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Abstract: Basedon the in nite-dimensionalalgelvas we haveintroduced,SU(1 ) is identi ed
with generalhamiltonian ows in 2-d phase-spaceSO(1 ) with ows generatedby x-p-odd
hamiltonians,and USp(L ) with those of hamiltoniansof special symmetry Gaugethearies for
SU@L ), SO(1 ), and USH1 ) are thus formulated in terms of surface(sheet) coordinates for
toroidal phase-spaceSpacetime-indepndentcon gurations of their gauge elds directly yieldthe
quadratic Schild-Eguchistring action.

This is an eclectic summary of recert obsenations made with David Fairlie and Paul
Fletcher, with whom | intro duced new in nite-dimensional algebrasinvolving trigonometric
functions in their structure constarts!tl. The generatorsof the algebraswe have intro duced
are indexed by 2-vectors m = (mq;my). The componers of these vectors do not needto
be integersto satisfy the Jacobi identities, but we take them to be integral for the sake of
interpreting them as Fourier modes:

[Km;Knl=rsin(km n)Kmp+in+ta m meno: Q)

Here,m n = min, myny, r andk arearbitrary (complex) constarts, and a is an arbitrary
2-vector . The Casimir invariants are
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Thesealgebrasinclude asa special casethat of SDi o(T?), the in nitesimal area-preserving
di eomorphisms of the torus[?3l: r = 1=k in the limit k! 0 yields the algebra

[Lm;Lal]= (M nN)Lm+n+ @ M menpo: (3)

You may nd the supersymmetric extensionof our algebra (1) and the obsenations to follow
in Ref.[1]. The represenation and character theory of thesealgebrasis an open problem.
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The algebra (3) is known to be, in a particular basisoptimal for the torus, that of the
generic area-preserving(symplectic) reparameterizations of a 2-surface. Taking x and p to
be local (commuting) coordinates for the surface,and f and g to be di erentiable functions
of them, a basis-indegendert realization for the generatorsof the certerlessalgebrais!?:
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[Lt;Lgl = Ltfggs [Lrsol=ff;00; (5)

where d@ @@
ff;og @@ @@ ; (6)

the Poissonbracket of classicalphase-space.The generatorL¢ transforms (x; p) to

(x @=@ ; p+ @=@). Innitesimally , this is a canonical transformation[* generated
by f, which presenesthe phase-spacearea elemert dxdp. This elemen is referred to as a
symplectic form and the classof transformations that leavesit invariant speci es a symplectic
geometry You may regard it asthe ow generatedby an arbitrary hamiltonian f. For a
small patch of 2-surface,you may expand the functions f (x; p) in any coordinate basisyou
choose. If the surfaceis a torus, | shall prefer a globally adequate coordinate system, such
as exp(inx + imp); if it is a sphere, spherical harmonicd?®!; if it is a plane, powers®; and
soon. Nevertheless,for the in nitesimal transformations e ected by the algebra generators
in a patch, any coordinate basis will do, and may be transformed to other ones. (When
such transformations are singular, however, a number of generatorsmay be lost, leadingto a
subalgebra,as noted by Pope and Stelle, and Hoppelfl.)

Choosingthe torus basis,f = €(mMix*m2p) gndg=€(Mx*nz2p) 0 x:p 2 ,yields
Lt = Limymy = €M MPI(m@@ m@@) ; 7)

which obey the certerless algebra in the basis (3). Conversely given the basis (3), any
function f (x; p) can be reconstituted through

X .
f(x;p) = F (myg; mp)e/(mix+mzp) . (8)

mai;ma

and thus the linear combinations

X
L = F(ml;mZ)L(ml;mz) 9

mi;ma
are seento obey the Poisson-bra&et algebra (5).

We have found a corresponding realization for the torus-basisalgebra (1) generators:

K(my;mp) = (ir=2) exp(im1x + kng+ im,p kml—@

@

= (ir =2) exp(im 1x + im,p) exp(kng kml@@f) ; (10)

somewhatanalogousto the one-ariable realization found by Hoppel®l. Note the trivialit y in
this realization of the Casimir operators, as the indices of eat of their terms sumto zero.



