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Consider/introduce auxiliary scaling parameter ¢, for counting powers, ultimately set to t = 1.
For matrices, operators, etc, A and B,

oHAB = Z(LAB)
Based on Lemmata 1,2, and 3, below,
Z =1In(ee'P) = (eMe!P — 1) — —(ee'P — 1)2 4 Z(eMeP — 1)3 4 ..

is evaluated recursively [1] through algorithms in Applications 1,2,3,...,

Z=t(A+ B)+ t;[A,B] + f;([[A, B],B] + [A, [A, BH) + Z[HB’A],A],B]
_7’;0([[[[A, B|, B, B], B] + [[[[B, A], A], A], A]) + ;60([[[[A, B, Bl, B], A] + [[[[B, A], A], Al, B])
(1A, Bl. B, 4, B] + [[[B. 4], 4], B] A + ..

e Powers of ¢ higher than the first have coefficients which are always commutators—they are in
the Lie Algebra. (Campbell, 1897; Poincaré, 1899. Structures Lie’s converse (third fundamental)
theorem: exponentiation of the algebra yields the simply-connected group.)

e /(t,A,B) = —Z(—t,B,A), whence even powers of t are A — B antisymmetric, while odd
ones are symmetric.

e Thompson representation:
Z(t, A, B) = t(e_tWAetW + etWBe_tW),

where W and W are in the Lie Algebra (A, B, and commutators), and W (t, A, B) = W(—t, B, A) =

A+B
i

e Zassenhaus expansion:

_4

GHATB) _ JtA B ~S(AB] (S IBIABI+HAAB] 3 (I1A,B),ALA+3([4,B),A]B1+3([A,B],B],B])

e Triple formula:
so that V (¢, A, B) is an even function of ¢, V' (t) = V(—t). Evaluated by, e.g., Application 1:
t2
V= 2A+B+g[(A+B),[B,A]] + ...

Note the duality between B and —V'.
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Lemma 1: )
6622/ ds e'=9)2 57 %7,
0

for any matrix (noncommutative) Z. E.g., § = 2.
Provable directly from finite N defn of exponential, then N — oo.

Alternative proof: Consider A as operator  acting on everything to its right.

i (est A eSZ) — e*SZ [A,Z] esZ :

then integrate by fol ds to obtain
1
e A et — A :/ ds e [\, Z] e*?,
0

hence 1
(A, 7] = §e” :/ ds 197 57 %7,
0

Lemma 2 (Hadamard formula): e’Bet=ed B=B+[A B+ 4[A [AB]] + ...

Proof: Note left commutation [A, B] = Ad(A) B acts on B like a derivative operator—obeys
operator Leibniz’ chain rule. For a parameter s,

i(esA BeA) =[A, et B ],

so f = e*4 B e~*4 satisfies

aif
%_[Aaf]:

with B.C. f(0) = B. In turn, this is formally solved by the series in s, f(s) = e** f(0).
Alternatively, it can be proved by induction in powers of s,

af
dsm

These two lemmata lead to

Lemma 3 (Campbell-Poincaré fundamental identity):

el —1

(6e?) e7% = Z

57

or equivalently,
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where the fraction is the celebrated generating function of the Bernoulli numbers. Other equivalent

forms are,
1—el? el —1
~Zs 7
e = —— 04 =07
e “de 7 2

ete.

Application Algorithm 1. (Poincaré. Readily exhibits Z construction out of nested commu-
tators, and applied mathematicians and Lie Group textbooks like it, cf. [2], but clumsy computa-
tionally).

Set now e?®) = e4e!B. For §Z = 0,Z = Z' in Lemma 3, note that

B=e %5t = —[;[Z Z',
hence
ZZTLEZVE%:¢GM>B’
where rlnz (1—2az)"
w(m)zx—l T 71nn+1
(NB. 9(e¥) = 3202 B, %y, for the Bernoulli numbers B,(1): By=1, By =1 By=1 B, =—-4..)

Since, from Lemma 2, el? = el4e'B | this reads
Z'(t)y = <6[Aet[B> B,

and so one may integrate over t from Z(0) = A, to finally obtain

1
Z(1) = A + (/ dt (e[AeﬂB)> B.
0
It is manifest that all subleading terms to A + B are commutators, so Z is in the Lie Algebra.

This is essentially an algorithm to produce the series by judicious power expansion of ¢ and its
arguments. For example, if only the term linear in B is sought (e.g.[3]), trivially, then,

A
Z=A+¢E?) B+O(B*) =A+ 1[_[A B+ O(B?),
—e
where all expansion coefficients are simply related to the Bernoulli numbers as above.
(Corollary: If O(B?) terms Vanish e.g. by virtue of special relations such as [A, B] = sB,
it follows that 7 = A+ —>— s B A+1(e®)B.  Taking inverses and rescaling yields a braiding

relation, ee? = e(&xP)B eA )

Application Algorithm 2. By virtue of its mechanical recursiveness, this one is favored by
phycisists, e.g. [4]. Set e?®) = e!e!®. Operate both sides by § = d;, and multiply by e~Z on the
right. By Lemmata 3, and 2,

el — 1
[Z

7'= A+ ¢1 B.
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Now, setting
Z = Z t"Z, ,

n=1

the Z,s can be solved for recursively in the power of t*~! components of this eqn, so
Z1 =A+B — ZQ — Zg eSS
Manifestly, again, for n > 1, each Z,, is a function of commutators only.

e Z(t,A,B) = —Z(—t,B,A), = even powers of t are A — B antisymmetric, while odd ones
are symmetric.

Application Algorithm 3. (Hausdorff, cf [5]. Most systematic as a power expansion in A or
B.)

Consider the replacement operators

_ 0 _ 0
n=(ingz) o= (ap)

which act on functions of A and B to successively replace each occurrence of A by 0A, to first
order, preserving the orderings, in accord with Leibniz’s rule. Seek a symmetry of Z(A, B), upon
infinitesimal dilation of B, B = €B, i.e. find A = —eD(A, B) s.t., to O(¢?),

Z(A,B) = Z(A — €D, B+ eB) + O(e?),

so that
€A6B — eA—eDeB-i-sB — eA(l o €€_A(SA€A)(1 + EB)GB + 0(62).

So, evaluating §4e# by Lemma 3, one has to O(¢?),

1—e4
— D=2RB
[A ’
whence A
D= 1—e 4

Consequently, 67 = 642 4+ dgZ = 0 amounts to

(5 2) 73) 2= (o5 =

The Lh.side raises the power of B, so the eqn may be solved recursively in each term Z, of O(B™)

in 7,
1 A )
Zn_n<<1_6_[A B) 814) Zn—h

that is,

etc, as in Application 1.
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