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THE WEYL CORRESPONDENCE BRIDGE

Weyl’s correspondence map, by itself, merely provides a change of

representation between phase space and Hilbert space

❀ Mutual language to contrast classical to quantum mechanics on
common footing.
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Inverse map (Wigner):
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PHASE SPACE HILBERT SPACE
a

Weyl−−−→ A

quantum↓ ↓ quantum

a ⋆ b Groenewold−−−−−−−→ AB

classical h̄=0↓ ↓ Bracken h̄=0

ab
Weyl−−−→ A ⊙ B

❀ A plethora of choice-of-ordering quantum mechanics problems
reduce to purely ⋆-product algebraic ones: varied deformations
(ordering choices) can be surveyed systematically in phase space.
(Curtright & Zachos, New J Phys 4 (2002) 83.1-83.16
[hep-th/0205063])
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0.23 Synopses of Selected Papers

The decisive contributors to the development of the formulation are Hermann Weyl
(1885–1955), Eugene Wigner (1902–1995), Hilbrand Groenewold (1910–1996), and Jose
Moyal (1910–1998). The bulk of the theory is implicit in Groenewold’s and Moyal’s semi-
nal papers.

But confidence in the autonomy of the formulation accreted slowly and fitfully. As a
result, an appraisal of critical milestones cannot avoid subjectivity. Nevertheless, here we
provide summaries of a few papers that we believe remedied confusion about the logical
structure of the formulation.

H Weyl (1927)Wey27 introduces the correspondence of “Weyl-ordered” operators to
phase-space (c-number) kernel functions. The correspondence is based on Weyl’s for-
mulation of the Heisenberg group, appreciated through a discrete QM application of
Sylvester’s (1883)Syl82 clock and shift matrices. The correspondence is proposed as a gen-
eral quantization prescription, unsuccessfully, since it fails, e.g., with angular momentum
squared.

J von Neumann (1931)Neu31, expatiates on a Fourier transform version of the ⋆-
product, in a technical aside off an analysis of the uniqueness of Schrödinger’s repre-
sentation, based on Weyl’s Heisenberg group formulation. This then effectively promotes
Weyl’s correspondence rule to full isomorphism between Weyl-ordered operator multi-
plication and ⋆-convolution of kernel functions. Nevertheless, this result is not properly
appreciated in von Neumann’s celebrated own book on the Foundations of QM.

E Wigner (1932)Wig32, the author’s first paper in English, introduces the eponymous
phase-space distribution function controlling quantummechanical diffusive flow in phase
space. It notes the negative values, and specifies the time evolution of this function
and applies it to quantum statistical mechanics. (Actually, Dirac (1930)Dir30 has already
considered a formally identical construct, and an implicit Weyl correspondence, for the
approximate electron density in a multi-electron Thomas–Fermi atom; but, interpreting
negative values as a failure of that semiclassical approximation, he crucially hesitates
about the full quantum object.)

H Groenewold (1946)Gro46, a seminal but inadequately appreciated paper, is based on
Groenewold’s thesis work. It achieves full understanding of the Weyl correspondence as
an invertible transform, rather than as a consistent quantization rule. It articulates and
recognizes the WF as the phase-space (Weyl) kernel of the density matrix. It reinvents
and streamlines von Neumann’s construct into the standard ⋆-product, in a systematic
exploration of the isomorphism between Weyl-ordered operator products and their ker-
nel function compositions. It thus demonstrates how Poisson Brackets contrast crucially
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to quantum commutators—“Groenewold’s Theorem”. By way of illustration, it further
works out the harmonic oscillator WF.

J Moyal (1949)Moy49 enunciates a grand synthesis: It establishes an independent for-
mulation of quantum mechanics in phase space. It systematically studies all expectation
values of Weyl-ordered operators, and identifies the Fourier transform of their moment-
generating function (their characteristic function) with the Wigner Function. It further
interprets the subtlety of the “negative probability” formalism and reconciles it with the
uncertainty principle and the diffusion of the probability fluid. Not least, it recasts the
time evolution of the Wigner Function through a deformation of the Poisson Bracket
into the Moyal Bracket (the commutator of ⋆-products, i.e., the Wigner transform of the
Heisenberg commutator), and thus opens up the way for a systematic study of the semi-
classical limit. Before publication, Dirac contrasts this work favorably to his own ideas on
functional integration, in Bohr’s FestschriftDir45, despite private reservations and lengthy
arguments with Moyal. Various subsequent scattered observations of French investiga-
tors on the statistical approachYv46, as well as Moyal’s, are collected in J Bass (1948)Bas48,
which further stretches to hydrodynamics. Earlier Soviet efforts include Ter37,Blo40.

M Bartlett and J Moyal (1949) BM49 applies this language to calculate propagators and
transition probabilities for oscillators perturbed by time-dependent potentials.

T Takabayasi (1954)Tak54 investigates the fundamental projective normalization condi-
tion for pure state Wigner functions, and exploits Groenewold’s link to the conventional
density matrix formulation. It further illuminates the diffusion of wavepackets.

G Baker (1958)Bak58 (Baker’s thesis paper) envisions the logical autonomy of the for-
mulation, sustained by the projective normalization condition as a basic postulate. It
resolves measurement subtleties in the correspondence principle and appreciates the sig-
nificance of the anticommutator of the ⋆-product as well, thus shifting emphasis to the
⋆-product itself, over and above its commutator.

D Fairlie (1964)Fai64 (also see refs Kun67,Coh76,Dah83,Bas48) explores the time-independent
counterpart to Moyal’s evolution equation, which involves the ⋆-product, beyond mere
Moyal Bracket equations, and derives (instead of postulating) the projective orthonormal-
ity conditions for the resulting Wigner functions. These now allow for a unique and full
solution of the quantum system, in principle (without any reference to the conventional
Hilbert-space formulation). Autonomy of the formulation is fully recognized.

R Kubo (1964)Kub64 elegantly reviews, in modern notation, the representation change
between Hilbert space and phase space—although in ostensible ignorance of Weyl’s and
Groenewold’s specific papers. It applies the phase-space picture to the description of elec-
trons in a uniform magnetic field, initiating gauge-invariant formulations and pioneering
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“noncommutative geometry” applications to diamagnetism and the Hall effect.

N Cartwright (1976)Car76 notes that the WF smoothed by a phase-space Gaussian
(i.e., Weierstrass transformed) as wide or wider than the minimum uncertainty packet
is positive-semidefinite. Actually, this convolution result goes further back to at least de
Bruijn (1967)deB67 and Iagolnitzer (1969)Iag69, if not Husimi (1940)Hus40.

M Berry (1977)Ber77 elucidates the subtleties of the semiclassical limit, ergodicity, in-
tegrability, and the singularity structure of Wigner function evolution. Complementary
results are featured in Voros (1976-78)Vo78.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer (1978)BFF78 an-
alyzes systematically the deformation structure and the uniqueness of the formulation,
with special emphasis on spectral theory, and consolidates it mathematically. (Also see
Berezin Ber75.) It provides explicit illustrative solutions to standard problems and utilizes
influential technical tools, such as the ⋆-exponential (already known in Imr67,GLS68).

A Royer (1977)Roy77 interprets WFs as the expectation value of the operators effecting
reflections in phase space. (Further see refs Kub64,Gro76,BV94.)

G Garcı́a-Calderón and M Moshinsky (1980)GM80 implements the transition from
Hilbert space to phase space to extend classical propagators and canonical transforma-
tions to quantum ones in phase space. (The most conclusive work to date is ref BCW02.
Further see HKN88,Hie82,DKM88,CFZ98,DV97,GR94,Hak99,KL99,DP01.)

J Dahl and M Springborg (1982)DS82 initiates a thorough treatment of the hydrogen
and other simple atoms in phase space, albeit not from first principles—the WFs are
evaluated in terms of Schrödinger wave-functions.

M De Wilde and P Lecomte (1983)deW83 consolidates the deformation theory of ⋆-
products and MBs on general real symplectic manifolds, analyzes their cohomology struc-
ture, and confirms the absence of obstructions.

M Hillery, R O’Connell, M Scully, and E Wigner (1984)HOS84 has done yeoman service
to the physics community as the classic introduction to phase-space quantization and the
Wigner function.

Y Kim and E Wigner (1990)KW90 is a classic pedagogical discussion of the spread
of wavepackets in phase space, uncertainty-preserving transformations, coherent and
squeezed states.

B Fedosov (1994)Fed94 initiates an influential geometrical construction of the ⋆-product
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on all symplectic manifolds.

