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Abstract: Basedon the in�nite-dimensionalalgebras we haveintroduced,SU(1 ) is identi�ed
with generalhamiltonian 
o ws in 2-d phase-space,SO(1 ) with 
o ws generatedby x-p-odd
hamiltonians,and USp(1 ) with those of hamiltoniansof special symmetry. Gaugetheories for
SU(1 ) , SO(1 ), and USp(1 ) are thus formulated in terms of surface(sheet) coordinates for
toroidal phase-space.Spacetime-independentcon�gurationsof their gauge�elds directly yield the
quadraticSchild-Eguchistring action.

This is an eclectic summary of recent observations made with David Fairlie and Paul
Fletcher, with whom I intro duced new in�nite-dimensional algebrasinvolving trigonometric
functions in their structure constants[1]. The generatorsof the algebraswe have intro duced
are indexed by 2-vectors m = (m1; m2). The components of these vectors do not need to
be integers to satisfy the Jacobi identities, but we take them to be integral for the sake of
interpreting them as Fourier modes:

[K m ; K n ] = r sin(k m � n) K m + n + a � m � m + n;0 : (1)

Here,m � n = m1n2 � m2n1, r and k are arbitrary (complex) constants, and a is an arbitrary
2-vector . The Casimir invariants are

X

m
K m K � m ;

X

m ;n
eik m � n K m K n K � m � n ; ::: ; (2)

X
eik (m � n+ m � p+ :::+ m � r + n � p+ :::+ n � r + :::+ p � r ) K m K n K p :::K r K � m � n � p :::� r :

Thesealgebrasinclude asa specialcasethat of SDi� 0(T2), the in�nitesimal area-preserving
di�eomorphisms of the torus[2;3]: r = 1=k in the limit k ! 0 yields the algebra

[L m ; L n ] = (m � n)L m + n + a � m � m + n;0 : (3)

You may �nd the supersymmetric extensionof our algebra (1) and the observations to follow
in Ref.[1]. The representation and character theory of thesealgebrasis an open problem.
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The algebra (3) is known to be, in a particular basis optimal for the torus, that of the
generic area-preserving(symplectic) reparameterizations of a 2-surface. Taking x and p to
be local (commuting) coordinates for the surface,and f and g to be di�eren tiable functions
of them, a basis-independent realization for the generatorsof the centerlessalgebra is[2]:

L f =
@f
@x

@
@p

�
@f
@p

@
@x

=) (4)

[L f ; L g] = L f f ;gg ; [L f ; g] = f f ; gg ; (5)

where

f f ; gg �
@f
@x

@g
@p

�
@f
@p

@g
@x

; (6)

the Poissonbracket of classicalphase-space.The generator L f transforms (x; p) to
(x � @f =@p ; p + @f =@x). In�nitesimally , this is a canonical transformation [4] generated
by f , which preserves the phase-spacearea element dxdp. This element is referred to as a
symplectic form and the classof transformations that leavesit invariant speci�es a symplectic
geometry. You may regard it as the 
o w generatedby an arbitrary hamiltonian f . For a
small patch of 2-surface,you may expand the functions f (x; p) in any coordinate basis you
choose. If the surface is a torus, I shall prefer a globally adequatecoordinate system, such
as exp(inx + imp); if it is a sphere, spherical harmonics[3]; if it is a plane, powers[5]; and
so on. Nevertheless,for the in�nitesimal transformations e�ected by the algebra generators
in a patch, any coordinate basis will do, and may be transformed to other ones. (When
such transformations are singular, however, a number of generatorsmay be lost, leading to a
subalgebra,as noted by Pope and Stelle, and Hoppe[6].)

Choosing the torus basis,f = � ei (m1x+ m2p) and g = � ei (n1x+ n2p) , 0 � x; p � 2� , yields

L f = L (m1 ;m 2 ) = � iei (m1x+ m2p) (m1@=@p � m2@=@x) ; (7)

which obey the centerless algebra in the basis (3). Conversely, given the basis (3), any
function f (x; p) can be reconstituted through

f (x; p) = �
X

m1 ;m 2

F (m1; m2)ei (m1x+ m2p) ; (8)

and thus the linear combinations

L f =
X

m1 ;m 2

F (m1; m2)L (m1 ;m 2 ) (9)

are seento obey the Poisson-bracket algebra (5).

We have found a corresponding realization for the torus-basisalgebra (1) generators:

K (m1 ;m 2 ) = (ir =2) exp(im 1x + km2
@

@x
+ im 2p � km1

@
@p

)

= (ir =2) exp(im 1x + im 2p) exp(km2
@

@x
� km1

@
@p

) ; (10)

somewhatanalogousto the one-variable realization found by Hoppe[3]. Note the trivialit y in
this realization of the Casimir operators, as the indices of each of their terms sum to zero.

