cos?(23)
2
Y 2 2
to e lmi AL+ mjpAL 4]
g%?JtQ 2 2 A/
A A
+(167T2)2[ t 2—|—th 2+ ]
where, with L = log(M& oy /m?),
A1 = 12L,
A} = 2-3L,
N> = 96L° + 32L — 32,
AL = —12L%2 4+ 12L 4+ 44/3. NEW!

Note: A’2 iIs smaller than naive estimate. Leading
log approximation is not great.



Two-loop contribution to self-energy:

Re[M,0,0(s)] — M, 0,0(0)

Turns out to have significant cancellations, so
smaller than naive expectation:
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Diagrams with top-quark loop and strong interactions
dominates the momentum-dependent contribution
to the self-energy.

Use this to obtain the pole mass:



To obtain pole mass, full 2-loop effective potential
-+ partial momentum-dependent contributions
to self-energy:

N3 (s) ~ M) — M2 (0) + N3 (0)

The last term is obtained numerically to arbitrary
accuracy from the derivatives of the full 2-loop
effective potential (SPM, hep-ph/0206136).
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Effect on pole mass is to lower by 160 MeV,
compared to full two-loop effective potential
approximation.



I have checked that effect is similar for a variety
of MSSM models, including large tan g.

For example varylng the top squark mixing:
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This is the difference between the pole mass calculated
with (partial) momentum-dependent contributions to the
self-energy, and the 2-loop effective potential approximation.



In the same model, 2-loop contributions to the
self-energy functions for H9, A9, H=*:
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Self-energy for A° has \/4m?2 — s and In(4m?—s) singularities
from top-quark loops with gluon exchange.

HOY and H* are continuous but non-differentiable at threholds
Vs = 2m; and /s = my + my, respectively.

There is significant cancellation between agy? and yf
contributions.

(Note: effective potential approximation is wrong by
> 100 per cent for heavy Higgs scalars!)
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Use of the 2-loop effective potential to relate VEVs
to Lagrangian parameters is important in reducing the
scale dependence.

Use of the agy? and yi 2-loop self-energy terms makes
only a small difference compared to the 1-loop self-
energy.

(Difference is smaller than the scale dependence!)

This is because heavier Higgs are mostly H;, don’t have
large couplings to the top (s)quarks.

Remaining scale dependence will require calculating the
rest of the two-loop diagrams, including all electroweak
effects.



A check: The Goldstone boson (mass)? should
vanish.
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Including all two-loop effects would give meo

m?Z, = 0, exactly.

In any given model, this can be used to estimate
rough size of two-loop errors (but not three-
loop errors!) and to choose a renormalization
scale Q.



Outlook

e T wo-loop calculations for self-energies in
the MSSM are necessary and possible
e I favor a Strategy based on:
— DR’ scheme (complementary to on-shell)
— Reusable, generic calculations
— Fast computations of basis two-loop integrals

e Some 3-loop calculations (e.g. for h9) will
eventually be necessary

e Progress continues



