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Universal Extra Dimensions

All SM particles propagate in the same D-dimensional space

(there may be additional “sterile” dimensions, accessible to SM singlets)

In compactifications without orbifold singularities −→ conservation of

extra dimensional momentum

• KK modes cannot be singly produced, and affect low-energy 4D

effective theory at loop level

1/R ∼> few hundred GeV

• Lightest KK particle is stable

Chiral 4D effective theory generally introduces singularities (chirality

from boundary conditions)

→ KK number is broken, but discrete KK parity naturally survives



5D case has been studied extensively: EW constraints, dark matter,

collider phenomenology, flavor violation signals, . . .

S1/Z2

y = 0 y = πR

KK parity
F.P.F.P.

Bulk: SM interactions

On boundaries: additional operators

In fact, bulk interactions generate

brane localized log divergences

Minimal model: localized operators vanish at a “high” scale Λ

(Cheng, Matchev, Schmaltz)

• Predictivity: low-energy contribution

(1/R < µ < Λ) is calculable

• Physics of lowest lying KK modes

largely determined by the localized op-

erators at a scale µ ∼ 1/R

• Highly degenerate spectrum: missing

energy plus soft stuff

−→ challenging for hadron machines

−→ KK bound states at NLC

(see next talk by M. Sher)



The Six-Dimensional Case

6D theories have a richer structure than 5D ones:

• Spacetime symmetries: rotations in the transverse space

→ discrete subgroups may survive compactification and constrain

low-energy physics in interesting ways

• Bulk fermions and gauge interactions: 6D anomalies

– purely gravitational anomalies → three right-handed neutrinos

– SU(2) global anomaly → Ng = 0 mod 3

I will consider the 6D UED model in some detail

Work in collaboration with B. Dobrescu and G. Burdman



Compactification on the Folded Square

Dobrescu & EP (2004)

Identify adjacent sides of a square:

x4

x5

Consider a free scalar field theory

SΦ =

∫

d4x

∫ L

0

dx4

∫ L

0

dx5
(

∂αΦ†∂αΦ − M2
0 Φ†Φ

)

Previous identifications correspond to imposing

Φ(xµ, y, 0) = eiθΦ(xµ, 0, y) Φ(xµ, y, L) = eiθ̃Φ(xµ, L, y)

and the variational principle further requires

∂5Φ|(x4,x5)=(y,0) = −eiθ ∂4Φ|(x4,x5)=(0,y)

∂5Φ|(x4,x5)=(y,L) = −eiθ̃ ∂4Φ|(x4,x5)=(L,y)



Working in momentum space we can write

Φ(xµ, x4, x5) =
1

L

∑

j,k

Φ(j,k)(xµ)f (j,k)(x4, x5)

where the Kaluza-Klein wavefunctions satisfy

(

∂2
4 + ∂2

5 + M2
j,k

)

f (j,k)(x4, x5) = 0 M2
j,k =

j2 + k2

R2

Nontrivial solutions to the Klein-Gordon equation exist only when

θ = n
π

4
n = 0, 1, 2, 3

and either

eiθ̃ = eiθ with j, k ∈ Z or

eiθ̃ = −eiθ with j +
1

2
, k +

1

2
∈ Z

f (j,k)
n (x4, x5) =

[

e−inπ/2 cosπ

(

jx4 + kx5

L
+

n

2

)

+ cosπ

(

kx4 − jx5

L
+

n

2

)]



Generic properties:

• Four “types” of fields labeled by n = 0, 1, 2, 3. Only n = 0 has a zero

mode → SM fields

• Mass eigenstates are linear superpositions of waves going back and

forth, along x4 and x5 directions

→ Tree-level “conservation law”

(j1, k1) + (j2, k2) + · · · + (jr, kr) → (P4, P5)

if P4 =
∑

i

±pi with p = (j or k)

(1, 0)

(1, 0)

(0, 0)

Allowed

(1, 0)

(2, 1)

(2, 0), (1, 1),

(3, 1), (2, 2).

Allowed

(0, 0)

(0, 0)

(1, 1)

Not allowed

(allowed at loop level)

(0, 0)

(0, 0)

(1, 0)

Not allowed



Fermions in Six Dimensions

In 6D we may define (four component) spinors of definite 6D chirality

Ψ+ = χ+R
⊗





1

0



 + χ+L
⊗





0

1





Ψ− = χ−L
⊗





1

0



 + χ−R
⊗





0

1





Γµ = γµ ⊗ 12×2

Γ5 = γ5 ⊗ σ2

Γ4 = γ5 ⊗ σ1

Γ7 = γ5 ⊗ σ3

Each 4D chiral component can be decomposed as

χL,R(xµ, x4, x5) =
1

L

∑

j,k

χ
(j,k)
L,R (xµ)f (j,k)

nL,R
(x4, x5)

with the left- and right-handed wavefunctions satisfying

n+
L = n+

R + 1 mod 4 n−
L = n−

R − 1 mod 4

We assign n = 0 to Q+L, U−R, D−R, L±L, E∓R, N∓R



Symmetries of the KK Theory

�

�

x4

x5

(0, 0)