2



To Fourier-composethis to a basis-independent realization, we �rst de�ne, as in (9),

K f �
X

m1 ;m 2

F (m1; m2)K (m1 ;m 2 ) �
r
2i

f (x + ik
@
@p

; p � ik
@

@x
) ; (11)

where the last side of the equation is a formal expressionto evoke (8)/(4): the \normal
ordering" of its derivatives is speci�ed in its Fourier-seriesde�nition, in which they stand to
the right of all coordinates, by virtue of eq. (10).

The analog of the Poissonbracket in this caseis the sine, or Moyal, bracket ff f ; ggg.
This is the extensionof the Poissonbracket f f ; gg to statistical distributions on phase-space,
intro duced by Weyl[4] and Moyal[7b], and explored by several authors[7] in an alternativ e
formulation of quantum mechanics, regarded as a deformation of the algebra of classical
observables. It is a generalizedconvolution which reducesto the Poissonbracket as�h, replaced
by 2k in our context, is taken to zero:

ff f ; ggg =
� r

4� 2k2

Z
dp0dp00dx0dx00f (x0; p0)g(x00; p00) sin

1
k

�
p(x0� x00)+ x(p00� p0)+ p0x00� p00x0

�
:

(12)
The argument of the sine above is

1
k

det

 1 p x
1 p0 x0

1 p00 x00

!

=
1
k

Z
p � dq ; (13)

i.e. 2=k times the areaof the phase-spacetriangle with verticesat (x; p); (x0; p0), and (x00; p00).
The antisymmetry of f with g is evident in the determinant. The sine brackets satisfy the
Jacobi identities [7d], just as their Fourier components (1) (seethe next paragraph) do, and
thus determine a Lie algebra. Thesebrackets help reformulate quantum mechanics in terms
of Wigner's phase-spacedistribution [7].

The Fourier transform of the sine bracket results from substitution in (12) of the expo-
nential basisusedin (7):

ff f ; ggg=
� ir

8� 2k2

Z
dp0dp00dx0dx00ei (m1x0+ n1x00)+ i (m2p0+ n2p00) �

�

 

e
i
k (p(x0� x00)+ x(p00� p0)+ p0x00� p00x0) � (k $ � k)

!

= � r sin(km � n) ei (m1+ n1 )x+ i (m2+ n2 )p :

(14)
As in (9), it then follows through the linearit y of the operators de�ned in (11), and (1), that
theseindeed obey the algebra

[K f ; K g] = r
X

m1 ;m 2 ;n1 ;n2

F (m1; m2)G(n1; n2) sin(km � n) K m + n = K ff f ;ggg : (15)

Our algebrais thus identi�ed with that of sinebrackets. Mutatis mutandis, you might wish to
expand it in alternate bases,such as spherical harmonics, so as to specify the corresponding
generalizationsof SDi� 0(S2), powers for the plane[8], and so on.

Focus now on an interesting centerlessfamily of the algebras(1), namely the cyclotomic
family: the one for which k = 2� =N , for integer N > 2. In this family, there is an additional
ZZ � ZZ algebra isomorphism

K (m1 ;m 2 ) 7�! K (m1 ;m 2 )+( N t;N q) (16)
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for arbitrary integers t and q. Since the structure constants sin2�
N (m1n2 � n1m2) are only

sensitive to the modulo-N values of the indices, the 2-dimensional integer lattice separates
into N � N cells, each of which may be referred to somefundamental cell, e.g. around the
coordinate center of the lattice, by proper N -translations. The fundamental N � N cell
contains N 2 index points, but the operator K (0;0) , like its lattice translations K N (t;q) , factors
out of the algebra: it commutes with all K 's and cannot result as a commutator of any two
such. Thus the fundamental cell involves only N 2 � 1 generators, and there are no more
structure constants than thoseoccurring in this cell. In consequence,the in�nite-dimensional
centerless cyclotomic algebras,with the K N (t;q) 's factored out, possessthe following �nite-
dimensional invariant subalgebraof \lattice average" operators K:

K (m1 ;m 2 ) �
X

s;v
K (m1+ N s;m2+ N v) ; [Km ; Kn ] = r sin(

2�
N

m � n) Km + n ; (17)

where m,n,m+n are indices in the fundamental cell, and an in�nite normalization has been
absorbed in r .

This (N 2� 1)-dimensionalideal speci�es, in fact, a basisfor SU(N ) which may be thought
of as a generalization of the Pauli matrices[9]. Consider odd N 's �rst. A basis for SU(N )
algebras,for odd N , may be built from two unitary unimodular matrices:

g �

0

B
B
B
B
B
B
@

1 0 0 : : : 0
0 ! 0 : : : 0
0 0 ! 2 : : : 0
...

