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HOLOGRAPHIC INTERPOLATION
SMOOTH DYNAMICS FROM BOUNDARY CONDITIONS

How would you find rin(x), the functional square root of

rin(rin(x)) = sin(x) I
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Consider the standard logistic map for the special chaotic case r = 4,

1 =4z(1 —2) = f1(x), I

where x = xg. Can think of the iteration subscript as a discrete time,
and thus the map as a time-translation-invariant one, z;41 = f1(xr) =
f1(ft(x)) = fi+1(x), an associative and commutative composition, O.

Hemi-heuristically (1870), Ernst Schroder found a closed form solution
for all iterates, positive or negative,

fi(x) = sin?(2t arcsin(y/z)), |

essentially analytic in .

~> Could thus consider all t's, including fractional, negative, con-
tinuous and infinitesimal ones.



Yields a phase-space orbit of f(t) = v(f(t)) vs f(t) ,

s=4 logistic phase-space orbit

Y




~» Can thus appreciate that this discrete map results out of a continuous
hamiltonian evolution driven by a potential!

V(z) = (In4)2z(z — 1) (nm + arcsin v/z)2. I

» Caveat: actually, a succession of deepening potentials at each cycle,
n = (—)PL%J. Switchbacks 9 chaos: stretching and folding.

Analogy to inverse scattering: initial and final profiles yield a potential.




In general, given an evolution profile of a function x(¢t) for a discrete
time interval, from ¢t =0tot =1, s.t. 2(0) =z, (1) = f1(x), it is
straighforward to produce all integral iterates, O, on an integer lattice

of time points, t=-.-,—-2,—-1,0,1,2,3,---: the splinter, of the map,
r(2) = f1(f1(z)) = f2(x) ,
z(n) = f1(f1--(f1(x))) = fo(z) ,
z(—1) =fi' (@) =f_1(2) ,

so x = f_1(f1(x)) = fi1(f_-1(x)), or more generally, z(k + n) =
fi. (fn (2)) = fn (fr (z)), associatively and commutatively.

E.g., for f1(x) = xexp(x),
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© Suppose, however, that, for reasons dictated by a physics context,
only an explicit nonlocal discrete propagation function f1(xz) such as
this is available, but no time-local evolution law is specified.

THE PROBLEM: How does one obtain the complete, continuous
tragjectory =z (t) = f+ () without benefit of a local relation?

E.g., holographic interpolation of fi(z) = xexp(x):




M Use the elegant construction pioneered by Schroder of an analytic
ft (x) around a fixed point of f1 (x).
> (Without loss of generality, take the fixed point to be x = 0.)

) ¢ THE CONJUGACY FUNCTIONAL EQUATION
Schroder’s equation involves the auxiliary function W,

sW (z) =WV (f1()), I

for some constant s #= 1. With the origin a fixed point of fy, i.e.,
f1(0)=0, ~ W(0)=0, and if ¥/ (0) # 0,00, then s = f1(0).

The inverse function satisfies “Poincaré’s equation”,

Wl (sy) = f1 (V)

Upon iteration ¢ of the functional equation, Schroder's W acts on the
splinter of x to give

s'W (x) =WV (fn(x)) =WV (f1(f1---(f1(2)))) .



¢+ This formula naturally yields a continuous interpolation for all
non-integer t,

s (z) = W (fi ()

M To produce the full, continuous trajectory, solve for Schroder’s function
W (z), and invert to W—1. This yields z (t) as a functional conjugacy
(similarity transform) of the st multiplicative map:

z(t) = fi(z) = w1 (st Y (m))

~» In a suitable domain, this trajectory gives the iteration group O: the
general iterate for any t, analytic around the fixed point x = 0.

v  This solution manifestly satisfies the requisite associative and abelian
composition properties for all iterates and inverse iterates. I.e.,

Firtts () = fiy (fr (), hence z (t1 +t2) = fi; (x (t2)), as required for
time-translationally invariant systems.



Some specific cases:

f2 (z) =Vl (2 W () =W (sV (f1(2) = f1(/1(@)) ,
fi(e)= Wl(s! W)= w2 w (W (20 (@) = fryo (F1/2 ()
fo () =e=w (st W (VT (sMW(@))) = f1 (@)
etc.

® Crucial to note that in the Iimit s — 1, all iterates and inverse
iterates lose their distinction and degenerate to the identity map,
fo (x) = x, and the method fails as stated. % If f1(0) =1, augment
f1 (x) in Schroder’'s equation to sfi (z), and take the marginal s — 1
limit only at the very end of the calculation—if it makes sense to do
SO.



With the full trajectory f;(x) now available, the velocity profile follows

0GBy ="
as an emergent feature: v(z) =Ins/(InW(z))’.

(Of course, it was not available ab initio to integrate for the trajectory.
Had it been, W would have followed by integration! cf. the Gell-Mann —
Low renormalization group.)

~» For motion governed by a Lagrangian, L = %va — V (x), the corre-
sponding effective potential V(x), without explicit time dependence,
leading to this motion for fixed energy can be determined,

1
Vi(x) = —E’mfu2 (z) 4+ constant.



E.g., for f1 = xexp(x), (cf. the Ricker model — salmon!)

