DOUBLE SLIT IN PHASE SPACE




The Wigner phase-space quasi-probability distribution function
QUANTUM MECHANICS LIVES AND WORKS IN
PHASE-SPACE

A complete, autonomous formulation of QM based on the standard
c-number variables x and p and their functions in phase-space, which
compose through a special operation.

Three alternate paths to quantization:

1. Hilbert space (Heisenberg, Schrodinger, Dirac)

2. Path integrals (Dirac, Feynman)

3. Phase-space distribution function of Wigner (Wigner 1932;
Groenewold 1946; Moyal 1949; Baker 1958; Fairlie 1964; ...)

flz,p) = 217T / dy " (x — Zy) e Pp(x + Zy)

A special representation of the density matrix (Weyl correspondence).

Useful in describing quantum transport/flows in phase space
~» quantum optics; nuclear physics; study of decoherence
(eg, quantum computing).

But also signal processing  (time-frequency  analysis);
Intriguing  mathematical structure of relevance to Lie
Algebras, M-theory,...



Properties of f(x,p) = %/dy Vv (x — %w e—iyp¢<x i %y)

Normalized, / dpdx f(x,p)=1.

e Real

e Bounded: —; < f(z,p) <;  (Cauchy-Schwarz Inequality) ~
Cannot be a spike: Cannot be certain!

) p- or x-projection leads to marginal probability densities:
A spacelike shadow / dpf(xz,p) = p(x); or else a momentum-space

shadow / def(z,p) = o(p), resp; both positive semidefinite. But
cannot be conditioned on each other. The uncertainty principle is
fighting back ~»

e [ can, and most often does go negative (Wigner). A hallmark of
quantum interference. “Negative probability” (Bartlett; Moyal;
Feynman; Bracken & Melloy).

Hiding through the uncertainty principle. Smoothing f by a filter of
size larger than / (eg, convolving with phase-space Gaussian) results
in a positive semidefinite function: it has been smeared or blurred to
a classical distribution (de Bruijn, 1967). ~» Negative areas are small!



When is a real f(x,p) a bona-fide Wigner function?
When its Fourier transform L-R-factorizes

flx,y) = /dp e f(x,p) = gi(x —hy/2) gr(z +hy/2),

2 n 3 .
(8(1:7@?2)13(2%@,/2) = 0); SO g1, = gr from reahty.

e Nevertheless, it is a distribution: it yields expectation values from
phase-space c-number functions.

Given, in Weyl’s association rule (1927), an operator

Ax,p) = ﬁg/deada:dp A(z,p)exp(it(p — p) + io(x — x)), the
corresponding phase-space kernel function A(z,p), obtained by
p — p, X — z,yields that operator’s expectation value:

(A) = / dedp f(z,p) Az, p).

Dynamical evolution of f (Moyal):

Liouville’s Thm, 0,f +{f, H} =0, quantum generalizes to
of Hxf—fxH
o ih ’

based on the x-product (Groenewold):

the essentially unique one-parameter (h) associative deformation
of Poisson Brackets of classical mechanics. (viz. A — 0).
(Isomorphism: AB = %g/deadxdp(A*B) exp(iT(p —p)+ioc(x—x)).)



Systematic solution of time-dependent equations is usually
predicated on the spectrum of stationary ones. But time-independent
pure-state Wigner functions *-commute with H.

However, they further obey a more powerful functional x-genvalue

equation (Fairlie, 1964):
ih — ih —
Ha.p)x fop) = H 2+ 5y = 3] flaop)

- f<$,p>*H<SU,p> - Ef(ﬂ?,p) 3

which amounts to a complete characterization of them:

For real functions f(z, p), the Wigner form is equivalent to compliance
with the x-genvalue equation (Jt and & parts).
(Curtright, Fairlie, & Zachos, Phys Rev D58 (1998) 025002)

—>  Projective orthogonality spectral properties

fxHxg=FE;fxg=FE, fxg.
For £, # Ey, — fxg=0.

Precluding degeneracy, for f =g,

frxHxf=E;fxf=Hxfxf,

— fxfof.



fs x-project onto their space.
proj p

fa *fb — % 5a,b fa

e The normalization matters (Takabayasi, 1954): despite linearity of
the equations, it prevents superposition of solutions (this is not how
QM interference works here!).

/dpdx fxg= /dpd:r: fa.

so, for different x-genfunctions,

/dpdx fg=0.

~> Negative values are a feature, not a liability.
Quantum interference confined to “i-small” regions.

NB ~ /H(az,p)f(w,p) dxdp = E/f dxdp .

NB ~> /f2 d:z:dp:%.

In general, < 1/h ~» quantum: fuzzy — classical: spiky.

e For any function, {|g|*) need not > 0.

