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BRANES AND QUANTUM NAMBU BRACKETS

Consider an open topological membrane 3-form action,

S =

∫

(z1 dz2 ∧ dz3 ∧ dz4 + L1 dL2 ∧ dL3 ∧ dt).

• Originates in an exact 4-form (analogous to the Hamiltonian
symplectic 2-form), dz1∧dz2∧dz3∧dz4+dL1∧dL2∧dL3∧dt, evaluated
on the boundary of a 4-manifold, like a 3-dim WZW interaction term.
In coordinates,

S =

∫

dtdαdβ

(

εijkl

4
zi∂tz

j∂αz
k∂βz

l + L1(∂αL2∂βL3 − [βα])

)

.

The variational eqns of motion resulting from δzi are

dzl

dt
= εlijk∂iL1∂jL2∂kL3 =

∂(zl, L1, L2, L3)

∂(z1, z2, z3, z4)
,

a Jacobian determinant (volume element).

; Instead of Hamilton’s eqns, the classical eqns of motion are

żl = {zl, L1, L2, L3} ,

the celebrated Nambu Bracket (1973).

• It generalizes and supplants the Poisson Bracket, and is likewise
linear and antisymmetric in its arguments. (Here, 3 “Hamiltonians”,
instead of one.)
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In general, the classical motion of Maximally Superintegrable Systems
in phase space, zi = (x, px, y, py, ...), cannot avoid being described by
NBs.

For N degrees of freedom, ; 2N -dimensional phase space, if
there are extra invariants beyond the N required for integrability, the
system is called superintegrable.

• At most, there are 2N − 1 algebraically independent integrals of
motion: Maximal Superintegrability.

Motion is confined in phase space on the constant surfaces specified
by these integrals ; the phase-space velocity v = (q̇, ṗ) is always
perpendicular to the 2N -dim phase space gradients ∇ = (∂q, ∂p)

of all these integrals of the motion:

=⇒ The phase-space velocity must be proportional to the cross-
product of all those gradients.
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; For any phase-space function k(q,p), the motion is fully specified
by the (NB) phase-space Jacobian,

dk

dt
= ∇k · v
∝ ∂i1k εi1i2...i2N ∂i2L1...∂i2NL2N−1

=
∂(k, L1, ..., ..., L2N−1)

∂(q1, p1, q2, p2, ..., qN , pN)
≡ {k, L1, ..., L2N−1} .

• The proportionality constant is shown to be time-invariant.

; The flow is divergenceless, ∇ · v = 0 (Liouville’s thm).

eg, S2: H = 1
2 (LxLx + LyLy + LzLz); Lz = xpy − ypx ,

Ly = −
√

1 − x2 − y2 px , Lx =
√

1 − x2 − y2 py ; {Lx, Ly} = Lz , etc,

dk
dt =

∂(k,Lx,Ly,Lz)
∂(x,px,y,py)

.

eg, SN : H = 1
2

∑N
a=1 PaPa + 1

4

∑N
a,b=1 LabLab ,

Pa =
√

1 − q2 pa , for a = 1, · · · , N , and La,b = qapb − qbpa ,

dk

dt
=

(−1)(N−1)

P2P3 · · ·PN−1

∂ (k, P1, L12, P2, L23, P3, · · · , PN−1, LN−1 N , PN)

∂ (x1, p1, x2, p2, · · · , xN , pN)
.

eg, oscillators, chiral models, Coulomb (Hydrogen atom), etc
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• In general, NBs possess all antisymmetries of Jacobian determinants;
and obey the Leibniz rule,

{k(A, B), L1, L2, ...} =
∂k

∂A
{A, L1, L2, ...} +

∂k

∂B
{B, L1, L2, ...}.

; Eg, hamiltonians are time-invariant,

dH

dt
=

{

L · L
2

, Lx, Ly, Lz

}

= 0.