T Curtright, D Fairlie, and C Zachos (1998)CFZ98 illustrates more directly the equiv-
alence of the time-independent ⋆-genvalue problem to the Hilbert space formulation,
and hence its logical autonomy; formulates Darboux isospectral systems in phase space;
works out the covariant transformation rule for general nonlinear canonical transforma-
tions (with reliance on the classic work of P Dirac (1933)Dir33); and thus furnishes explicit
solutions of practical problems on first principles, without recourse to the Hilbert space
formulation. Efficient techniques for perturbation theory are based on generating func-
tions for complete sets of Wigner functions in T Curtright, T Uematsu, and C Zachos
(2001)CUZ01. A self-contained derivation of the uncertainty principle in phase space is
given in T Curtright and C Zachos (2001)CZ01.

M Hug, C Menke, and W Schleich (1998)HMS98 introduce and exemplify techniques
for numerical solution of ⋆-equations on a basis of Chebyshev polynomials. Dynamical
scattering of wavepacket WFs off Gaussian barrier potentials on a similar basis is detailed
in ref SLC11.
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Quantenmechanik und Gruppentheorie. 

Von H. ~ e y l  in Zfirieh. 

Mit 1 Abbfldung. (Eingegangen am 13. Oktober 1927.) 

Einleitung und Zusammenfassung.- I. Tell. Bedeutung der Representation yon 
physika]isehen GrSBen durch Hermitesche Formon. w 1. Mathematisehe Grund- 
begriffe, die Hermiteschen Formen betreffend. w Der physikalische Begriff 
des reinen Falles. w 3. Die physikalische Bedeutung der repr~sentierenden 
ttermitesehen Form. w Statistik der Gemenge . -  II. Teil: Kinematik als 
Gruppe. w 5. Ober Oruppen und ihre unit~iren Darstel]ungen. w 6. 0bertragung 
auf kontinuierliehe Grappem w 7. Ersatz der kaaonisehen Variablen dureh die 
Oruppe. Das Elektron. w 0bergang zu SchrSdingers  Welleatheorie. - -  
Ill. Teil. Das dynamische Problem. w 9. Das Gesetz tier zeitliehea Ver~nderung. 
Die Zeitgesamtheit. w Kinetisehe Energie und CouJombsche Kraft in der 

relativistisehen Quantenmeehanik. - -  Mathematiseher Anhang. 

E i n l e i t u n g  und  Z u s a m m e n f a s s u n g .  

In  der Quantenmechanik kann man zwei Fragen deutlich voneinander 

trennen: 1. Wie komme ich zu der Matrix, der H e r m l t e s c h e n  Form, 

welche eine gegebene Gr~13e in einem seiner Konst i tut ion nach bekann~en 

physikalischen System repr~sentiert'? 2. Wenn einmal die H e r m i t e s c h e  

Form gewonnen ist, was ist ihre physikalische Bedeutung, was  f~r physi- 

kalische Aussagen kann ich ihr entnehmen? Aul die zweite Frage hat 

v. N e u m a n n  in einer kfirzlich erschienenen Arbei t*  eine klare und 

weitreichende Antwor t  gegeben. Aber sie sprlcht noch nicht alles aus, 

was sich darfiber saffen l~$t, umfal]t auch nicht alle Ansatze, die bereits 

in der physikalischen Litera~ur mit Erfolg geltend gemacht worden sind. 

Ich glaube, da$ ich in dieser Hinsicht zu einem gewlssen Abschlu$ gelangt 

bin durch die Aufstellung des Begrlffs des r e i n e n  Fa l l e s** .  Ein reiner 

Fall yon A~omen z. B. liegt dann vor, wenn der betrach~ete Atomschwarm 

den hSchsten Grad yon HomogenRat besitzt, der slch realisieren l~l~t. 

Der monochromatlsche polarisierte Lichtstrahl ist ein Beispiel aus anderem 

Gebiet. Der reine Fall wird reprasentiert durch die V a r i a b l e n  der 

t t e r m i t e s c h e n  Form; die F o r m  selber gibt Aufschlul] dar~ber, welcher 

Werte die durch sie reprasentlerte GrS~e fahig ist, and m i t  w e l c h e r  

W a h r s c h e i n l i o h k e i t  o d e r  H ~ u f i g k e i ~  d i e se  W e r t e  in  i r g e n d  

* Hathematisehe Begriindung der Quantenmcchanik, Naehr. Gesellsch. d. 
Wissenseh. GSttingen 1927, S. 1. 

** Wie mir Herr v. Neumann mitteilt, ist auch er inzwischen zur Auf- 
stel]ung dieses Begriffs gelang~ [Zusatz bei der Korrektur]. 

Zeitschrif t  ffttr Physik .  Bd. 46. 1 
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bilden ftir sich eine f-parametrige Abelsche Gruppe unitarer (Vektor-) 

Abbildungen, ebenso die 

V (~) = e (~1 Q1 + T2 Q2 § "'" § ~f qf)" 

Hingegen ist 
v(o) v(r)  ~ - 1 ( ~ )  v - ~ (~ )  = e(41~, + . . .  § 4r~r). 1 

und 

e 

e (al ~1 + .... + arPr § r, Q1 + -. .  § rr Qr) 

1 f e (  1 r 

E r s a t z  der  k a n o n i s c h e n  Y a r i a b l e n  d u t c h  die Gr uppe .  w 

Das  E l e k t r o n .  Unsere Entwicklungen sind bis zu dem Punkte ge- 

dielien, wo die Verblndung mit der Qua~tcnmechanlk in die Augen 

springt. Liegt ein meehanisches System yon f Freiheitsgraden vor, so 

geniigen ja die H e r m i t  e sehen Matrizen, welche die kanonisehen Variablen 

reprasentieren, gerade den Relationen (36), bis auf den Faktor h/2=, Yon 

dem noeb die Rede seln wird und den wlr einstweilen in die Mal]cinbeiten 

hineinsteeken. Nehmen wir die Zahl der Freiheitsgrade f zunaehst - -  1 

und bezeiehnen in der iiblichen Weise die kanonischen Varlablen mit p, q, 

ihre reprasenticrenden Formen mit P, Q, so sagt die Relation 

i ( P Q - - Q P )  ~ 1 (38) 

aus, dal] die beiden durch die ~[atrizen i_P, i Q gekennzelohneten inflnl- 

tesimalen Drehungen des Strahlenkiirpers vertauschbar sind. Die durch 

sie erzeugte Abelsche Drehungsgruppc besteht aus den Drehungen 

U(O, v) -~ e(P4 + Qr) (39) 

(4, v reelle Parameter, die sich bei Zusammcnsetzung additlv verhalten). 

Die reelle Griil]e im Gruppengebiet, deren Komponenten ~ (6, v) der 

Gleichung (19) oder 

(4, ~) = ~ ( - -  4, - -  ~) (40) 

gentigen, erscheint als die H e r m i t e s c h e  Form 

F = f~e(.P6 + Qv)~(4, v)dadv. (4l) 
--oo 

Eine physikalisehe GrS$e ist dutch ihren Funktionsausdruck f (2 ,  q) 

in den kanonisehen Variablen p, q mathematisch definiert. Es blieb ein 

Problem, wie ein derartiger Ausdruck auf die Matrizen zu iibertragen 

war. Ohne weiteres klar war das nur fiir die Potenzen 10 k, qZ und damit 

fiir Polynome. Freilich trat  schon hier die Schwierigkeit auf, daft man 

nicht wuflte, oh man elnen Term wie p~ q als P2 Q oder Q P~ oder P Q/) usw. 
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zu interpretieren hatte. Der Ansatz ist offenbar viel zu formal. Unsere 

gruppentheoretische Auffassung zeigt sogleieh den rechten Weg: die 

I-Iermiteschc Form (41) reprasentiert die Gr(il]e 

+oo 

(p, q) = e (p 6 + q (6, d 6 (42)  f 
- - o o  

Naeh dem Four l e r schen  Integraltheorem lal]t sieh ]a ]ede Funktion 

f (p, q) in dieser Form eindeutig entwickeln, und wenn f eine reellwertige 

Funktion der reellen u 2, q ist, geniigt ~ (6, v) gerade der 

Bedlngung (40). Die Integra]entwleklung (42) ist nieht immer ganz 

wiirtlich zu verstehen; das wesentliehe ist nur, dal3 rechts eine lineare 

Kombination der e (26 q - q  v) steht, in denen 6 und v beliebige reelle 

Werte annehmen kSnnen. Wenn z. B. q eine zyklische Koordinate ist~ 

die nur mod. 2 ~r zu verstehen ist, so da~ alle in Betracht kommenden 

Funktionen periodiseh in q mit der Perlode 2 ~r sind, wird die Integration 

nach v ersetzt werdea miissen durch elne Summation fiber alle ganzen 

Zahlen v; wir haben dann den Fall einer gemischten kontinuierlich- 

diskreien Gruppe. Die Einschrankungen, denen f (p ,  q) un~erworfen sein 

mul], damit sic elne Entwicklung des Typus (42) gestattet, kiinnten 

noch Bedenken erregen. Nun wissen wir aber, dal] es eigen~lieh gilt, 

e (kf(1o, q)) so zu entwlckeln (k irgend elne reel]e Konstante), und in 

dieser Fassung last  sich die Aufgabe nach neueren Untersuchungen yon 

N. Wiener~  B o c h n e r  und H a r d y  in zwingender Weise eindeutig er- 

ledigen *. 