...
...

. . .
...

0 0 0 : : : ! N � 1

1

C
C
C
C
C
C
A

; h �

0

B
B
B
B
B
B
@

0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
1 0 0 : : : 0

1

C
C
C
C
C
C
A

; gN = hN = 11 ; (18)

where ! is a primitiv e N 'th root of unit y, i.e. with period no smaller than N , here taken to
be e4� i=N . They obey the identit y

hg = ! gh: (19)

You also encounter these matrices in the context of representations of quantum SU(2)[10].
The complete set of unitary unimodular N � N matrices

J(m1 ;m 2 ) � ! m1m2=2 gm1 hm2 ; (20)

where

J y
(m1 ;m 2 ) = J(� m1 ;� m2 ) ; TrJ(m1 ;m 2 ) = 0 except for m1 = m2 = 0 modN ; (21)

su�ce to spanthe algebraof SU(N ). Like the Pauli matrices, they closeunder multiplication
to just one such, by virtue of (19):

Jm Jn = ! n � m =2Jm + n : (22)

They therefore satisfy the algebra

[Jm ; Jn ] = � 2i sin(
2�
N

m � n) Jm + n : (23)

Consequently , in this convenient two-index basiswith the above simple structure constants,
SU(N ) describesthe algebra (17) of the ideal fK g.
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For even N , the fundamental matrices in (18) are not unimodular, as their determinant
may now be {1 as well. One might chooseto modify them to

g �
p

!

0

B
B
B
B
B
B
@

1 0 0 : : : 0
0 ! 0 : : : 0
0 0 ! 2 : : : 0
...

...
...

. . .
...

0 0 0 : : : ! N � 1

1

C
C
C
C
C
C
A

; h �

0

B
B
B
B
B
B
@

0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
� 1 0 0 : : : 0

1

C
C
C
C
C
C
A

; gN = hN = � 11 ;

(24)
with ! = e2� i=N ;

p
! = e� i=N . They again obey (19), and again serve to de�ne the unitary

basis
J(m1 ;m 2 ) � ! m1m2=2 gm1 hm2 ; (200)

Jm Jn = ! n � m =2Jm + n : (220)

The SU(N ) algebra is now

[Jm ; Jn ] = � 2i sin(
�
N

m � n) Jm + n : (25)

It might appear that the fundamental period be 2N instead of N . However, note that, by
virtue of the symmetry

Jm + N (t;q) = (� 1)(m1+1) q+( m2+1) t Jm ; (26)

only indices in the fundamental cell N � N needbe considered. Illustrating this for N = 2
, the Pauli matrices, may be of use to the reader. Naturally , the algebra (25) also holds for
N odd, when ! = exp(2� i=N ) is usedin (18). Thus, the ideal (17) amounts to SU(N ) for N
odd and SU(N=2) for N even.2 For example, both N = 3 and N = 6 yield SU(3), N = 12
yields SU(6)'s, etc.

In this basisagain, the operators Q(m;n ) � J(m;n ) � J(n;m ) closeto a subalgebraof SU(N )
with N (N � 1)=2 generators

[Q(m;n ) ; Q(m0;n0) ] = � 2i sin
2�
N

(mn0� m0n) Q(m+ m0;n+ n0) + 2i sin
2�
N

(mm0� nn0) Q(m+ n0;n+ m0) ;

(27)
which is shown by reduction to the Cartan-Weyl basis[11] to amount to SO(N ). Alternativ e
SO(N )'s may also be found, such as the subset of the above Q(m;n ) with m + n = even
together with the operators J(m;n ) + J(n;m ) with m + n = odd; or else, for even N = 2M ,
J(m;n ) � (� )nJ(m; � n) . Finally, the subalgebraof SU(2M ): S(m;n ) � J(m;n ) � (� )m J(m; � n) is
seento be an USp(2M ).

The 2-index SU(N ) basis consideredhere has a particularly simple large N limit. As
N increases,the fundamental N � N cell covers the entire index lattice; the operators K
supplant the K 's and, in turn, sincek ! 0, the operators L of eq.(3).

More directly, you immediately seeby inspection that, as N ! 1 , the SU(N ) algebra
(23) goesover to the centerlessalgebra (3) of SDi� 0(T2) through the identi�cation:

iN
4�

Jm ! L m : (28)

2Actually , in this case[11] , the generators describe SU(N=2)4 , i.e. four mutually commuting SU(N=2)'s.
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An identi�cation of this type was �rst noted by Hoppe[3] in the context of membrane physics:
he connectedthe in�nite N limit of the SU(N ) algebrain a special basisto that of SDi� 0(S2),
i.e. the in�nitesimal symplectic di�eomorphisms in the sphere basis. A discussionof the
group topology of SU(N ), or SDi� 0(T2) versusSDi� 0(S2), or other 2-dimensionalmanifolds
for that matter [5], exceedsthe scope of this type of local analysis; such a discussionhas been
suggestedin Refs.[6], which consider central extensionsthat are sensitive to global features
of the 2-surface.