• Maximal even-rank classical NBs resolve into products of Poisson
Brackets. Eg,

{A, B, C, D} = {A, B} {C, D} − {A, C} {B, D} − {A, D} {C, B} ,

in comportance with full antisymmetry under permutations of
A, B, C, and D.
=⇒ the specific S2 membrane action yields the same eqns of motion
as a particle action, S =

∫

dt
(

ẋpx + ẏpy − L·L
2

)

!

• This resolution is a general result: all even-NBs are Pfaffians of the
(antisymmetric) matrix with elements {Ai, Aj}:

{Ai, Aj, ..., Ak, Al} ∝ εi,j,....k,l{Ai, Aj}...{Ak, Al}.

• The impossibility to antisymmetrize more than 2N indices in
2N -dimensional phase space,

εab....c[iεj1j2...j2N ] = 0 ,

leads to the (generalized) “Fundamental” Identity (FI),
{V {A1, ..., Am−1, Am}, Am+1, ..., A2m−1} + {Am, V {A1, ..., Am−1, Am+1}, Am+2, ..., A2m−1}

+... + {Am, ..., A2m−2, V {A1, ..., Am−1, A2m−1}} = {A1, ..., Am−1, V {Am, Am+1, ..., A2m−1}}.

• (2m − 1)-elements, (+1) V , (m + 1)-terms.
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• Not the generalization of the Jacobi Identity as an encod-
ing of associativity—only a consequence of the derivation property of
NBs, instead, δA = {A, B, · · ·}. If Leibniz’s rule holds,

δ(AA) = AδA + AδA = A {A, B, · · ·} + A{A, B, · · ·} ,

=⇒
δ{C, D, · · ·} = {δC, D, · · ·} + {C, δD, · · ·} + · · · ,

=⇒ FI

{{C, D, · · ·}, B, · · ·} = {{C, B, · · ·}, D, · · ·}+ {C, {D, B, · · ·}, · · ·}+ · · · .

(But this need not hold upon quantization.)

The proportionality constant V

dA

dt
= V {A, L1, · · · , L2N−1},

must be a time-invariant if it has no explicit time dependence, since

d

dt

(

V {A1, · · · , A2N}
)

= V̇ {A1, · · · , A2N} + V {Ȧ1, · · · , A2N} + · · · + V {A1, · · · , Ȧ2N}.
=⇒

V {V {A1, · · · , A2N}, L1, · · · , L2N−1} = V̇ {A1, · · · , A2N}

+V {V {A1, L1, · · · , L2N−1}, · · · , A2N}+· · ·+V {A1, · · · , V {A2N , L1, · · · , L2N−1}}.

=⇒ dV

dt
= 0 .
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QUANTIZATION

Deform classical structures to operator ones. Undeserved bad repu-
tation, on account of top-down shortcomings. There are consistency
complications, but not debilitating ones.
• A useful check: NB quantization must coincide with standard
hamiltonian quantization for specific models. [Zachos & Curtright,
New J Phys 4 (2002) 83.1-83.16]

Nambu’s (1973) proposal QNBs:

[A, B] ≡ AB − BA,

[A, B, C] ≡ ABC − ACB + BCA − BAC + CAB − CBA,

[A, B, C, D] ≡ A[B, C, D] − B [C, D, A] + C [D, A, B] − D [A, B, C] =

= [A, B][C, D] + [A, C][D, B] + [A, D][B, C]

+[C, D][A, B] + [D, B][A, C] + [B, C][A, D] ,

etc.

Even QNBs resolve into strings of commutators,

“Quantum Pfaffians”, ∝ εij..kl[Ai, Aj]...[Ak, Al] .

Good classical limit: [A1, ..., A2n] → n!(i~)n{A1, ..., A2n} as ~ → 0.
By contrast, odd QNBs have a bad classical limit.

Full antisymmetry, but no Leibniz property or FI, in general.
Only a subjective shortcoming, dependent on the specific application
context! Quantization is consistent.
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• QNBs do satisfy the celebrated fully antisymmetric Generalized

Jacobi Identity (Hanlon & Wachs; Azcárraga, Izquierdo, Perelo-
mov & Pérez Bueno), which encodes associativity. Eg, for 4-QNBs,

[[A, B, C, D], E, F, G] + permutations = 0,

a total of 7!
3!4! = 35 terms, instead of the FI’s 5.