Die 0bertragung auf f Freiheitsgrade llegt au~ der Hand. Ins- 

besonderc sahen wir, wie aus der  F o r d e r u n g  der  I r r e d u z i b i l i t ~ &  

im F a l l e  der  k o n t i n u i e r l i c h e n  G r u p p e n  die c h a r a k t e r i s t i s c h e  

k a n o n i s c h e  1 )aa rung  e n t s p r i n g t .  Fiir endliche Gruppen freilieh 

existiert nicht ein so einheitliches Schema. Das ist im Einklang mit den 

physikalisehen Tafsachen. Denn aus den Entwieklungen yon P. J o r d a n * *  

ging bereits hervor, dal3 beim magnetlschen Elektron 6y SO gut wie 6, als 

* N. Wiener,  On representations of functions by trigonometrical integrals, 
Math. ZS. 24, 575, 1926; S. Boehner und G.H. Hardy,  Note on two theorems 
of N. Wiener,  Journ. Lond. Math. Soc. 1, 240, 1926; S. Boehner, Darstellung 
reell variabler und analytischer Funktionen durch verallgemeinerte Fourier- und 
Laplaceintegrale, ~ath. Ann. 97, 635, 1927; vgL da~zu ferner die yon H. Bohr 
stammende Theorie der fastperiodischen Funktionen; am einfachsten bei H. Weyl, 
1Kath. Ann. 97, 338, 1926. 

** ZS. f. Phys. 44, 21--25, 1927. Naeh P. Jordan ,  0ber die Polarisation 
der Lichtquanten, ebenda, S. 292, ist die Kinematik der Liehtquanten die gleiehe. 
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die ,kanonische Konjugierte" yon ax angesehen werden kann. HSchstens 

yon einem Tripel, nicht yon eiuem Paar kanonisch konjugierter Gr(il]en 

k(innte bier verni~nftigerweise die Rede sein. Bestatigen wir, daiS gerade 

auch in dlesem dlskreten, dem Kontlnuierlichen am melsten en~gegen- 

gesetzten Falle unsere Formulierung genau das Richtige trifft! Sie lautet, 

um das noch einmul zusammenzufassen, so: Der k i n e m a t i s e h e  Cha- 

r a k t e r  eines p h y s i k a l i s c h e n  S y s t e m s  f inde r  seinen A u s d r u c k  

in e iner  i r r e d u z i b l e n  Abe l schen  D r e h u n g s g r a p p e ,  deren Sub- 

s t r a t  der  S t r a h l e n k S r p e r  der , ,reinen Fa l l e "  ist. Die r ee l l en  

GrSl]en dieses G r u p p e n g e b i e t e s  sind die p h y s i k a l i s e h e n  

GrSiSen; die H e r m i t e s e h e n  Mat r izen ,  als welehe  sie verm(ige 

tier D a r s t e l l u n g  der  a b s t r a k t e n  Gruppe  durch  D r e h u n g e n  er- 

s ehe inen ,  s ind  die R e p r a s e n t a a t e n  der p h y s i k a l i s c h e n  GrSiSen, 

de ren  B e d e u t u n g  im I. Te l l  a u s e i n a n d e r g e s e t z t  warde.  

Nun: die lriiher beschrlebene zweidlmenslonale Drehungsgruppe ~, 

welche der Vierergruppe isomorph ist, kennzeichnet, wle der Vergleich 

mit w (12) lehrt, die K i n e m a t i k  des m u g n e t i s c h e a  E l e k t r o n s .  

D a n  ~ 2 ~st, sind alle GrSl~en nur zweier Werte fahig. Die einzigen 

physikalisehen GrSl~en, welche existieren, sind die mit Hilfe reeller Zahl- 

koeffizienten gebildeten linearen Kombinationen yon 1, 6z, ay, a,. Aber 

alas magnetisehe Elektron ergibt sieh nieht nut als Sonderfall der Theorie, 

sondern die ihm e igen t i i m l i eh e  K i n e m a t i k  is t  i ibe rhaup t  die 

e lnz ig  m(igl lche,  w e n n  a l le  GriiiSen n u t  zweier  W e r t e  ~ h l g  

se in  sol len ,  wenn n ~ 2 is~. Beweis: Wir wissen sehon, dal] unter 

dieser Voraussetzung iedes Gruppenelement a auiSer dem Einheltselement 

yon der Ordnung 2 ist. Die belden Eigenwerte der korrespondierenden 

zweidimensionalea Matrix A sind daher entgegengesetzt gleich. Wahlen 

wir ein bestimmtes a =r 1, so k(innen wlr das zugehCirige A saint einem 

normalen Koordinatensystem so festlegen, da~ 

A =  [10 --10 (43) 

wird. Die mit A vertauschbaren ]~atrizen U unserer Gruppe haben not- 

wendig die Gestalt 0 ~, ; wenn sie nieht ~___1 sind, is~ c ' ~  c~ 

U also ~ A .  Es gibt Gruppene]emente, deren ~atr ix B nieht mi~ A 

-r ist. Wir wissen, dab in der Glelchung 

A B  z ~B  A 
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eine zweite Einheitswurzel, darum e ~ - -  1 sein mul~. Daraus folgt, 

dab /~ die Gestalt 

hat. Die Zahlen b, b' sind yore absoluten Betrag 1. Wir  w~hlen ein 

bestimmtes solehes B, das gem~l~ B ~ = 1-geelcht sei: bb' = 1. Aul~er- 

dem kann man b zu 1 maehen, indem man das bisherige normale Koor- 

dinatensystem ely e 2 dureh el, b e~ ersetzt; (43) wird dadurch nicht an- 

gegriffen : 

0 10 (45) 
B =  1 

Jede Matrix U unserer Gruppe, welehe mit A vertauschbar ist, ist ___~ 1 

oder --~ A. Wenn sie nieht mit A vertauschbar ist, hat sie die Form (44), 

und demnach ist ihre Zusammensetzung UB mit dem durch (45) gegebenen 

bestimmten B eine Diagonalmatrix. Als solche ist sie mit A vertauschbar, 

also ___~ 1 oder _~ A. Das Resultat ist, dal~ iedes U"~ einer yon den 

vier ~Iatrizen 1, A, B, A B  ist. Es  l i e g t  in der  T a t  die  u  

g r u p p e  v o r  u n d  die  D a r s t e l l u n g  ~ d e r s e l b e n .  

w  U b e r g a n g  zu S e h r S d i n g e r s W e l l e n t h e o r i e .  In~hnl ieher  

Weise, wie soeben der Fall  n ~ - - 2  behandelt wurde, wollen wir jetzt 

zeigen, dad die z w e i p a r a m e t r i g e n  k o n t i n u i e r l i c h e n  G r u p p e n  nur 

e i n e r  irreduziblen Darstellung in unserem Sinne (auBer der identischen) 

fahig sin& Wir  erhalten iene Gruppen durch Grenztibergang aus den 

z w e i b a s i g e n  e n d l i c h e n .  Die irreduzible Abe l sehe  Drehungsgruppe 

mit der Basis A, B habe die Dimensionszahl n. In  der Kommutator- 

gleiehung 

A B = ~ B A ( 4 6 )  

ist e eine n-re Einheltswurzel. Diese Gleiehung gilt es ietzt n~her zu 

untersuchen. Die Kommufatorzahl e sel elne p r i m i t i v e  m-re Einheits- 

wurzel, d. h. 8"~ sei die niederste Potenz, welche = 1 ist; m ist Teller 

yon n. Die Drehungen A, B sind yon einer in n aufgehenden 0rdnung:  

A ~ __~ 1, B n _~ 1, und die Matrizen k(innen daher so geeicht werden, da~ 

A ~ ~ B ~ ~ 1 ist. Durch geeignete Wahl  des normalen Koordinaten- 

systems sei B auf Hauptachsen gebracht; die Glieder in der t taupt- 

diagonale, hi, sind lauter n-re Einheitswurzeln. Die G]eiehung (46) 

liefert fiir die Koeffizienten yon A ~--Ila,~ll: 

~k (47) 
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ktinnen wir dazu benutzen, um aueh die zweite Teilmatrix in die Einheits- 

matrix umzuwandeln ; und so fort bis zur (m - -  D-ten. Die damit erzielte 

Normalform wird nieht zerst(irt, wenn die Variablen jeder Klasse unter- 

einander der gleichen unitaren Transformation unterliegen. Diese Trans- 

formation kann man schliel31ieh, wie maa weil~, noeh so bestimmen, daft 

die letzte Teilmatrix A (m) eine Diagonalmatrix wird. Nunmehr nehmen 

wjr eine Umnumerierung vor, indem wit zun~chst aus ~eder Klasse das 

erste Glied auslesen, darauf aus ieder Klasse das zweite usf. Dann 

zerfiillt A in d Teilmatrlzen, die sich l~ngs de r Hauptdlagonale aneinander- 

reihen. Wegen der vorausgesetzten Irreduzibilit~t ist nur eine davon 

Vorhanden: d = 1, ~ = m. Wir haben die Normalform (die nich~ aus- 

geftillten Felder ,stehen leer"): 

A - - ~  B = ~ r + 2  . 

