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Abstract

Following ref [1], a classical upper bound fguantum entropis identified

and illustratedp < S, < In(ea?/ 2h), involving the variance? in phase
space of theslassical limit distributionof a given system. A fortiori, this
further bounds the corresponding information-theoretical generalizations
of the quantum entropy proposed bgiyi.

1 Introduction

This talk is closely based on ref [1] and provides illustrative context to it. The or-
ganizers of LT-7 are warmly congratulated for running a successful conference.

Recurrent problems in four dimensional BPS black holes focus on the en-
tropic behavior of the respective complex structure moduli spaces, and, perhaps
independently, on the corresponding holographic entanglement information lost
in decoherence, and associated Hawking radiation paradoxes. They all rely on
the fundamental and dependable statistical concept of entropy, which accounts
collectively for the flow of information in these systems, and for which robust
estimates are needed, in lieu of detailed accounts of quantum states. Ideally,
such estimates would only require gross geometrical and semiclassical features
of the system involved, and ignore quantum mechanical interference subtleties.

Classical continuous distributions have been studied in probability and infor-
mation theory for a long time, and Shannon [2] has derived handy upper bounds
for their entropy, and thus crude least information estimates, in the 1940s. Ap-
proximate counting of quantum microstates, however, is normally toilsome, and
can be approximated heuristically by semiclassical proposals [3], which, ulti-
mately, should devolve to a bona fide classical limit, despite occasional ambigu-
ities and complications along the way [4]. However, a more systematic approach
was initiated by Braunss [5], who appreciated the underlying simplicity of phase
space in taking a classical limit of intricate quantum systems. He thus tracked
the information loss involved in smearing away quantum effects, to argue that
the entropy of a quantum system is majorized by that of its “ignorant” classi-
cal limit, ash-information of the former is forfeited in the latter, an intuitively
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plausible relation. The approach to the classical limit is often in several steps,
and special care must be taken—in fact, the specific path to the classical limit
proposed in ref [5] fails the very inequality of that work, as illustrated below
for the ground state of the oscillator. Nevertheless, even though the specific
proof in ref [5] has loopholes, the generic full classical bound proposed there
is sufficiently compelling, if not evident, and borne out by all instances to our
knowledge, to be assumed, and thus be implicitly endorsed, here. It is the most
reliable guide to approaching the classical limit, were one to turn the argument
around.

In this talk, the two inequalities are simply combined into a general upper
bound of the quantum entropy of a system provided essentially by jusidhe
arithm of the variance in phase space of the classical limit distributibthat
system. The resulting inequality, eqn (9) below, is illustrated simply by the el-
ementary physics paradigm of a thermal bath of oscillator excitations of one
degree of freedom, whose phase-space representation is an obvious maximal
entropy Gaussian.

Note that there is no specific assumption of a particular spectral behavior—or
even of the existence of a hamiltonian—for the systems covered by the inequal-
ity. Extension to arbitrary degrees of freedom and tighter bounds contingent on
the circumstances of detailed physical applications are conceptually straightfor-
ward, even though specific application to the moduli phase spaces or holographic
entanglement of black holes is reserved for a future, less general, report.

In passing, and because it fits naturally with the computational technique
involved, the correspondinguantum Rnyi entropieg6] are also evaluated ex-
plicitly here for the same prototype system, to illustrate the broad fact that these
entropies are majorized by the Gibbs-Boltzmann entropy, and thus also by the
bound discussed here.eRyi generalized entropies were originally introduced
as a measure of complexity in optimal coding theory [6], and have been applied
to turbulence, chaos and fractal systems, as well as semi-inclusive multiparti-
cle production [7, 8]; however, apparently, they have not attained significance in
black hole physics yet, nor in current noncommutative geometry efforts.

2 Shannon and Boltzmann-Gibbs entropy in phase space

For a continuous distribution functiofi(x,p) in phase space, the classical
(Shannon information) entropy is

Su—— / dzdp f n(f). )

For a given distribution functiorfi(x, p), without loss of generality centered
at the origin, normalized| dzdpf = 1, and with a given variance;® = (z? +
p?) = [dxzdp(z® + p?)f, it is evident from elementary constrained variation
of this S [f] w.r.t. f, [2] (also see [9]), that it is maximized by the Gaussian,
Iy = exp(—(2? + p?)/0?) /0T, 105y =1+ In(mo?).

That is, a Gaussian represents maximal disorder and minimal information—
in thermodynamics, least dispersal energy would be available.
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Thus, it leads to a standard result in information theory [2], Shannon’s in-
equality,
S, < In(med?), 2

which provides ampper bound on the lack of informatiam such distributions.

Note that, in general§,; is unbounded above, as it diverges for delocalized
distributions,c — oo, containing no information. In contrast to the Boltzmann-
Gibbs entropy, it is also unbounded below, given ultralocalized peaked distribu-
tions (¢ — 0), which reflect complete order and information.