To Fourier-composethis to a basis-independert realization, we rst de ne, asin (9),
X r @ @
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where the last side of the equation is a formal expressionto ewke (8)/(4): the \normal
ordering” of its derivativesis speci ed in its Fourier-seriesde nition, in which they stand to
the right of all coordinates, by virtue of eq. (10).

p k=), (11)

The analog of the Poissonbracket in this caseis the sine, or Moyal, bracket ff f; ggg.
This is the extensionof the Poissonbracket ff ; gg to statistical distributions on phase-space,
introduced by Weyl*! and Moyall™, and explored by sewral authors!’l in an alternative
formulation of quantum medanics, regarded as a deformation of the algebra of classical
obsenables. It is ageneralizedconvolution which reducesto the Poissonbracket ash, replaced
by 2k in our cortext, is takento zero:
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The argumert of the sine above is
1 1 p x'! X
Edet 1 p° x° = P dq; (13)
1 po x00

i.e. 2=k times the areaof the phase-spacériangle with verticesat (x; p); (x%pY, and (x%9p%.
The antisymmetry of f with g is evidert in the determinant. The sine brackets satisfy the
Jacobi identities!"d, just as their Fourier componerts (1) (seethe next paragraph) do, and
thus determine a Lie algebra. These brackets help reformulate quantum medanicsin terms
of Wigner's phase-spacalistribution [7].

The Fourier transform of the sine bracket results from substitution in (12) of the expo-
nertial basisusedin (7):
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As in (9), it then follows through the linearity of the operators de ned in (11), and (1), that
theseindeed obey the algebra

X
[Ke;Kgl=r F(mg;m2)G(ng;nz)sin(km  Nn) Kmin = K 999 - (15)
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Our algebrais thusidenti ed with that of sinebrackets. Mutatis mutandis, you might wish to
expandit in alternate bases,sudch as spherical harmonics, so asto specify the corresponding
generalizationsof SDi o(S?), powers for the plane®l, and soon.

Focus now on an interesting certerlessfamily of the algebras(1), namely the cyclotomic
family: the onefor which k = 2 =N, for integer N > 2. In this family, there is an additional
Z Z algebraisomorphism

K(ml;mz) 7! K(ml;mz)+( NtN q) (16)
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for arbitrary integerst and g. Sincethe structure constarts sinZW(mlnz nim;) are only
sensitive to the modulo-N values of the indices, the 2-dimensionalinteger lattice separates
into N N cells, eath of which may be referred to somefundamertal cell, e.g. around the
coordinate certer of the lattice, by proper N -translations. The fundamental N N cell
contains N 2 index points, but the operator K (0:0), likeits lattice translations K q), factors
out of the algebra: it commutes with all K's and cannot result as a commutator of any two
such. Thus the fundamertal cell involvesonly N2 1 generators, and there are no more
structure constarts than those occurring in this cell. In consequencethe in nite-dimensional
certerless cyclotomic algebras, with the Ky (1,q)'s factored out, possesghe following nite-
dimensional invariant subalgebraof \lattice average" operators K:

X .2
K(ml;mz) K(m1+Ns;m2+Nv); [Km;Kn]: rsm(ﬁm n) Km+n; (17)
SV
wherem,n,m+n areindicesin the fundamertal cell, and an in nite normalization has been
absorbedin r.