Die Exponenten in B sind n aufeinanderfolgende ganze Zahlen, e ist eine 

p r i m i t i v e  n-re Einheitswurzel. Die "Gleiehung A s = 1 liefert endlich 

noch a = 1. Lassen w i r  die Variablennummern yon r a b  laufen und 

verstehen alle Indizes rood. n, so lauten die beiden Abbildungen: 

A: x~---~ x~- l ,  B: x~ ~--- ~kx~. 

Daraus sofort die Wiederholungen: 
t r 

A~: xk = x~_~, Bt: xk ~ -  ~ktXk. (48) 

Jetzt laflt sich in aller Strenge der Grenziibergang zu kontinuier- 

lichen Gruppen vollziehen. Es sei (39) die kontinuierliehe zweipara- 

metrige irreduzible Abelsche Drehungsgruppe. Die Basis i20, i Q sei 

naeh (38) normierh Wir identifizleren in unserer Betrachtung A mit 

dem infinitesimalen e(~P) ,  B mit e(~ Q), ~ und ~/ reelle infiniteslmale 

Konstanten. Es ist e (62 ~ ~--- A s, e (v Q) ~ -  B t, wenn im Limes s ~-----6, 

t~  --~ v wird. e f~llt mit e (~ / )  zusammen, ekt ist = e(~kv) ,  e (vQ)  

ist die Representation der physikalisehen GrSl]e elzq; diese ist also (bei 

bellebigem reellen v) der Werte f~hig e iz~k, WOk die ganzen Zahlen 

durchl~uft. ]~[it anderen Worten: die GrSl3e q ist der Werte k~ fWaig, 

i h r  W e r t b e r e i c h  das  z u s a m m e n h a n g e n d e  K o n t i n u u m  der  r e e l l e n  

Z a h l e n  yon  - - z r  bls  ~-cr  (Dabei ist k treilich rood. n, k~ mod. n~ 

zu verstehen; aber n~ ist ein Multiplum yon 2 ~t/~, folglieh im Limes 

unendllch groin.) Darum schreiben wir jetzt q an Stelle yon k~, unter 
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q zugleich eine Variable verstehend, welehe den Wertbereich der physi- 

kalischen Grtii]e q durchlauft, nnd V~--4 (q) an Stelle yon xk. 4 (q) ist 

elne willktirliche komplexwertige Funktlon, welche der Normierungs- 

gleiehung 
14 (q) t ~ d ~ = 1 (49) 

unterworfen ist. Ihre Werte sind anfzufassen als die den verschiedenen 

Werten yon q entsprechenden Komponenten eines ,reinen Falles" in dem- 

ienigen normalen Koordinatensystem, das aus den Eigenvektoren der 

GrS~e q besteht. - -  An Stelle der zweiten Glelchung (48) erhalten wir 

im Limes 
4'----  4 G :  4'(q) z e"~ .4 (q ) :  (50) 

das ist die unitare Abbildung V~, welche die GrS~e e iT:q darstellt. Der 

gleiche Grenziibergang an der ersten Gleichung liefert die unit~re Ab- 

bildung 

4 '  = 4 G :  4'(q) z 4 ( q - - a ) ,  (51) 

welehe e i~ reprasentiert. Belde Abbildungen sind in der Tat unitar, 

well sie die Gleichung (49) invariant lassen; sie bilden, den verschiedenen 

Werten yon 6 bzw. v entsprechend, zwei einparametrige A b el sche Gruppen 

]inearer Funktionaltransformafibnen : 

G + o , :  Guo,, G + ~ , ~  GG,. 

~p U,~V, ist die Ftmktion ei~q. 4 (q - -  o), 4 V~ U~ aber ~ ei~(q - 0  . 4 (q - -  6), 

so da~, wie es sein mu~, die Kommutatorgleichung gilt: 

Der Gri)l]e e (ap  + vq) entspricht naeh (37) die Abbildung 

4 (q) - ~  4 '  (q) ~ e--1/2i~ ei~q 4 (q - 6). 

Geht man endlich auf die infinltesimalen 0peratlonen zuriick --. was 

treilich im allgemeinen nicht zweckm~llig ist ~ ,  so bekommt man als 

Representation yon 

d 4 (q) 
~o: ~ 4  ~ i d(/ ' yon  q: 6 4  = q . 4 ( q ) .  (52)  

D a m i t  s ind  w i t  bei  der  S e h r t i d i n g e r s e h e n  F a s s u n g  a n g e l a n g L  

Die Eigenfunktionen 4n (q) seiner Wellengleichung haben danach die Be- 

deutung, da] sie die nnitgre Transformation angeben, welehe zwischen 

den beiden Hauptachsensystemen der GrS~e q und der Energie /d ver- 

mittelt. Im Hinblick auf den ersten Teil ergeben sich daraus die be- 

kannten Paul ischen Ansiitze ftir ihre Wahrscheinlichkeitsbedeutung. 

Die l~bertragung anf mehrere Freiheitsgrade ist miihelos darch- 

fiihrbar. Die  K i n e m a t i k  e ines  S y s t e m s ,  die d u r e h  e ine  k o n t i -  

Zeit~chris flit Physik. Bd. 4~. 3 
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Note on Exchange Phenomena in the Thomas Atom. By P. A. M.
DIRAC, Ph.D., St John's College.

[Read 19 May 1930.]
Introduction.

For dealing with atoms involving many electrons the accurate
quantum theory, involving a solution of the wave equation in
many-dimensional space, is far too complicated to be practicable.
One must therefore resort to approximate methods. The best of
these is Hartree's method of the self-consistent field *. Even this,
however, is hardly practicable when one has to deal with very
many electrons, so that one then requires a still simpler and rougher
method. Such a method is provided by Thomas' atomic model f, in
which the electrons are regarded as forming a perfect gas satisfying
the Fermi statistics and occupying the region of phase space of lowest
energy. This region of phase space is assumed to be saturated, with
two electrons with opposite spins in each volume (27rA)3J, and the
remainder is assumed to be empty. Although this model hitherto
has not been justified theoretically, it seems to be a plausible ap-
proximation for the interior of a heavy atom and one may expect
it to give with some accuracy the distribution of electric charge
there.

The method of the self-consistent field has recently been estab-
lished on a very much better theoretical basis in a paper by Fock§,
which shows how one can take into account the exchange pheno-
mena between the equivalent electrons. Fock shows that if one takes
the best approximation to the many-dimensional wave function that
is of the form of a product of a number of three-dimensional wave
functions, one for each electron, then the three-dimensional wave
functions will satisfy just Hartree's equations. In this way a theo-
retical justification for Hartree's method is obtained. The exclusion
principle of Pauli, however, requires that the wave function repre-
senting a number of electrons shall always be antisymmetrical. One
would therefore expect to get a better approximation if one first
made the product of a number of three-dimensional wave functions
antisymmetrical, by applying permutations and taking a linear
combination, and then made it approach as closely as possible to

* Hartree, Proc. Camb. Phil. Soc, Vol. 24, p. 1H (1927).
t Thomas, Proc. Camb. Phil. Soc, Vol. 23, p. 542 (1926). See also Fermi,

Zeit./Ur Phys., Vol. 48, p. 73 (1928).
X h denotes Planck's constant divided by 2ir.
§ Fock, ZHt. fiir Phys., Vol. 61, p^ 126 (1930).
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where D denotes the diagonal sum (or integral) of the matrix
following it. To verify the constancy of this quantity, we observe
that, from (11),

= ^(q"\p\q'){q'\B\q")dq'dq"

= Jjjj (qU\p\ q'")(q"'q' I V\ q"q")(q" \p\q')dq'dq"dq'"dq^
= B(pB),

and similarly D (pA ) = D (pA ).