In quantum mechanics, the sum over all states is given by the standard von
Neumann entropy [10] for a density matpix

0<S;=-Trplnp=—(Inp) . 3)

This transcribes in phase space [5, 11] through the Wigner transition map [12] to
0<5,=— / drdp [ I, (hf) | (4)
where thex-product [11]

x= e (020,=0,02) (5)

serves to define-functions, such as the-logarithm, above, e.g. through
power expansions,

(- hf)

In,(hf) == 6)
n=1

In a remarkable approach, Braunss [5] has argued that$ fjodefined by
S, +1nh in the limit that the Planck constaht— 0,

0<8,<Sq—Inh. ()

The logarithmic offset term relying on the Planck consfaatcounts for the
scale [3] of the phase-space area elenaemnlp in (4). This scaleh, should di-
vide dzdp to yield a dimensionless phase space cell. Correspondingly, it should
then multiply f, to preserve ‘probability’,/ dzdpf = 1, in the Wigner transi-
tion map from the density matrix to the Wigner Functiory. E.g., for a pure
state [12],

fla,p) = %/dy P* (w — ;y) e~ wr/h ) (1‘ + ;y> : ®)

Now, the classical limit normally entails variations of phase-space variables on
scales much larger than Therefore, these variables are normaltgled down
to scales matched to such activitis illustrated explicitly in the next section,
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comparing quantum and classical entropies relies on the above offset to avoid
divergences. The upper bound in this Braunss inequality reflects the loss of
guantum information involved in the smearing implicit in the classical limit,
effectively regarded as an extreme limit of subadditivity [3].

Readers unfamiliar with the classical limit might find loss of the quantum
uncertainty of the theory counterintuitive and discordant with the loss of infor-
mation involved. Actuallythe resolution to access the uncertainty is sacrificed
in this limit. A standard consequence of the Cauchy-Schwarz inequality for
Wigner functions igf| < 2/h, [12], reflecting the uncertainty principle: the im-
possibility of localizingf in phase space, through a delta function. The best one
can do is to take a pillbox cylinder of basg2 and heigh®/h, properly normal-
ized tol = [ dzdpf. Now, scaling the phase-space variables downj/ang (to
preserve this normalization—the volume of the pillbox, as in the above discus-
sion of the offset) ultimately collapses the base of the pillbox to a mere point in
phase space; and leads to a divergent heighf fardelta function, characteris-
tic of a perfectly localized classical particle. However, seveif&érent quantum
configurationswill reduce to this same limit: it ithis extra quantum information
on h-dependent features, e.g. interference, that is obliterated in the limit.

Combined with Shannon’s bound, this now amounts to

9)

0<8, < (%)

i.e., the entropy is bounded above by an expression involving the variance of the
correspondinglassical limit distribution functions in this expression is not a
function of &.

It readily generalizes to multidimensional phase spdt®’( in which case
the logarithm is evidently multiplied bi¥, in evocation of Bekenstein’s bound),
and contexts where more information (e.g., on asymmetric variances) happens
to be available, or refinement desired.

By virtue of (6), the quantum entropy is recognized as an expansion

s-% gy _ > (=) 10

The leading termp = 1, 1-Trp? = (1 — hf), is theimpurity [L0-12], often
referred to as linear entropy. Like the entropy itself, it vanishes for a pure state
[10-12], for whichp? = p, or, equivalently,f x f = f/h. Each term in the
above expansion then projects gutor xh f, respectively:pure states saturate
the lower bound or¥,.

A likewise additive (extensive) generalization of the quantum entropy is the
Rényi entropy [6],

1 dxzd,
1n<pa_1> = In ' 4

where the limitae — 1 yields R, = 5,, and the above-mentioned impurity is
1 — exp(—Rz). For continuous distributions (infinity of components) discussed
here,R is divergent.

R, =
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Fora > 1, R, > Ro41,805,; > R,, and itis also bounded below by 0 [6],
ie.,
Sq Z Ra 2 Ra+1 2 0 ) (12)
so that, a fortiori, the Bnyi entropy is also bounded by (9).
3 Gaussian lllustration

To illustrate the above inequalities, consider the (maximally chaotic) Gaussian
Wigner Function ofarbitrary half-varianceF,

_224p?
E

e 2 7m2+p27n -
f(xvva):%Tze 2g (27 E), (13)

This happens to be the phase-space Wigner transform of a Maxwell-Boltzmann
thermal distribution for harmonic excitations of one degree of freedom [13],
in suitably rescaled units, normalized properly to unity, and with mean energy
E = {((z*+p*)/2).

Calculation of the entropy of this distribution, is, of course, an elementary
physics problem, but its independent phase-space derivation [14] (also see [15]),
is reviewed here, i.e., evaluation of (4) directly. Still, the reader ought to be able
to appreciate the technical argument here, without any knowledge of thermo-
dynamics, the interpretation of the formal variance as endrgyr the above
unavoidable oscillator identification!

For E = h/2, the distribution reduces to jugs, the Wigner Function for a
pure state (the ground state of the harmonic oscillator). Hence [11,12],

fox fo= % ) (14)

so thatf, is x-orthogonal to each of the terms in the sum (6), and héjjce 0,
indicating saturation of the maximum possible information content. Moreover,
it is directly evident tha® < S.; —Inh = In(e/2) =1 — In2 ~ 0.307.