But (¢" xg) > 0 (~ the uncertainty principle, AzAp > h/2
~ (Ax)*+ (Ap)* > h.  Hides negative values).



v Pf
H(z,p)* f(z,p)

1 B o . .
T <(p g 0/ 2m Wx)) Jdy e ORI (@ = Zy) e+ Sy)

1 ho— h . A B
- /dy ((p - 25 D)% /2m + V(x + §y)> e WP (1 — §y> b + §y)

1 , - B o 5 " ;
— D /dy e yp ((l Oy —HE ax)2/2m + V(r+ 59)) P (x — §y) P(x + §y)

1 , h h
= o /dy e Pyt (x — §y) E(x+ §y) =

- Ef(l’,p),

e Action of the effective differential operators on ¢* turns out to be null;

f*xH
: -  h - h h h
= o Jdy e (=3, 5 822 /2m + V(e = ) ' (e = Sy) vl + 5y)

Conversely, the pair of =x-eigenvalue equations dictate, for
fla) = [dye i),

. 1 - h— h ~
—wyp [ v 2 _ . _
/dy e ( 5 Oy £5 0a)" +V(z £ y) E) flz,y)=0.

~ Real solutions of H(x,p) ~ f(z,p) = E f(z,p)
(= f(z,p) x H(z,p)) must be of the Wigner form,

;= / dy e~ (2 — By)p(e + By jom, (st Hyp = EWp).

The wonderful truth (still!) sinking in: x-multiplication of
c-number phase-space functions is in complete isomorphism
(Groenewold) to Hilbert-space operator algebra.



SIMPLE HARMONIC OSCILLATOR

Solve divectly for H = (p* + 22)/2
(withh=1,m=1,w=1):

(@4 307+ (0= 20, 2B f(z.p) = .

Mere PDEs! Imaginary part: (0, — pd,)f = 0. ~
f depends on only one variable, z = 4H = 2(z? + p*). ~

(i —283—82—E> f(z) = 0.

Set f(z) = exp(—2/2)L(z) —> Laguerre’s eqn

2

Satisfied by Laguerre polynomials, L, = €°0"(e *z")/nl, for
n=FE-1/2=0,1,2,... ~ eigen-Wigner-functions are

(z@? +(1—2)0.+ FE — l) L(z)=0.

_1 n
f, = = e L,(4H): Lo=1, L;=1—4H,
/i

Lo =8H?—-8H +1, ... O not positive definite.

Oscillator Wigner Function, n=3
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Dirac’s Hamiltonian factorization for algebraic solution
carries through intact in x space:

=@ —wp)x(z+ip)+ 5,
so define ' .
a= 2(x+ip), ol = 2(33—2]9)
axa —a'xa=
*-Fock vacuum:
L (a2 4p?) _ 0.

a*f():\ﬁ($+ip)*€_

Associativity of the x-product permits the customary ladder spectrum
generation;  x f = f x H *-genstates:

fr o (a'%)" fo (xa)" .
e real, like the Gaussian ground state;
~> left-right symmetric;
*-orthogonal for different eigenvalues;

project to themselves, since the Gaussian ground state does,

Jox fo o< fo.



TIME EVOLUTION

Isomorphism to operator algebras ~» associative combinatoric opera-
tions completely analogous to Hilbert space QM.

~»  x-unitary = evolution  operator, a  “x-exponential”

Uz, pt) = el =

|4 (it /B H (x,p) + (“é,h)QH “H+ (ité?)3H cH*H+ ...

flz,pit) = U Na, pit) * f(z,p;0) % Uiz, p; t).

NB  Collapse to classical trajectories,
dv  wxH —Hxx
dt ih

dp pxH—Hxp
dt ih
x(t) = xcost + psint,

:apH:p7

=—-0,H=—-2 =

p(t) = pcost — xsint.
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—> For SHO the functional form of the Wigner func-

tion is preserved along classical phase-space trajectories
(Groenewold, 1946):

flz,p;t) = f(xcost — psint,pcost + xsint;0).

Any Wigner distribution rotates uniformly on the phase plane around
the origin, essentially classically, even though it provides a complete
quantum mechanical description.

o\

Am B
X

NB In general, loss of simplicity upon integration in z (or p) to yield
probability densities: the rotation induces shape variations of the
oscillating probability density profile.

Only if (eg, coherent states) a Wigner function configuration has an
additional axial z — p symmetry around its own center, will it possess
an invariant profile upon this rotation, and hence a shape-invariant
oscillating probability density.
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THE WEYL CORRESPONDENCE BRIDGE

Weyl’s correspondence map, by itself, merely provides a change of
representation between phase space and Hilbert space

~+  Mutual language to contrast classical to quantum mechanics on
common footing.

A(x,p) = (2;)2/d7dadxdp a(x,p)exp(it(p — p) +io(x — x)),

Inverse map (Wigner):

1 : h h
—_ —yp o 7
a(x, p) 27T/dy e <af + Qy‘A(X, p) [z 2@/> :
PHASE SPACE HILBERT SPACE
Weyl
a — A
quantuml l quantum
axb Groenewold AB
classical h:Ol l Bracken h=0
ab Weyl, A®B

~+ A plethora of choice-of-ordering quantum mechanics problems
reduce to purely x-product algebraic ones: varied deformations
(ordering choices) can be surveyed systematically in phase space.
(Curtright & Zachos, New | Phys 4 (2002) 83.1-83.16

[hep-th/0205063]) ©1998, 2005 C K Zachos
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OUANTUM MECHANICS
IN PHASE SPACE
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Ealiraary

Cosmas K. Zachos
David B. Fairlie
Thomas L. Curtright

http:/ /www.worldscibooks.com/physics/5287.html
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