Hence %-D {p{H0 + \B-

= D{p (Ho + \B- \A)) + \D (pB) - \D (pA)

Thus ih~-tD
= D(HpH)-D(PH*)=0,

since the diagonal sum of a product is not changed by a cyclic
permutation of the factors. Hence D [p (£T0 + \B — %A)] is a con-
stant of the motion. It may be interpreted as the energy integral,
D(pHo) being the proper energy of the electrons (their kinetic
energy plus their potential energy in the field of the nucleus),
\D(pB) being their interaction energy and —^D(pA) being a
correction for exchange effects.

Reduction to a classical density function.
"We shall now examine what the equation of motion (9) becomes

when the electron density p is spread over such a large volume of
phase space that we can neglect the fact that the momenta p do
not commute with the coordinates q and reduce our description of
the atom to a classical one. We shall also now neglect the spin
variables. Each element (q' | a | q") of the matrix representing any
dynamical variable a will now be connected with a certain Fourier
component in the ^-variables of a(qp) considered as a function of
commuting q's and p's. We shall have, in fact,

(q'\a\ q") = (2-rrh)-* ja(qp) e<«-f)vl* dp (14),
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the connection being most accurate when the q on the right-hand
side is taken to be the mean of q' and q". The converse equation
will be

«(3J>) = J (q'\a\q")^^'^d(q'-q") (15).

If we apply equation (15) to the matrix (q'\B\q") defined by
the first of equations (13), we obtain for the corresponding classical
function B (qp) of commuting q's and ^'s,

B (qp) = # J I (q' - q") f^^W» d (q' -q").\ ^ff dq'"

with the help of (14) applied to p. Thus B (qp) is independent of
p, as it must be since the matrix (q' \B\q") is diagonal, and it is
just that function of q which corresponds to the potential arising
from a distribution of electrons of density p (qp) per volume (2irh)3

of phase space.
If we now apply (15) to the matrix (q'\ A \ q") defined by the

second of equations (13), we obtain

A {qp) I W F ?
P-Hq'-q'')(p-p')lh

r(q'q") *«-*">•
with the help of (14) applied to p. The second integral here can
be evaluated. The q' — q and p—p' appearing in the exponential
are really vectors and their product should be understood to mean
their scalar product. If we denote by 6 the angle between these
two vectors and by a the magnitude of q' — q", which is the same
as r(q'q"), we have for this second integral
f e-Utf-q")(p-p')lh fx ,-1

-7-77T— d (q' - q") = adai f-*lp-*'lo"86/* 2wd (cos 6)
J r\<l 1 ) Jo J - l

4nrhda sin {a\p—p'\/h}/\p—=
Jo

Hence A (qp) = ~ \ , ^ 4 4 dp1 (17).
25-2
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These expressions for B (q) and A (qp) substituted in (12) will
give us a classical Hamiltonian governing the motion of the
distribution of electrons. To proceed with the solution we shall
now make an assumption concerning the form of p, which seems to
be plausible when we are dealing with the state of lowest energy
of the atom, namely the assumption that for each value of q the
phase space is saturated, with two electrons per volume (2rrh)3, in
a region for "which the magnitude of the momentum p is less than
a certain value P, and is empty outside this region. In symbols

P(qp) = 2 \p\<P
= 0 \p\>P,

where P is a certain function of q. This assumption gives us at
once from (16)

r{qq'-) •-
and from (17), after a straightforward integration,

7--M + «"J -<«)•
For a stationary state of the atom p must be constant, so that the

Poisson bracket of p with H must vanish. With p of the form which
we have assumed, this condition becomes that H must be constant
along the boundary between the saturated and unoccupied phase
space, i.e. H(qP) must be constant. Now

H (qP) = Ho (qP) + B(q)- 2*/wh. P.
The constancy of this gives us a condition for the unknown
function P.

For an atom with atomic number Z, we shall have

where r denotes distance from the nucleus. We may assume
spherical symmetry, so that P is a function of r only. We now get
for the value of H on the boundary

By equating to zero the differential coefficient of this with respect
to r, we get

dr \2m vh ) Swk2 r2j v
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Multiplication by r2 and a further differentiation then give

dr X dr \2m irh
This is a differential equation which determines P, the maxi-

mum momentum for an electron, as a function of r. It differs from
the corresponding equation in Thomas' theory only on account of
its having a term linear in P on the left-hand side, which term
may be considered to represent the exchange effects. This term
will not be very important in the interior of a heavy atom, since
the ratio of its coefficient to that of the P2 term is 4eawi/7rA, which
is 4/TT times the momentum of an electron in the first Bohr orbit
in the hydrogen atom. For a sufficiently large value of r, however,
the extra term causes P to become negative, and then to oscillate
with decreasing amplitude and increasing period as r -*• oo. A
negative value for P has, of course, no physical meaning. The fact
that our theory gives this meaningless result for the outside of the
atom is hardly surprising, since the approximation we made of
regarding p as a function of commuting <?'s and ĵ's is certainly not
valid for this region. We may expect equation (20) to be more
accurate than Thomas' equation in the interior of the atom, in
spite of the fact that it is inapplicable outside.











0.6 Hilbrand Johannes Groenewold

29 June 1910 – 23 November 1996o

H Groenewold

Hip Groenewold was born in Muntendam, The Netherlands. He studied at the
University of Groningen, from which he graduated in physics with subsidiaries in math-
ematics and mechanics in 1934.

In that same year, he went of his own accord to Cambridge, drawn by the presence
there of the mathematician John von Neumann, who had given a solid mathematical
foundation to quantum mechanics with his book Mathematische Grundlagen der Quan-
tenmechanik. This period had a decisive influence on Groenewold’s scientific thinking.
During his entire life, he remained especially interested in the interpretation of quantum
mechanics (e.g. some of his ideas are recounted in Saunders et al.p). It is therefore not
surprising that his PhD thesis, which he completed eleven years later, was devoted to this
subject Gro46. In addition to his revelation of the star product, and associated technical
details, Groenewold’s achievement in his thesis was to escape the cognitive straightjacket
of the mainstream view that the defining difference between classical mechanics and
quantum mechanics was the use of c-number functions and operators, respectively. He
understood that these were only habits of use and in no way restricted the physics.

Ever since his return from England in 1935 until his permanent appointment at theo-
retical physics in Groningen in 1951, Groenewold experienced difficulties finding a paid
job in physics. He was an assistant to Zernike in Groningen for a few years, then he
went to the Kamerlingh Onnes Laboratory in Leiden, and taught at a grammar school in
the Hague from 1940 to 1942. There, he met the woman whom he married in 1942. He
spent the remaining war years at several locations in the north of the Netherlands. In
July 1945, he began work for another two years as an assistant to Zernike. Finally, he

oThe material presented here contains statements taken from a previously published obituary, N Hugenholtz, “Hip Groe-
newold, 29 Juni 1910-23 November 1996”, Nederlands Tijdschrift voor Natuurkunde 2 (1997) 31.
pS Saunders, J Barrett, A Kent, and D Wallace, Many Worlds?, Oxford University Press (2010).
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worked for four years at the KNMI (Royal Dutch Meteorological Institute) in De Bilt.
During all these years, Groenewold never lost sight of his research. At his suggestion

upon completing his PhD thesis, in 1946, Rosenfeld, of the University of Utrecht, became
his promoter, rather than Zernike. In 1951, he was offered a position at Groningen in
theoretical physics: First as a lecturer, then as a senior lecturer, and finally as a profes-
sor in 1955. With his arrival at the University of Groningen, quantum mechanics was
introduced into the curriculum.

In 1971 he decided to resign as a professor in theoretical physics in order to accept
a position in the Central Interfaculty for teaching Science and Society. However, he
remained affiliated with the theoretical institute as an extraordinary professor. In 1975

he retired.
In his younger years, Hip was a passionate puppet player, having brought happiness

to many children’s hearts with beautiful puppets he made himself. Later, he was espe-
cially interested in painting. He personally knew several painters, and owned many of
their works. He was a great lover of the after-war CoBrA art. This love gave him much
comfort during his last years.

a: Concise QMPS Version of August 28, 2014 17





































0.7 José Enrique Moyal

1 October 1910 – 22 May 1998q

J Moyal

Joe Moyal was born in Jerusalem and spent much of his youth in Palestine. He
studied electrical engineering in France, at Grenoble and Paris, in the early 1930s. He
then worked as an engineer, later continuing his studies in mathematics at Cambridge,
statistics at the Institut de Statistique, Paris, and theoretical physics at the Institut Henri
Poincaré, Paris.