This (N? 1)-dimensionalideal speci es, in fact, a basisfor SU(N ) which may be thought
of as a generalization of the Pauli matricesl®. Consider odd N's rst. A basisfor SU(N)
algebras,for odd N, may be built from two unitary unimodular matrices:

0 1 0 1
1 0 0 ::: 0 010 :::0
0o ! 0o ::: 0 0 0 1 : 0
9 0012 0 , h oo s di=pt=1 (18)
R : 000 ::: 1
00 0 ::: IN1 100 :::0

where! is a primitiv e N'th root of unity, i.e. with period no smaller than N, here taken to
be e* "N They obey the identity
hg="! gh: (19)

You also encourter these matrices in the context of represenations of quantum SU(2)120l,
The complete set of unitary unimodular N N matrices

Jmimy ! mmzzzgmlhm2 ; (20)
where
J(yml;mz) = J( my: my) Trd(mymy = 0 exceptfor my=my=0modN ;  (21)

su ce to spanthe algebraof SU(N). Likethe Pauli matrices, they closeunder multiplication
to just onesud, by virtue of (19):

Jmdn = 1" M23 00 (22)
They therefore satisfy the algebra
.2
[Bm;dn]l= 2 sm(Wm n) Im+n : (23)

Consequetly, in this conveniert two-index basiswith the above simple structure constarts,
SU(N) describesthe algebra (17) of the ideal fK g.



For even N, the fundamertal matrices in (18) are not unimodular, astheir determinant
may now be {1 aswell. One might chooseto modify them to

0 1 0 1
1 0 0 ::: 0 0 10 :::0
ot!" 0 ::: 0 0O 01 :::0
g p!_ 00 12 ::: 0 - h Do cgN=hN= 1;
S : 0 0 0 : 1
00 0 ::: INT 100 ::: 0
‘ o _ (24)
with | = € N " T = e "N They again obey (19), and again sene to de ne the unitary
basis
Jmpmyy MM gMhm (209
Imdn = 1™ M23 000 (229
The SU(N) algebrais now
[Im;dn]l= 2 sin(ﬁm n) Im+n : (25)

It might appear that the fundamental period be 2N instead of N. Howewer, note that, by
virtue of the symmetry

Jm+N(t;q) = ( 1)(m1+1) q+(m2+1)tJm : (26)

only indicesin the fundamental cell N N needbe considered. lllustrating this for N = 2
, the Pauli matrices, may be of useto the reader. Naturally, the algebra (25) also holds for
N odd, when! = exp(2 i=N) is usedin (18). Thus, the ideal (17) amounts to SU(N) for N
odd and SU(N=2) for N even? For example,both N = 3and N = 6 yield SU(3), N = 12
yields SU(6)'s, etc.

In this basisagain, the operators Qmn)y  Jmn) Jn:m) closeto a subalgebraof SU(N)
with N(N  1)=2 generators

[Q(m;n); Q(mO;nO)] = 2isin Zﬁ(mno m%) Q(m+ mCn+n9 + 2i sin zﬁ(mmo nn% Q(m+ no%n+mo;

(27)
which is shown by reduction to the Cartan-Weyl basid'!] to amourt to SO(N). Alternativ e
SO(N)'s may also be found, sud as the subset of the above Q(m.ny With m + n = even
together with the operators J(m:ny + J(nm) With m + n = odd; or else,for even N = 2M,
Jmny ( )"Im; n)- Finally, the subalgebraof SU@2M): Simny  Jmny ()" Im: ny is
seento be an USp(2M ).

The 2-index SU(N) basis consideredhere has a particularly simple large N limit. As
N increases,the fundamertal N N cell covers the ertire index lattice; the operators K
supplant the K's and, in turn, sincek ! 0, the operators L of eq.(3).

More directly, you immediately seeby inspection that, asN ! 1 , the SU(N) algebra
(23) goesover to the certerlessalgebra (3) of SDi o(T?) through the identi cation:

iN
779m! Lo (28)

2pctually, in this casé'!!, the generators describe SU(N=2)*, i.e. four mutually commuting SU(N=2)'s.



An identi cation of this type was rst noted by Hoppel®! in the cortext of membrane physics:
he connectedthe in nite N limit of the SU(N ) algebrain a special basisto that of SDi o(S?),
i.e. the innitesimal symplectic di eomorphisms in the sphere basis. A discussionof the
group topology of SU(N), or SDi o(T?) versusSDi o(S?), or other 2-dimensional manifolds
for that matter®, exceedsthe scope of this type of local analysis; such a discussionhas been
suggestedin Refs.[6], which consider certral extensionsthat are sensitive to global features
of the 2-surface.