Under transverse rotations by π/2 about (0, 0)

(χ+R
, χ−L

)|(x4,x5) 7→ e
i
2
( π

2
) (χ+R

, χ−L
)|(−x5,x4)

(χ+L
, χ−R

)|(x4,x5) 7→ e−
i
2
( π

2
) (χ+L

, χ−R
)|(−x5,x4)

The KK wavefunctions satisfy f
(j,k)
n (−x5, x4) = e−inπ/2f

(j,k)
n (x4, x5):

Ψ±L(x4, x5) 7→ e−i(n∓ 1

2
)( π

2
)Ψ±L(x4, x5)

which corresponds to a Z8 (internal) symmetry of the compactified theory

For the SM : Q → eiπ/4Q L → e±iπ/4L

Operators containing only SM fields (0-modes) satisfy the selection rule

3∆B ± ∆L = 0 mod 8

→ Proton decay is suppressed, neutrinos are Dirac

Also: if A
(1,0)
4,5 lightest among n 6= 0 states → stable!



Stable Kaluza-Klein Modes

Consider rotations by 180◦ about the center of the square

�

�

+

x4

x5
This gives rise to a “Kaluza-Klein parity”

f (j,k)
n (L − x4, L − x5) = (−1)j+k+nf (j,k)

n (x4, x5)

=⇒ Φ(j,k) 7→ (−1)j+kΦ(j,k)

The KK parity is preserved provided the localized operators at (0, 0) and

(L, L) are the same.

It follows that the lightest Kaluza-Klein particle (LKP), labeled by

(j, k) = (1, 0), is naturally stable.

It is likely that the LKP is γ(1,0) → excellent dark matter candidate
(Servant and Tait)

Comment: in 5D, KK parity associated to inversion in x5. In 6D,

associated with the proper 6D Lorentz group.



Gauge Bosons and Scalars

Gauge fixing: leads toLGF = −
1

2ξ
(∂µAµ − ξ∂4A4 − ξ∂5A5)

2 ,

Aµ → n = 0 A∓ = A4 ∓ iA5 → n = 1, 3

and decouples the degrees of freedom:

S =
∑

(j,k)

∫

d4x

{

−
1

4
F (j,k)

µν F (j,k)µν +
1

2
M2

j,k[A(j,k)
µ ]2 −

1

2ξ
[∂µA(j,k)

µ ]2

+
1

2
[∂µh(j,k)]2 −

1

2
M2

j,k[h(j,k)]2 +
1

2
[∂µφ(j,k)]2 −

1

2
ξM2

j,k[φ(j,k)]2
}

where

h(j,k) =
1

√

j2 + k2
(kA

(j,k)
4 − jA

(j,k)
5 ) ∼ F45

φ(j,k) =
1

√

j2 + k2
(jA

(j,k)
4 + kA

(j,k)
5 )



Collider signatures

As in 5D, the mass degeneracy is broken by localized operators, at (0, 0),

(0, L) and (L, L), which receive contributions from the UV theory as well

as from the KK modes below Λ.

It is natural to assume that such operators are of order one loop

Physics of first level KK modes very similar to 5D: pair production

followed by cascade decays into the LKP

→ missing energy plus soft jets and/or leptons

It is interesting to consider the second level with masses ∼ M(1,1) =
√

2
R

Production:

• pair produced if there is enough energy

• singly produced, though with smaller probability (through localized

terms)

At hadron machines, g(1,1) more readily produced. It cascade decays to

the lightest second level KK mode.



Decays into (1, 0) states are kinematically closed → lightest second mode

decays into SM particles

L2KP decay proceeds through localized operators → narrow resonance

In a “minimal” version of the present model, with localized kinetic terms

dominated by radiative corrections in the 6D theory, the lightest second

KK particle is the γ(1,1) ' B(1,1)

Can look for

γ(1,1)
µ → l+l−

Reach at the Tevatron and LHC: work in progress . . .

(Burdman, Dobrescu, and E.P.)



Conclusions

• UED’s provide an attractive scenario for physics beyond the SM

• The 6D case has a number of interesting properties

− Number of generations Ng = 0 mod 3

− Long proton lifetime, even with baryon number violation at the TeV

scale. Also, no N -N̄ oscillations

− Neutrino phenomenology: neutrinos are Dirac, no 0νββ decay

− Stable massive particles provide a good dark matter candidate

− Present bounds on 1/R ∼> 300 − 400 GeV

− Good chance for discovery in the dilepton channel. Not necessarily

missing energy signature