After a period of research on turbulence and diffusion of gases at the French Ministry
of Aviation in Paris, he escaped to London at the time of the German invasion in 1940.
The eminent writer C.P. Snow, then adviser to the British Civil Service, arranged for him
to be allocated to de Havilland’s at Hatfield, where he was involved in aircraft research
into vibration and electronic instrumentation.

During the war, hoping for a career in theoretical physics, Moyal developed his ideas
on the statistical nature of quantum mechanics, initially trying to get Dirac interested in
them, in December 1940, but without success. After substantial progress on his own, his
poignant and intense scholarly correspondence with Dirac (Feb 1944 to Jan 1946, repro-
duced in Moy06) indicates he was not aware, at first, that his phase-space statistics-based
formulation was actually equivalent to standard QM. Nevertheless, he soon appreciated
its alternate beauty and power. In their spirited correspondence, Dirac patiently but in-
sistently recorded his reservations, with mathematically trenchant arguments, although
lacking essential appreciation of Moyal’s novel point of view: A radical departure from
the conventional Hilbert space picture Moy49. The correspondence ended in anticipation
of a Moyal colloquium at Cambridge in early 1946.

qThe material presented here contains statements taken from a previously published obituary, J Gani, “Obituary: José
Enrique Moyal”, J Appl Probab 35 (1998) 1012–1017.
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That same year, Moyal’s first academic appointment was in Mathematical Physics at
Queen’s University Belfast. He was later a lecturer and senior lecturer with M.S. Bartlett
in the Statistical Laboratory at the University of Manchester, where he honed and applied
his version of quantum mechanics BM49.

In 1958, he became a Reader in the Department of Statistics, Institute of Advanced
Studies, Australian National University, for a period of 6 years. There he trained several
graduate students, now eminent professors in Australia and the USA. In 1964, he re-
turned to his earlier interest in mathematical physics at the Argonne National Laboratory
near Chicago, coming back to Macquarie University as Professor of Mathematics before
retiring in 1978.

Joe’s interests were broad: He was an engineer who contributed to the understanding
of rubber-like materials; a statistician responsible for the early development of the mathe-
matical theory of stochastic processes; a theoretical physicist who discovered the “Moyal
bracket” in quantum mechanics; and a mathematician who researched the foundations of
quantum field theory. He was one of a rare breed of mathematical scientists working in
several fields, to each of which he made fundamental contributions.

a: Concise QMPS Version of August 28, 2014 19
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Professor P.A.M. Dirac,

St. John’s College,

CAMBRIDGE

3, Sandy Rise,

Wigston,

Leics,

February 18, 1944.

Dear Professor Dirac,

Professor Fowler has sent me a copy of his letter to Dr. Bartlett, in which he writes of his discussion

with you and Dr. Jeffreys regarding the possibilities of a statistical basis for quantum mechanics.

He suggests I should discuss the matter with you sometime, and I should be glad to do so if you can

spare the time.

You will remember no doubt we talked about this in December 1940, when I was beginning to

consider these ideas.

Yours sincerely,

[J.E. Moyal]

7 Cavendish Avenue,

CAMBRIDGE,

21.2.44

Dear Moyal,

I should be glad to meet you any week-end.

On Saturdays I have a lecture from 12–1 and a fire watching in the evening, but apart from that I could

meet you any time on Saturday or Sunday. So choose any week-end you like. The most convenient

time for me would be Saturday morning at about 10.30 or 11, when I am in the Arts School, but if this

is too early for you, would you come round to my house Saturday afternoon or Sunday?

Yours sincerely,

P.A.M. Dirac



7 Cavendish Avenue,

CAMBRIDGE,

6.3.44

Dear Moyal,

I should be glad to see you Saturday afternoon the 11tth. If you come around 2.30 it would do very

well.

I have enclosed a reprint I have just received from Whittaker, which you may care to read as it deals

with the point at issue.

Yours sincerely,

P.A.M. Dirac

3 Sandy Rise,

WIGSTON.

Leics.

June 26th, 1944.

Dear Professor Dirac,

On thinking over the objection you raised when I last saw you, to my statistical treatment of quantum

Mechanics, it has occurred to me that the difficulties are chiefly a question of interpretation. I think the

theory can be rendered acceptable by abandoning the idea, taken over from the original (Bohr)

quantum mechanics, that eigenstates have an objective reality.

One of the difficulties of the theory is that the probability distributions obtained for p and q from single

eigenfunctions, can take negative values except perhaps for the ground state. Only linear

superpositions of eigenfunctions lead to defined positive probability distributions in phase-space. Now,

as I explained in my paper, I consider the form I obtained for the phase-space distribution F(p,q) as in

a way an extension, or rather, an exact form of Heisenberg’s principle of uncertainty, in the sense that

it imposes not only the well-known inequality for the dispersions of p and q, but a special form for their

whole probability distribution. Perhaps then, the fact that phase-space distributions corresponding to

single eigenstates can take negative values may be interpreted as meaning that an isolated

conservative atomic or molecular system in a single eigenstate is a thing that cannot generally be

observed without contradicting this generalised principle of uncertainty. I think this can be conceded,

and no doubt physical arguments could be brought forward to support such a view. Only statistical

assemblies and distributions corresponding to linear superpositions of eigenfunctions such that

F(p,q,t) is always greater than zero would be observable, and would have an objective reality.

If this is accepted, it then ceases to have a meaning — to talk about a system having exact values of

energy, momentum etc. in a given eigenstate, so that the second difficulty, i.e. the fact that the theory

does not necessarily lead to such values, also disappears. The only thing that has a physical meaning

is the working out of the final statistical distributions over a number of states, representing the results

of experiments. I think that in this way my theory may be reconciled with the usual form of quantum

mechanics, and may possibly lead to new results capable of experimental verifications.



The interpretation of spectra, for example, would be obtained in the usual manner from the mean

values of electric dipole moments, leading to the same results as the ordinary theory. The physical

notation of quantum jumps must be abandoned. The possible frequencies of the spectral lines are

exhibited in the expansion of phase-space distribution at time t in terms of the phase-space

eigenfunctions for fik(p,q)

The forbidden lines drop out, of course, on averaging of F(p,q,t). A more refined interpretation would

involve extending the theory to radiation and its inter-action with matter.

With regard to the Stern-Gerlach experiments, I should like to quote from C.G. Darwin’s paper 'Free

Motions in Wave Mechanics', Proc. Roy. Soc. A. 117 (1928) p. 260: 'in the Stern-Gerlach experiment,

we do not say that the field splits the atom into two groups and then separates these. We say that a

wave goes through the field, and when we calculate its intensity at the terminal plate, we find that it

has two maxima which we then interpret as two patches of atoms.' This shows that the theory of the

Stern-Gerlach experiment may be tackled by ordinary wave methods, without necessarily postulating

exact eigenvalues for the angular momenta, and in fact, Darwin gives this theory in the same paper,

on page 284. Actually, the treatment of such dynamical problems involving the evolution with time of

wave packets may be simplified by the use of the methods developed in my paper, as I have shown

for Darwin’s treatment of the free and uniformly accelerated electron, where in addition to his results, I

also obtained the joint distribution for p and q.

In fact, I regard such dynamical problems as one case where the methods outlined may have an

advantage over the usual methods. Furthermore, as the theory leads to the distributions at phase-

space, and also to correlations at two instants of time, there is a possibility it may lead to experimental

verifications in the field of electron and molecular beams. Another field where I think the theory may

be of some value is in the study of statistical assemblies, since it leads to phase-space distributions for

p and q, (equivalent to the Maxwell-Boltzmann distribution) for Fermi-Dirac and Bose-Einstein

assemblies. This may be of value in the kinetic theory of non-uniform fluids.

I should like now to submit to you a few ideas of a more speculative nature. In the theory as I have

developed it in my paper, a combination of the transformation equations for !(p), "(p) with Newtonian

mechanics, leads to Schrödinger’s equation and ordinary quantum mechanics. As I mentioned in the

course of our conversation, substantially the same transformation equations combined with the

mechanical equations of special relativity lead to the Klein-Gordon equation. One would expect new

forms of quantum mechanics (such as your spinor equations for the electron) to appear from the

combination of new transformation equations with the mechanical equations. As long, however, as

these mechanical equations, whether classical or relativistic, are deterministic, the form of quantum

mechanics obtained will be deterministic for isolated systems, and therefore unsatisfactory for nuclear

theory. This is, I think, a further argument in favour of the idea that a satisfactory quantum theory of

the nucleus must be based on some form of unitary theory involving the electro-magnetic field in a

fundamental manner, since one would expect then the mechanical equations for a particle to be non-

deterministic because it would never be isolated from the infinity of degrees of freedom of the radiation

field.