In view of the SO(N) subalgebrasdescribed above, we may also simply identify the
SO(1 ) subalgebrawith the Poisson Bracket subalgebrawhose shift potentials f are odd
under interchangeof x with p| they correspond to hamiltonians which ewolve evenfunctions
to even ones,and odd to odd ones. Likewise,USp(1 ) is generatedby shift potentials of the
form exp(imx) sin(np m =2), i.e. toroidal phase-spacehamiltonians odd under p 7!

p; x 7! x+ . (Merely p-odd hamiltonians generatethe \sibling" SO(1 ).) Saveliev and
Vershiki*2l, and wel'll have initiated a program of systematizing such results in a uni ed
framework commonwith that of the nite Lie algebras.

Floratos et al.['3] utilized Hoppe'sidenti cation to take the limit of SU(N) gaugetheory.
Their results are immediately reproduced without ambiguity, again by inspection, on the
basis of the orthogonality condition dictated by (21) and (22):

N3

Tr\]mJn = N m+n;0 ' TerLn = W m+n;0 .

(29)

As aresult, for agauge eld A in an SU(N) matrix normalization with trace 1, the analog
of eq. (9) is
gm 4 _ .
A Ampﬁ ! istzAmLm‘Am'-m ; (30)

where summation over repeated m's is implied, and | have de ned A™ (4 =iN3?)A™. As
N ! 1 ,theindicesm cover the entire integer lattice, sothat | may de ne

, X .
a(xrp) A‘{n el(le+ m2p) : (31)

By eq. (5),
[AA] ! [La;Lal=L¢a ag- (32)

Hence, by virtue of the linearity of L in its argumerts,

F =@A @A +[A:A]! L

f = @a @a +fa;ag: (33)
The group trace de ning the Yang-Mills lagrangian density is then
N3 N3 z X . .
TrF E FME M = dXdp e|x(m1+n1)+ |p(m2+nz)l:-(ml;mg)[:-(nl;nz)
4 )? 64 4 MM
1,M2,Mh1,hn2
4
= ( N3=64 %) dxdp f XP)fxP) (34)

Thus, in the SU(1 ) gaugetheory, the group indices are surface (torus) coordinates, and the
elds are rescaledFourier transforms of the original SU(N) elds; the group composition rule
for them is given by the Poissonbracket, and the trace by surfaceintegration.



Now note an intriguing connectionto strings which emergesfor the rst time directly at
the level of the action: for gauge elds independert of x (e.g. vacuum con gurations), this
lagrangian density reducesto fa ;a gfa ;a g, the quadratic Schild-Eguchi action density for
strings[l“], where the a now serwe as string variables, and the surface serves as the world-
sheet. This action amourts to the square of the sheet area and it is easily seenthat its
equationsof motion contain those of Nambu's action. Thus, at zeroenergy the gaugetheory
reducesto a string. Whether a superstring follows analogously from the super-Yang-Mills
lagrangian is an open question.

The lagrangian (34) with the sine bracket supplantiing the Poisson bracket is also a
gauge-invariant theory, provided that the gaugetransformation alsoinvolvesthe sineinstead
of the Poissonbracket:

a=@ ff ;agg; (35)

and hence,by virtue of the Jacobi identity,
f =ff :f gg: (36)

It then follows that
Z Z

dxdpf f = 2 dxdpf ff ;f gg=0: (37)

At the momert, howeer, it is not clearwhat physical systemis described by the corresponding
spacetime-indegendert lagrangiandensity ff a ;a ggff a ;a gg. It is further obscurewhether
a relation exists betweenthe above theories and the Universal Yang-Mills theory!13],

This compactformulation of SU(1 ) gaugetheory (and that of its subgroups)ought to be
of usein largeN model calculations, or various \master- eld" e orts; memnbrane physicg?3l;
and the exploration of connectionsbetweengaugetheory and strings, as above.

I wish to thank the Ohio State University for its hospitality during much of this reserch.
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