(Caution: If one casually, and improperly, dropped thabove to substitute
hfg for fo, as perhaps suggested by the limiting procedure of ref [5], the re-
spectiveF would be effecitvelyhalved and thus force violation of the Braunss
inequality through a negative result!)

For generic width®, the Wigner Functiory is not that of a pure state, but
it still happens to always amount toxaexponentia[16] (e =1+ a4+ a*
a/2l+a*xa*xa/3! 4+ ..)as well,

hf=e m22+Ep2 +In(h/E) _ e:%(z2+p2)+ln(% cosh(ﬁ/h))7 (15)

where an “inverse temperature” varialfleF, i) is useful to define,

h E+h/2
<1 = L
= )

tanh(3/2) = 5

(16)
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(Thus the above pure stafg corresponds to zero temperatupe= c.)
Sincex-functions, by virtue of theix-expansions, obethe same functional

relations as their non- analogs inverting thex-exponential through the-

logarithm and integrating (4) yields directly the standard thermal physics result,

B, (2E+4h\ 1. ([ E, 1
Sq(E,h) = hln<2E_h)+21n<(h) —4>

= gcoth(ﬂ/Q) — In(2sinh(5/2)). (6]

Indeed, this can be seen to be a monotonically nondecreasing functibn of
attaining the lower bound 0 for the pure stde— h/2 (thus, — oo, zero
temperature).

The classical limith — 0 (6 — 0, infinite temperature) then follows,

Sq— 1+ In(E/h) =In(me2E) —Inh = Sy(E) —Inh, (18)

and is explicitly seen to bound the expression (17) forEllsaturating it for
large E >> h, in accordance with Braunss’ bound.

That is, the upper bound (9) is saturated for Gaussian quantum Wigner func-
tions witho? >> h.

Note the region® < 7/2, corresponding to ultralocalized spikes excluded
by the uncertainty principle, was not allowed by the above derivation method,
since, in this region, ne&-Gaussian can be found to represent the Gaussian.
(It would amount to complex and S,, linked to thermal expectations of the
oscillator parity operator.)

NB. An alternate heuristic proposal of ref [3] for the classical limit of the
entropy effectively starts from the Husimi phase-space representation [12]; it
first effectively drops alkys in (4) and easily evaluates (1) instead (which is
well-defined becausgy > 0 automatically) beforecompleting the transition to
the classical limit: — 0. It also, ultimately, yields the same answer (18), since
the Husimi representation of the Gaussian Wigner Function (13),

; ,d/e%(w'ﬂ)"#(p'w)?)/h IS =
sz/l’P h f(l‘,p)—m,

is also a Gaussian. Utilized to evaluate (1), it yididgre(2E + h)), which has
the more direct expressiafy; of (18) as its classical limit. Nevertheless, for
small F, this proposal is neither equivalent, nor as satisfactory. For the ground
state,F = /2, which is a coherent state, this semiclassical entropy reduces to
a characteristic minimal valué,+ In h. However, the corresponding classical
entropy then is larget, > 0.307, than the one found above, and less informative.
By virtue of (15),x-powers of the Gaussian are also straightforward to take,
and thus the Bnyi entropies can be readily computed:

1 (2sinh(5/2))*
Fa 1—a In ( 2sinh(a/2)) ) (20)

() ()

(19)
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Notea — 1 checks with the above (178, — S,. Also, in the pure state
limit, £ = k/2, itis evident thatR,, = 0 checks for all > 1. (Fora > 1 and
the small disallowed values < /2, R,, < 0.)

R, is also a nondecreasing function Bf and, in comportance with (12),
a nonincreasing function af. Up to an additivep-dependent constant, the
classical limit is identical to that for the entropy itself,

Ina

Ro — ——— +n(E/h), (1)

in agreement with the classical result of [8]. It may well be that, as in systems
where the relevant Compton wavelength vanishes behind its own Schwarzschild
horizon, specificxs may well provide more detailed or practical measures of
complexity in Hawking radiation with sparse information available.

If a specific quantum Hamiltonian were actually availafide the system in
guestion (a rare occurrence), then the classical limit of the entropy of the system
would be straightforward—and thus the inequality discussed here would not be
that powerful, since the classical entropy itself would be at hand, in general
lower than the Shannon bound.

For such a simple system, the upper-bounding classical entropy would result
out of the phase-space patrtition function specified by the corresponding classical
hamiltonian (the Weyl symbol of the quantum hamiltonian). This is easily illus-
trated explicitly by hamiltonians which are positil&th powers of the oscillator
hamiltonian, so that, simply,

fa o exp(—((2* +p?) [2B)N). (22)

The bounding classical entropy then reduces by standard thermodynamic evalu-
ation to be just (1),

1 1
Sel —N+1H (277EF(1+N)>, (23)
lower than the cooresponding Shannon bound,
I'(l1+42/N)
1+1 E————. 24
#a (B ) @y
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