May I take this opportunity of thanking you and Mrs. Dirac for your very kind hospitality on my last visit

to Cambridge.



[J.E. Moyal]

19.3.45.

Dear Moyal,

Some work I have been doing lately is connected with your work on a joint probability distribution F (p

q t) and has led me to think that there may be a limited region of validity for the use of a joint

probability distribution. However, I have rather forgotten the details of your work and would be glad if

you could let me see again the part of it dealing with F (p q t). I may get a more favourable opinion of

it this time. Have you done any more work on it since our previous correspondence?

Yours sincerely,

P.A.M. Dirac

3, Sandy Rise,

WIGSTON.

Leics.

March 22nd, 1945.

Dear Professor Dirac,

Unfortunately, my paper is in the hands of Professor Chapman of the Imperial College, and I only

have the one typescript. However, I have sent your letter to him with a request that he should forward

you the paper as soon as he has finished with it. On the other hand, I have just heard from M.S.

Bartlett, that he is back at Queen’s; he is pretty familiar with my work, and I feel sure he will give you

any explanation that you may require, if you care to get in touch with him, especially as he has worked

out a new and improved method for obtaining the joint distributions.

I notice you have used Fock’s operators in your paper on 'Quantum Electrodynamics'. I have been

wondering whether the work to which you refer in your letter is connected with this, as these operators

imply in a way eigenfunctions in phase-space. I thought I could see a way of tying it up with my work

when I was reading your paper, but I did not get very far with it.

I am afraid I have not done very much since I last wrote to you, as my engineering work is keeping me

pretty busy. However, I have worked out the relativistic extension for scalar wave-functions, which

leads to the wave equation

where s is the local time of the particle. This is a 'time dependent' extension of the Klein-Gordon

equation; I do not know whether it has been considered before. There is a difference in the

interpretation, however. I take s as the independent variable and the space time co-ordinates, and the

momentum energy vector as random functions of s. The ordinary probability distribution which is then

a scalar in space-time, is given as in the non-relativistic theory by #(qi,s)=!!*. The joint-phase space

distribution for co-ordinate-time and momentum-energy is obtained in terms of ! as in the non-

relativistic theory, and gives in the same way for the space-time conditional means of the momentum-

energy vector



This is normal for the current density, but connects the charge density with the space-time conditional

mean value of the energy, rather than with probability, giving thus an immediate interpretation of the

negative values obtained when the energy eigenvalues are negative.

I think this interpretation of probability as a scalar in space-time is perhaps more satisfactory than as

the time-component of a !-vector, though there is a conceptual difficulty, since # must then be

considered as variable with the local time of the particle. Another difficulty is connected with the

relation

which would restrict the phase-space probability distribution to a 7-dimensional hyper surface. One

way of turning this difficulty would be to consider m0 itself as a random variable, perhaps capable of

taking a number of eigenvalues — but all this is purely speculative. I am not really clear about the last

part.

In collaboration with M.S. Bartlett, I have also carried further the treatment of the harmonic oscillator in

phase-space. Some of the results are rather reminiscent of those you obtain with the $-operator. This

work is fairly complete, and I should be able to let you have a typescript of it shortly, if you are

interested.

I have also been considering applications to statistical mechanics, which, since they require

distributions in phase-space, would seem to offer an obvious field to the theory. But apart from

equilibrium distributions, I rather hope that the application of the theory of random functions, will also

lead to methods generally suitable for non-uniform states and fluctuation problems.

3, Sandy Rise,

WIGSTON,

Leics.

March 23rd, 1945

Dear Professor Dirac,[2]

My letter to Professor Chapman yesterday, crossed with his, returning my typescript which I therefore

enclose.

I also enclose the typescript of a note by M.S. Bartlett, which gives an improved method of obtaining

the joint distribution.

ATTACHMENT:

Comments on Your Letter to Professor Dirac, 26.6.44 by M.S. Bartlett.

1. General Validity

The practical issue here seems to be simply this:-



Either

. i Your theory is equivalent to the orthodox (non-relativistic) theory as regards all

possible physical experiments (cf. the earlier equivalence of the Heisenberg and

Schrödinger methods). The method used is then simply a matter of convenience,

though it would be a great advantage to possess a firmer logical basis for the

methods in current use.

. ii Or your theory is not so equivalent. In that case acceptance or rejection is firstly a

matter of experiment; but again since your theory is more rigorous than the

standard, there should be better scope for modification of the particular physical

postulates it contains.

2. Eigenstates

It also seems clear now that the analysis into eigenstates is a matter of mathematical technique. This

is supported by:-

. a The appearance of negative probabilities in the phase-space eigenfunctions. But

apart from this appeal to your theory, we may note

. b Equivalent expansions in different coordinates (e.g. the free electron in polar

coordinates by Rejansky).

. c The use of eigenfunctions as a general method of solving differential equations, the

use of Fourier series being the best known example.

. d The appearance of eigenfunctions in 'chain probability' problems. Re this point,

Jeffreys’ work is relevant, but I think the elementary algebra of wave vectors (of the

kind often used in introductory textbooks on quantum theory) indicates rather more

simply that in some respects (analogously to (c)) the technique is quite general and

has nothing to do with quantum theory as such. The relevant algebra is developed

in the attached notes.*

3. Discrete energy levels

The remarks under 1. are in sympathy with your view that here it is meaningless to ask whether the

energy levels are really discrete, but to ask whether the theoretical spectra are correct. Incidentally

one might note that while there is no objection to a conceptual discrete energy level existing over

infinite time (as I pointed out in my reply to a previous comment of yours), it is true that in practice the

observation of a spectra over a finite time implies a blurring of the lines. This is recognized and a

theory has been worked out (see, for example the early chapters of Rosseland’s Theoretical

Astrophysics). This observational fact may tend to obscure any finer points on the energy level

distributions.

Similarly with the Stern-Gerlach effect — it is a matter for agreement with experiment — though here I

shall not try to comment since I believe this effect involves electron spin, with which your theory does

not deal.



4. Interference and diffraction

Similarly also with these phenomena. There is a word of caution here. When I looked at this a little

while ago in an attempt to determine as precisely as possible from observe[d] results the form of the

uncertainty principle, I satisfied myself that the interference of protons and electrons after passing

through two narrow slits will not arise if the latter are merely passively filtering a statistical assembly of

particles with an initial distribution of position and momentum; it is essential to allow the uncertainty

principle to imply an actual change in the momentum possibility distribution consequent on the

positional probability distribution at the slits.

Compare the discussion by Whittaker (Proc. Phys. Soc. 55, p. 464, 1933) of polarisation of Nicol

prisms. He asserted that this phenomenon was impossible to explain by any what he called `crypto-

deterministic’ mechanism, citing an alleged proof by von Neumann of this. But it was clear that he was

referring to a deterministic behaviour of the protons without interaction with the prism; and this point

has been taken up by Pelzer (Proc. Phys. Soc. 56, p. 195, 1944), who shows that with such

interaction Whittaker’s assertion is not necessarily true.

This means, however, in connection with your suggestion of experimental verification with electron

beams, that in successive measurements taken on a beam of photons or electrons, the effect of each

measurement must be allowed for, and this will presumably affect the observed correlations at two

instants of time.

5. Reversibility

The reference in the last paragraph of your letter to Dirac to nuclear theory was extremely interesting,

though I think that a completely satisfactory extra-nuclear theory will not be possible either until

radiation is satisfactorily incorporated. It is pointed out in the attached Notes* that irreversible changes

appear excluded in the standard wave-vector technique (this is surprising in view of the common claim

that the processes covered are non-deterministic). There is presumably the possibility, however, as

apparently envisaged in your treatment of the electromagnetic field, of introducing irreversible changes

in the well-known statistical way from reversible ones by averaging over a large number of irrelevant

degrees of freedom after the complete equations have been set up.

20-4-45

Dear Moyal,

Thanks for sending me your manuscript again. The situation with regard to join[t] probability

distributions is as follows, as I understand it.

A joint distribution function F(p,q) should enable one to calculate the mean value of any function f(p,q)

in accordance with the formula

 (1)

I think it is obvious that there cannot be any distribution function F(p,q) which would give correctly the

mean value of any f(p,q), since formula (1) would always give the same mean value for pq and for qp

and we want their means to differ by i%. However one can set up a d.f. F(p,q) which gives the correct

means values for a certain class of functions f(p,q). The d.f. that you propose gives the correct mean

value for , for & and ' any numbers, but would not give the correct mean value for other



value for , for & and ' any numbers, but would not give the correct mean value for other

quantities, e.g. it would give the same mean value for , whereas we want this second quantity to

be  times the first. In some work of my own I was led to consider a d.f. which gives correctly the

mean value of any quantities of the form , i.e. all the p’s to the left of all the q’s in every

product. My d.f. is not a real number in general, so it is worse than yours, which is real but not always

positive, but mine is connected with a general theory of functions of non-commuting observables.

