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BRANES AND QUANTUM NAMBU BRACKETS

Consider an open topological membrane 3-form action,

e Originates in an exact 4-form (analogous to the Hamiltonian
symplectic 2-form), dz' Adz* Adz? Adz*+dLy AdLy AdL3 A\ dt, evaluated
on the boundary of a 4-manifold, like a 3-dim WZW interaction term.
In coordinates,

ijkl
S = / dtdadf (64 20,27 0,2"052" + L1(04L203L3 — [504)) .

The variational eqns of motion resulting from §z* are
le 8(21, Ll, LQ, Lg)
dt (21, 22,23, 24) 7

a Jacobian determinant (volume element).

= elijk&Llangc‘?kLg =

~ Instead of Hamilton’s eqns, the classical eqns of motion are

i ={z!, Ly, Ly, L3} I7

the celebrated Nambu Bracket (1973).

e [t generalizes and supplants the Poisson Bracket, and is likewise
linear and antisymmetric in its arguments. (Here, 3 “Hamiltonians”,
instead of one.)
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In general, the classical motion of Maximally Superintegrable Systems

in phase space, z' = (x,p., Y, py, -..), cannot avoid being described by
NBs.

For N degrees of freedom, ~»  2N-dimensional phase space, if
there are extra invariants beyond the N required for integrability, the
system is called superintegrable.

o At most, there are 2V — 1 algebraically independent integrals of
motion: Maximal Superintegrability.

Motion is confined in phase space on the constant surfaces specified
by these integrals ~» the phase-space velocity v = (q,p) is always
perpendicular to the 2N-dim phase space gradients V = (Jy, ;)
of all these integrals of the motion:

—>  The phase-space velocity must be proportional to the cross-
product of all those gradients.
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~» For any phase-space function k(q, p), the motion is fully specified
by the (NB) phase-space Jacobian,

dk

— = Vk-v
dt -
X 82'1]{7 g'1'212N 82-2L1...8,;2NL2N_1
Ok, Ly, ooy oo, Lon 1)

a(thla q2, P2, ---, QNapN>
= {]{, Ll, cees LQN_l} .

e The proportionality constant is shown to be time-invariant.

~>  The flow is divergenceless, V -v =0 (Liouville’s thm).

€g, S H = %(LxL:c + LyLy,+ L.L.); L. = xp, — yp: ,
Ly=—/1—a22—y2p,, Ly = \/1—22—y2p,; {L,,L,} = L., etc,
g 0(k.LsLyL:)
dt - a(%]?x,yapy)

N N
eg, SN H=33 PP+ i> .1 LaLla,
Po=+1—¢p,, fora=1,--- N,and L., = q¢"pp — ¢"pa,

dk: (_1)(N_1) a(k7P17L127P27L237P37“'7PN—17LN—1N7PN)
dt P2P3'”PN—1 3(xlaplax27p27"'7xNapN) .

eg, oscillators, chiral models, Coulomb (Hydrogen atom), etc
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e In general, NBs possess all antisymmetries of Jacobian determinants;
and obey the Leibniz rule,

Ok Ok
{k(A.B), Ly, Ly, ..} = 52{ A Li L, .} + 52 { B, Ly, Lo, ..},

~> Eg, hamiltonians are time-invariant,

1H L-L
({L“MJ%O
dt ‘

e Maximal even-rank classical NBs resolve into products of Poisson
Brackets. Eg,

[A,B,C,D}Y=1{A,BY{C,D} — {A,CY{B,D} — {A, D}{C, B},

in comportance with full antisymmetry under permutations of
A, B,C,and D.
— the specific S* membrane action yields the same eqns of motion
as a particle action, S = [ dt (x'px + ypy — %) !

e This . all even-NBs are Pfaffians of the
(antisymmetric) matrix with elements {A4;, A4, }:

Ai,A',...,Ak,Al X Ei’j""'k’l AZ,A Ak,Al .
J J

e The impossibility to antisymmetrize more than 2N indices in
2N-dimensional phase space,

bl jijz-danl — :

leads to the (generalized) “Fundamental” Identity (FI),

{‘/{Ah Am 1, A’m}f *4171, = EICERR A‘Zm 1} + {Ame ‘/{Ala flm, 1, flm | 1}, Am b2y veey ;42,,, 1}
+...+ {Ams /12m721 ‘/{"417 /1771,71,- Amel}} — {Alr seey /1111,711 L/7{/1m: Aerl,- ‘/lQNL*l}}'

e (2m — 1)-elements, (+1) V, (m + 1)-terms.
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e Not the generalization of the Jacobi Identity as an encod-

ing of associativity—only a consequence of the derivation property of
NBs, instead, 04 = {A, B,---}. If Leibniz’s rule holds,

5(AA) = ASA+ ASA=A{AB, -} + A{A,B, -},

5{C,D,---} ={6C,D,---} +{C,6D, -} +--- .
— F

({c,D,--},B,--}={{C,B,---},D, - Y+ {C,{D,B, -}, -} +---

(But this need not hold upon quantization.)

