VERITAS/TrICE
VERITAS

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a new ground-based high energy gamma-ray observatory with an array of four 12m optical reflectors with sensitivity in the range 50 GeV - 50 TeV.  In this energy region, critical measurements of SNRs and AGNs will be made as well as the possibility of observing for the first time dark matter from galactic objects. On February 1, 2005, the first completed telescope saw first light with the detection of a signal from the Crab Nebula (figure 1).  The Crab Nebula provides a standard candle source to establish the performance of the telescope. Telescope-1 is being operated at its temporary site at the Whipple Observatory Base camp until summer 2006 when it will be moved to Horseshoe Canyon on Kitt Peak to join the other three VERITAS telescopes.  

A two-dimensional image of the Crab viewed by Telescope 1 is shown in Figure 1.  Figure 2 shows some typical images of gamma-ray, muons and cosmic-ray air showers.
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Figure 1: Two-dimensional image of the Crab
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Figure 2: Camera images from Telescope 1 shows pixels with signal after cleaning algorithms have been run.  The color scale indicates integrated charge.
Liz Hays contributed to the analysis of the crab nebula by optimizing standard analysis image cuts to achieve a 20 sigma signal in 11 hours.  She has continued to be an important member in the commissioning of the VERITAS Telescope 1 through VME-DAQ development and electronics testing.  Besides Liz, two other Argonne physicists performed commissioning shifts at Telescope 1 as well as contributed with shifts at the Whipple 10m telescope.   In January, five of us attended the collaboration meeting in Arizona and Liz Hays, Karen Byrum and Bob Wagner were included in the VERITAS group picture (see Figure 3 below.)
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Other activity on VERTIAS included the installation of the VERITAS data analysis package on the Argonne computer by Eve Kovacs.  Eve also created a web page with instructions for running this package.   
TrICE:

a. PMT Studies:

One of the technological challenges of this project is to determine if multi-anode photo-multiplier tubes (MAPMTs) can be used in a telescope environment.  The key question for this determination are whether MAPMTs have the sensitivity to measure signals of 3-100 photo-electrons in a shower in the presence of the high rates of photons from the night sky background.

To address the problem of whether the MAPMTs have the sensitivity, Bob Wagner and Karen Byrum continued measurements of the single photo-electron signal studying the Hamamatsu R5900-00-M64 and the Hamamatsu H8500. We added a second dark box which has the ability to be read out using either our reference RABBIT electronics or the MINOS electronics (which we are integrating with the VERITAS VMIC processor).   Figure 4 shows this new dark box setup.


[image: image4]
Both of our measurement setups consist of a dark box containing two PMTs, a blue LED pulsed from an external circuit, a graded neutral density filter wheel driven by a stepper motor, a Wratten ND1.0 gelatin neutral density filter and clear fiber to transport LED light pulses to a reference tube and the MAPMT.   RABBIT electronics are used to measure the charge.  
We measure the number of photoelectrons (pe) versus the neutral density filter wheel position.   For a low number of photoelectrons, the signal is non-Gaussian and blends into the pedestal.   We fit and extrapolate to determine the setting for average photoelectron less 1.  We try to choose values between .3-.5.  Figure 5 is a typical fit using the H8500 tube.

[image: image5]
Figure 6a shows a typical spectrum of a pixel on the H8500 tube.   While some of the pixels showed a more distinct  peak, overall figure 6a was more typical for H8500 pixels. One possible explanation is that this broadening is produced by loss of electrons in initial dynodes.  Hamamatsu has indicated they are working on improving the single pe response.   Figure 6b shows a good single photoelectron signal for the 16 pixel R8900.   

This tube while smaller than the H8500, is similar in construction, but has been around longer and has been developed further.   
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Figure 6: Pulse height spectrum with filter wheel set to allow less than 1 pe.  The left figure is the spectrum for the H8500 PMT and the right figure is for the R8900 PMT.   

Besides being able to resolve a single photoelectron, the other crucial requirements for the MAPMT are whether it can operate at high enough gain without drooping under the large background of the night sky and whether it can resolve an extended air shower signal in the presence of the large DC current from the night sky background.   To study this, we have performed night sky background measurements during the months of March, April and May 2005.  During these studies, we connected either the H8500 or the R8900 MAPMT to HV, measured the current from one pixel and from the “or” of the remaining 63 (15), and recorded pulses from the anodes and dynode on a digital oscilloscope.  We varied angle acceptance with baffle configurations and also experimented with various filters.
The original base of the Hamamatsu H8500 had to be modified before it could operate at a reasonable voltage without exceeding current anode limits under the night sky background.  The R8900 with ¼ the pixels of the H8500 was able to operate in a reasonable voltage range.  Figure 7a shows the current from a single pixel as a function of the tube HV in the presence of the night sky background.  Figure 7b shows an extended air shower trace on the R8900.  We are triggering on the blue trace which is the “or” of 15 pixels.  The green trace is a single anode and the magenta trace is the dynode signal.   In our trace capture, we clearly see a shower which extends across multiple pixels.  
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Figure 7: Single pixel current measured using a picoAmp meter as a function of HV of the MAMPT. 

b. TrICE DAQ:

The completion of the first (skeletal) working DAQ for TrICE occurred during the first half of 2005.  Liz Hays continued to take the lead role in the software development.  Some of the specifics of this work include implementation of calibrating multiple MINDERS on multiple MASTER VME boards, implementation of a VME interrupt service request for data taking, and the implementation for the option of data suppression at multiple thresholds.  Figure 8 is a schematic of the frontend electronics hardware operating in the DAQ. 
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Figure 8: Schematic of the DAQ electronics functionality.
 Andrew Kreps also contributed to the DAQ software.  He wrote the interface which transferred data from the MASTER read buffer to the disk using VME interrupts including some diagnostic code to measure these data rates.  Figure 8 is the distribution of the processor time to write data to the disk as a function of the size of the data being transferred.  
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Figure 8: The Distribution of the processor time to write data to the disk as a function of the size of the data being transferred.

c. MC studies:
The Monte Carlo development continued at a slower rate in the first half of 2005 due to Steve Magill being on sabbatical.  We were able to recruit Eve Kovacs to join this effort. She created a common VERITAS user area with all the MC code in one directory and created a web page with a users guide to run this code.  
d. Calibration:
Rich Talaga began development of the light calibration scheme for the PMT camera located in the TrICE telescope.   The requirements for calibrating the multi-anode PMTs are that the scheme must be relatively easy to do, there must be good reproducibility and the result of the calibration must track the overall gain response of each mapmt and track the gain response of some fraction of the pixels.   Besides being able to pulse each multi-anode PMT with a low light level, the ability to include an artificial night sky background is desired to understand the performance of the PMTs in the real environment.  Figure 9 is a cartoon drawing of the proposed calibration scheme. 

[image: image12]
Figure 9: Schematic drawing of proposed light drum calibration scheme.
e. Site Development:

There has been much development of the TrICE site in the first half of 2005.  This started in late January with the installation of the steel base plate upon which the telescope mount will be set.   The arrival of the trailer also occurred in late January.   This was followed in February by the installation of the steel tubing which supported the movable shelter rails.   In the late February, the movable shelter framework was installed followed by the tent covering.    In March, the telescope structure arrived from the University of Chicago and was bolted onto the steel plate.   Figures 10 – 13 document the beginning construction of the TrICE telescope.
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