In view of the SO(N ) subalgebrasdescribed above, we may also simply identify the
SO(1 ) subalgebra with the Poisson Bracket subalgebra whose shift potentials f are odd
under interchangeof x with p | they correspond to hamiltonians which evolve even functions
to even ones,and odd to odd ones. Likewise,USp(1 ) is generatedby shift potentials of the
form exp(imx ) sin(np � m� =2), i.e. toroidal phase-spacehamiltonians odd under p 7�!
� p; x 7�! x + � . (Merely p-odd hamiltonians generatethe \sibling" SO(1 ).) Saveliev and
Vershik[12], and we[11] have initiated a program of systematizing such results in a uni�ed
framework common with that of the �nite Lie algebras.

Floratos et al.[13] utilized Hoppe's identi�cation to take the limit of SU(N ) gaugetheory.
Their results are immediately reproduced without ambiguit y, again by inspection, on the
basisof the orthogonality condition dictated by (21) and (22):

TrJm Jn = N � m + n;0 ! TrL m L n = �
N 3

(4� )2 � m + n;0 : (29)

As a result, for a gauge�eld A � in an SU(N ) matrix normalization with trace 1, the analog
of eq. (9) is

A � � Am
�

Jmp
N

!
4�

iN 3=2
Am

� L m = ~Am
� L m ; (30)

wheresummation over repeatedm's is implied, and I have de�ned ~Am
� � (4� =iN 3=2)Am

� . As
N ! 1 , the indices m cover the entire integer lattice, so that I may de�ne

a(x;p)
� � �

X

m

~Am
� ei (m1x+ m2p) : (31)

By eq. (5),
[A � ; A � ] ! [L a� ; L a� ] = L f a� ;a� g : (32)

Hence,by virtue of the linearit y of L in its arguments,

F�� = @� A � � @� A � + [A � ; A � ] ! L f ��

f �� = @� a� � @� a� + f a� ; a� g : (33)

The group trace de�ning the Yang-Mills lagrangian density is then

TrF�� F�� ! �
N 3

(4� )2
~F m

��
~F � m

�� =
� N 3

64� 4

Z
dxdp

X

m1 ;m 2 ;n1 ;n2

eix (m1+ n1 )+ ip (m2+ n2 ) ~F (m1 ;m 2 )
��

~F (n1 ;n2 )
��

= (� N 3=64� 4)
Z

dxdp f (x;p)
�� f (x;p)

�� : (34)

Thus, in the SU(1 ) gaugetheory, the group indices are surface(torus) coordinates, and the
�elds are rescaledFourier transforms of the original SU(N ) �elds; the group composition rule
for them is given by the Poissonbracket, and the trace by surfaceintegration.
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Now note an intriguing connection to strings which emerges,for the �rst time directly at
the level of the action: for gauge�elds independent of x � (e.g. vacuum con�gurations), this
lagrangian density reducesto f a� ; a� gf a� ; a� g, the quadratic Schild-Eguchi action density for
strings[14], where the a� now serve as string variables, and the surfaceserves as the world-
sheet. This action amounts to the square of the sheet area and it is easily seenthat its
equationsof motion contain thoseof Nambu's action. Thus, at zeroenergy, the gaugetheory
reducesto a string. Whether a superstring follows analogously from the super-Yang-Mills
lagrangian is an open question.

The lagrangian (34) with the sine bracket supplanting the Poisson bracket is also a
gauge-invariant theory, provided that the gaugetransformation also involvesthe sine instead
of the Poissonbracket:

� a� = @� � � ff � ; a� gg ; (35)

and hence,by virtue of the Jacobi identit y,

� f �� = �ff � ; f �� gg : (36)

It then follows that

�
Z

dxdp f �� f �� = � 2
Z

dxdp f �� ff � ; f �� gg = 0 : (37)

At the moment, however, it is not clearwhat physical systemis describedby the corresponding
spacetime-independent lagrangiandensity ff a� ; a� ggff a� ; a� gg. It is further obscurewhether
a relation exists betweenthe above theories and the Universal Yang-Mills theory[15].

This compact formulation of SU(1 ) gaugetheory (and that of its subgroups)ought to be
of usein large-N model calculations, or various \master-�eld" e�orts; membrane physics[2;3];
and the exploration of connectionsbetweengaugetheory and strings, as above.

I wish to thank the Ohio State University for its hospitality during much of this research.
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