The proportionality constant V

dA
E — V{A7 L17 R LQN—I})

must be a time-invariant if it has no explicit time dependence, since

d

%(V{Al, .. 7A2N}>

:V{AlaaAQN}+V{A177A2N}++V{A177A2N}
—

VIV{AL, - Aon}, Ly, oo+ Loy 1} = V{AL, -+, Aoy}

+V{V{A17L17°"7L2N—1}7°"7A2N}+°"+V{A17"°7V{A2N7L17'“7L2N—1}}-
a
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QUANTIZATION

Deform classical structures to operator ones. Undeserved bad repu-
tation, on account of top-down shortcomings. There are consistency
complications, but not debilitating ones.

o A useful check: NB quantization must coincide with standard
hamiltonian quantization for specific models. [Zachos & Curtright,
New ] Phys 4 (2002) 83.1-83.16]

Nambu'’s (1973) proposal ONBs:
A, Bl = AB — BA,
|A,B,C| = ABC — ACB+ BCA— BAC + CAB — CBA,
A,B,C,D|=A[B,C,D|-B|C,D,Al+C|D,A,B|—DI[A,B,C| =
= [A, B]|C, D] + [A,C[D, B] + [A, D|[B, C]
+|C, D|[A, B] + |D, B||A,C] + [B,C]|A, D] ,

etc.

Even QNBs resolve into  strings of  commutators,

X Gij"kl[AZ', AJ][Ak, Al]

“Quantum Pfaffians”,

Good classical limit:  [Ay, ..., Ay,| — nl(ih)"{A, ..., Ay} as B — 0.
By contrast, odd QNBs have a bad classical limit.

Full antisymmetry, but no Leibniz property or FI, in general.
Only a subjective shortcoming, dependent on the specific application
context! Quantization is consistent.
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e QONBs do satisfy the celebrated fully antisymmetric Generalized
Jacobi Identity (Hanlon & Wachs; Azcarraga, Izquierdo, Perelo-
mov & Pérez Bueno), which encodes . Eg, for 4-QNBs,

|A,B,C,D|,E,F,G|+ permutations =0,

a total of 3,7—4'1, = 35 terms, instead of the FI's 5.
Eyz'jklmnrHAia Aja Ak‘) Al]a AWL; Ana Ar} = 0.

Eg, objectively, for S?,

a derivation (an exceptional situation). ~» Here, in phase space,
even Leibniz and FI hold, . Good i — 0 limit.

NB. For A « 1, thus dA/dt = 0, [1,B,C,D] = 0 holds
identically, in contrast to the 3-argument QNB, [1,B,C] =
B,C] # 0. Thus, mno debilitating constraint among
the arguments B,C,D 1is imposed; the inconsistency identi-
fied originally is a feature of odd-argument QNBs (which fail
as deformations of CNBs: they lack a good classical limit);
but does not restrict the even-argument QNBs of phase space.
Instead, odd CNBs are reachable from larger, even QNBs like the ones
discussed: Eg, [A, B,C,p,] — —2h*{A, B,C}.

e More generic situation, eg for S, N > 2:

the QNBs provide the correct quantization rule, but need
not satisfy the naive Leibniz property (and FI) for consis-
tency, as they are not necessarily plain derivations; instead,
time derivatives are entwined inside strings of invariants.

Eg, for S?,

£, Py, Lis, Py, Log, Py| = 352 Plle, H] + [k, H] ) + Q(O(Y))
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d
k, Py, Lo, Py, Lo, P?,} Y (sz + kPQ) + Q(0(I)).

dt
The right hand side is not an unadorned derivation on &
~> does not impose a Leibniz rule on the left hand side.

(Other consistency constraints are more suitable and are, of course,
satisfied.)
Q(O(R?)) is a nested commutator “quantum rotation”.

o Alark: Ignoring Q, could one eschew solving the Jordan-Kurosh
spectral problem,

d/{: dk
[/f7P1,L12,P2,L23,P3} ~ ik’ (Pz P) ?
dt dt
formally, ~
N — , _n—1
3ih prily (—P) [7@ Py, Lo, Py, Log, P3] (P») :

n=

and so envision a different bracket which is a derivation?

e Kepler problem (Hydrogen atom): S”, through Pauli Runge -Lenz
vector, classmally, A=pxL-r,~ A-L=0;,~ H

Defmmg

2L2
H: —1 - —1
2R? 202 7
dk ,
E = —H {k,ln(Rg + £3),R1,R2,£1,£2}.

Quantized as above, [R;, R;] = 2ih ¢/*Ry, ...
3R ((Rs + L3)% + %Ry + L)) = [k Rs + L3, R1, Ra, cl, Lo H+ ...,

. L -1 —1 _ 1
with [ = gmrpy = 2h2(4s(s+1)+1) = wors = 0o b
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WHAT HAVE WE LEARNED?

¢ General methodology, successful in a Large number of systems:

As suggested by the classical NB, the commutator resolution of a
suitably chosen QNB parallels the classical combinatorics to yield a
commutator with the hamiltonian ( ~ time derivative), entwined
with invariants.

In quantization, associativity trumps naive derivation features.

e ¢ (Quantum Nambu Brackets are consistent and describe the
quantum behavior of superintegrable systems equivalently to stan-
dard hamiltonian quantization. Reputed inconsistencies have been
addressing unsuitable (and untenable) conditions.

e Guide for more general systems—even non-Hamiltonian ones.
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