Vi) \




® WHAT IS THE MEANING of w? It's but the conjugacy variable
transformation w = W(x) which trivializes the action of f1(x) to a
mere scaling w —— sw, (‘“rectification”) ~» trivial to iterate O Vt:

T A, f1 (=)
V(z) | . L W (f1(=))

A The composite map is then z ——— W(f1(z)) = sW(x).

N Schroder appreciated his nonlinear conformal conjugacy equation is
hard to solve analytically in general; but, working backwards and utilizing
conformal mappings of monomials and simple trigonometric identities,
he found several closed Ws and their corresponding fis, like the logistic
map for r =4,2, —2.



% Procedure: For general functions like f1{ = zexp(x), (f1 = szexp(x)),
solve for the Taylor expansion coefficients of W around = = 0, recur
sively in terms of those of fi1(xz), and set s — 1 at the very end.

(The nth coefficient of W only depends on those of f; of order < n.)

_ 1 2,1 3s+1 .3 _ 1 16534+8s2+11s+1
V() _x_(s 1)33 +§(8 1)(s?— 1) 6 (s— 1)(s2—1)(s3— 1)

1 125554+755°41455%+14653+5352431s5+1 25
T34 (1) (2= 1) (53-1) (41 +0(2°).

E.g., for s = e near 1, expanding in powers of ¢,

fr (@) _ =Wl (s" w(a))

s=ef s=ef

(1 + te + O (52)) T
1
(t +2(-1430)te+0 (52)> 2

+
+ (%(_1 + 21)t +% (~142t)%te+ 0 (52)) v
T (1—12 <5 — 15¢ + 12t2) t+ 1_12 (_7 4+ 35¢ — 5612 + 30t3) te + O (52)> x4

1 1
+(2—4(—2 +3t)(5 — 12t + 8t2)t + —(50 —315¢ + 67312 — 621t> + 216t%)e

+O(62)):1:5 + 0(z°).



N>

v () = 22 — 0.523 4 0.416 672% — 0.416 67> + 0.44583z°

—0.48056x7 4 0.501 1228 — 0.491632° 4+ 0.452 15210 1L O (:1:11) .

s=1

e Not singular at s = 1!

» Positive iterates upward convex with minima at z = —1.

% x = 0 point of unstable equilibrium in the effective potential.
B Negative times lead to f_q1(x) = LambertW (z).

e Arbitrary functional roots. Indeed, full trajectories, velocities, &
potentials: x(noon) & xz(now) ~ z(all times)

~ Applications to Switchback Hamiltonians illuminating chaos.
A to field theory holography: AdS/CFT?

v'to finite (conformal and) Renormalization Group m:



The finite-RG Gell-Mann—Low (1954) equation is structurally identical!

Schroder Functional Conjugacy — Gell-Mann—Low (~Lee)
W(z(t)) - G(g(p))
t - In p
S < ed
W (z(t)) = s"W () < G(g(w)) = p'G(g(1))
so then

g(pw) = G 1(ula(g(1)))

dg(p)  d

fle) = dinpg — 9gInG

In :/9(“) dg _ In(G(g(n))/G(g(1)))
T iy B q ’

of
99(1) B(g(1)),

~» Extrema of f(g(1)) imply zeros of 3(g(e)), before obtaining G.

#(1) = f'(z) £(0) (Julia eqn) = B(g(e)) =



M Take g(1) =g, G(g) = G. The RG dictates that scale translations
of g(u) = g(lnu,g) and functions of it be encoded in motions of the
arbitrary initial condition g = ¢(0, g): % — B(g)(%, ~» the scale
translation of ¢g(Inu,g) converts to translation of InG, since its Taylor

expansion around InM = 0 is

0
g(p) =M amm g(M)| = M BW@Gg o — i d e g —

0
=" dame N @)= G H(iG(g)),

the integrated RG, from a mere translation of the variable InG by dlIn u!

X Now, suppose a ‘'step-scaling function” f is obtainable, e.g. from
lattice simulations, g(e) = f(g(1)). From this function, through our
procedure (holographic interpolation of Schroder’'s eqgn), the full g(u)
and B(u) can be reconstructed.

(One might further exclude aditional solutions based on periodic func-
tions: for any soln G(g(e)), there would be the whole (but noninvertible)
family of solns G(g)F(InG(g)) for any periodic fctn F' with period d.)
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v An exotic new feature: When G~1 involves a periodic function,
and a logarithmic function converting multiplication into shifts, g(u) =
G~ 1(uG(g)) vields a limit cycle, i.e. periodicity of the physics in the
logarithm of the scale . Such situations do actually occur in physics!

— E.g., in the “Russian doll” superconductivity model of LeClair,
Roman, & Sierra: G~ ! =tanlog, so that

g(pn) = tan(lnpu 4+ arctang). |

~» The physics repeats itself cyclically in self-similar modules.
O Spin-glasses exemplify chaotic renormalization.
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