εijklmnr[[Ai, Aj, Ak, Al], Am, An, Ar] = 0.

Eg, objectively, for S2,

dk
dt = 1

i~[k, H ] = −1
2~2 [k, Lx, Ly, Lz] ,

a derivation (an exceptional situation). ; Here, in phase space,
even Leibniz and FI hold, nevertheless. Good ~ → 0 limit.

NB. For A ∝ 11, thus dA/dt = 0, [11, B, C, D] = 0 holds
identically, in contrast to the 3-argument QNB, [11, B, C] =

[B, C] 6= 0. Thus, no debilitating constraint among
the arguments B, C, D is imposed; the inconsistency identi-
fied originally is a feature of odd-argument QNBs (which fail
as deformations of CNBs: they lack a good classical limit);
but does not restrict the even-argument QNBs of phase space.
Instead, odd CNBs are reachable from larger, even QNBs like the ones
discussed: Eg, [A, B, C, py] → −2~2{A, B, C}.

• More generic situation, eg for SN , N > 2 :
the QNBs provide the correct quantization rule, but need

not satisfy the naive Leibniz property (and FI) for consis-
tency, as they are not necessarily plain derivations; instead,
time derivatives are entwined inside strings of invariants.
Eg, for S3,

[

k, P1, L12, P2, L23, P3

]

= 3~2
(

P2[k, H ] + [k, H ]P2

)

+ Q(O(~5)).

7C Zachos ISQS-13 Prague June 18, 2004



;
[

k, P1, L12, P2, L23, P3

]

= 3i~3 d

dt

(

P2k + kP2

)

+ Q(O(~5)).

The right hand side is not an unadorned derivation on k

; does not impose a Leibniz rule on the left hand side.
(Other consistency constraints are more suitable and are, of course,
satisfied.)
Q(O(~5)) is a nested commutator “quantum rotation”.

• A lark: Ignoring Q, could one eschew solving the Jordan-Kurosh
spectral problem,

[

k, P1, L12, P2, L23, P3

]

∼ 3i~3
(

P2
dk

dt
+

dk

dt
P2

)

?

formally, ;

3i~3dk

dt
∼

∞
∑

n=0

(−P2)
n
[

k, P1, L12, P2, L23, P3

]

(P2)
−n−1,

and so envision a different bracket which is a derivation?

• Kepler problem (Hydrogen atom): S3, through Pauli-Runge-Lenz
vector, classically, A = p×L− r̂, ; A ·L = 0; ; H = A2−1

2L2 . Defining
D ≡ A√

−2H
, ; R = L+D, L = L−D, ; SO(3)×SO(3) ∼ SO(4),

H = −1
2R2 = −1

2L2 ,

dk

dt
= −H2{k, ln(R3 + L3),R1,R2,L1,L2}.

Quantized as above, [Ri,Rj] = 2i~ εijkRk, ...
3i~3

(

(R3 + L3)
dk
dt + dk

dt (R3 + L3)
)

=H [k,R3 + L3,R1,R2,L1,L2] H + ...,
with H = −1

2(R2+~2)
7→ −1

2~2(4s(s+1)+1)
= −1

2~2(2s+1)2
, s = 0, 1

2, 1, ...
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WHAT HAVE WE LEARNED?

• General methodology, successful in a large number of systems:
As suggested by the classical NB, the commutator resolution of a
suitably chosen QNB parallels the classical combinatorics to yield a
commutator with the hamiltonian ( ; time derivative), entwined
with invariants.

In quantization, associativity trumps naive derivation features.

• • Quantum Nambu Brackets are consistent and describe the
quantum behavior of superintegrable systems equivalently to stan-
dard hamiltonian quantization. Reputed inconsistencies have been
addressing unsuitable (and untenable) conditions.

• Guide for more general systems—even non-Hamiltonian ones.

9C Zachos ISQS-13 Prague June 18, 2004