I am writing up my work for publication and I propose to refer to your work somewhat in these terms:-

'The possibility of setting up a probability for non-commuting observables in quantum mechanics to

have specified values has been previously considered by J.E. Moyal, who obtained a probability for a

coordinate q and a momentum p at any time to have specified values, which probability gives

correctly the averages of any quantity of the form , where & and ' are real numbers. Moyal’s

probability is always real, though not always positive, and in this respect is more physical than the

probability of the present paper, but its region of applicability is rather restricted and it does not seem

to be connected with a general theory of functions like the present one.'

Do you think this reference would correctly describe your work and do you have any objection to such

a reference?

There may be other d.f.’s which are worth considering and there is a field of research open here. Will

you be able to work on it?

Yours sincerely,

P.A.M. Dirac

18 Ambrose Avenue

London N.W. 11.

April 29th, 1945.[3]

Dear Professor Dirac,

Many thanks for your letter. I was most interested by your remarks concerning your work on a general

theory of functions of non-commuting observables, and should be very glad to see it. Are you

acquainted with the work of Whittaker, and Kermack and McCrea on this subject? The references are:

E.T. Whittaker, Proc. Ed. Math. Soc. Ser. 2, v. 2 (1931) 189–204; W.O. Kermack and W.H. McCrea,

ibid. ser. 2, v. 2. (1931), 205–219 and 220–239.

If I understand correctly your remarks concerning joint probability distributions, you consider them as

functions of the non-commuting variables P, Q, which will give correct averages for certain classes of

functions of the latter. (I shall use hereafter P, Q for the non-commuting quantities, and p, q, for the

corresponding commuting variables.) Such functions may of course prove extremely useful

mathematically, but they can hardly be called probability distributions in any ordinary sense.

My approach to this problem has been entirely different. I have looked for a probability distribution in

the ordinary sense, which will be a function of the ordinary, commuting variables p, q. Its connection

with functions of the corresponding non-commuting operators P, Q of quantum mechanics, is that it

should give correct means for such of these functions (i.e. Hermitian operators) as are formed to

represent physical quantities. If a physical quantity is given in classical mechanics by a function

M(p,q), (i.e. a Hamiltonian, or an angular momentum) a Hermitian operator M(P,Q) is formed to



M(p,q), (i.e. a Hamiltonian, or an angular momentum) a Hermitian operator M(P,Q) is formed to

represent it according to certain rules. I have looked for an F(p,q) such that it will always give

(1) 

It is obvious that such a function F(p,q) should be connected with a unique method of forming the

quantum mechanics operators from the corresponding classical mechanics functions if p and q (I am

speaking of course, of the classical quantum mechanics for particles without spin). A first test for the

correctness of such an F(p,q), will therefore be that the corresponding method for forming operators

should give correctly at least all the known Hermitian operators of the theory, (since a general method

for forming these operators is not generally agreed upon in the standard theory).

The F(p,q) which I propose in my paper fulfils these conditions. It can be expressed either as a series

development in !(p) and "(p) or as an integral expression in terms of the !’s alone or "’s alone (the

latter is due to M.S. Bartlett) as follows

(2) 

I have shown that it corresponds univocally to the following method of forming operators (already

proposed by McCrea). Let M(p,q) be an ordinary function of p and q (e.g. some constant of the motion

in classical mechanics). To form the corresponding operator M(P,Q) we write first a function Mp(P,Q)

of the non-commuting operators P, Q, which is obtained from M(p,q) by placing all the P’s to the right

of the Q’s, i.e. by replacing all polynomial terms qmpk in M(p,q) by QmPk. The correct operator

M(P,Q)is then obtained as

(3) 

Form (2) for F(p,q) will give correct averages for all operators formed as in (3) by averaging in p-q

space over the corresponding ordinary function M(p,q), i.e.

It is consequently incorrect in my view to say that the F(p,q) in my paper will give correct averages

only for functions of the form . Actually, it will give the right averages for all operators formed

as in (3), and in particular, for all the Hermitian operators considered in the classical quantum

mechanics of particles without spin, e.g. Hamiltonian, angular momentum, total angular momentum,

radial momentum, etc. It is easy to check that (3) does give the usual operator form for all these

quantities. In the case of the example quoted in your letter, it will give correct average for 

. (I may mention here that this form of F(p,q) and method of forming operators is valid

for rectilinear coordinates only.)

Furthermore, the F(p,q) in my paper leads to certain forms for the space-conditional averages of the

powers of p (i.e., averages of pmfor a given value of q), the first two being

(4) 



(5) 

(6) 

Early in my work (Sect. II) I obtained a set of partial differential equations for probability distributions,

which have the form of the hydrodynamic equations of continuity and motion and express

conservation of probability. These are of quite general validity, and are not connected with any special

form of F(p,q) or any physical assumption. Substitution in these general equations of the expressions

above for the space-conditional means of p, p2, taken in conjunction with the equations of classical

mechanics, lead to the Schrödinger equation, as I have shown in my paper. The Schrödinger equation

is thus shown to result from this special form for F(p,q), the laws of classical mechanics, and the

general properties of probability distributions for dynamical variables. I think this is the other essential

condition for a correct F(p,q): that it should be consistent both with the Schrödinger equation and the

equations for conservation of probability.

Regarding the range of validity of form (2) for F(p,q), and the fact that it leads to negative values for

single eigenstates, I have already mentioned in my last letter that this may possibly mean, reverting to

your view, that joint measurement of p and q is inconceivable in pure states, but only in a combination

of states that leads to a defined positive F(p,q). I think possibly this may be a general feature for any

possible F(p,q) in quantum mechanics, because of the necessary orthogonality properties of the

phase-space eigenfunctions corresponding to pure states. Such (possibly) negative eigenfunctions,

which must be compounded to give a positive probability function, occur in the classical calculus of

probabilities in the theory of chain probabilities. However, as was pointed out by M.S. Bartlett, even the

possibly negative f(p,q) corresponding to a pure state will still lead to correct averages for operators of

form (3), so that the theory retains its usefulness even in this connection. I pointed out in my last letter

for example, how it could be used to calculate transition probabilities.

In conclusion, my view is that this form (2) of F(p,q) has quite general validity, and that the theory it

leads to, is entirely equivalent to the classical quantum mechanics of particles without spin.

I have considered the connection of this theory with the general theory of functions of non-commuting

variables. From this point of view, the theory starts with , and leads to the general method

(3) for forming observables. One might conceivably take another starting point, which would be

connected with some other method for forming observables. However, apart from other considerations

(cf. Hermann Weyl, “Theory of Groups and Quantum Mechanics” p. 275) all the other forms of F(p,q) I

tried, taken in conjunction with classical mechanics and the equations of conservation of probability,

did not lead to the Schrödinger equation, but to some different wave equation. They correspond thus

to some scheme different from the classical quantum mechanics. In particular I discarded for this

reason the first F(p,q) I tried, which was connected with the general operator form

(7) 

which gave the exponential form  and consequently had the form

(8) 



I believe I showed you these attempts in 1940.

One of the problems in the theory of non-commuting variables, which I have not been able to solve is:

what general transformation will leave form (2) for F(p,q) and (3) for operators invariant? It is easy to

see that this is the case for linear transformations from Cartesian coordinates, and also for the

dynamical-contact transformation of classical mechanics; but it is not maintained e.g. for a

transformation to polar coordinates and their conjugate momenta. An allied problem is to find a

general form for F(p,q) for any canonical coordinates corresponding to form (2) for rectilinear

coordinates. I am hoping your work will give me a lead in this connection.

With regards to your query, I do not, for the reasons mentioned above, think that your reference to my

work gives a correct description of it. It is certainly not correct in my view to say that form (2) for F(p,q)

is limited to giving correctly averages for quantities of the form ; in fact, it will give averages for all

observables formed as in (3), and this includes as far as I know, all the observables ordinarily

considered in classical quantum theory. This would not perhaps matter a great deal, if my work was

already published, since readers could then refer to the original. I have not however been able so far

to arrange for its publication, due largely, as you will no doubt remember, to your veto, which made the

late Professor Fowler hesitate about presenting it to the Royal Society. Your criticism is thus left

without an answer. Your objection at the time, if I remember rightly, was chiefly that joint distributions

for p and q had no physical meaning and consequently no validity or usefulness. I am glad to notice

that you now think they open an interesting field of research.

Regarding your query to whether I shall be able to do further work on this subject, my main difficulty is

again the fact that my existing work is not yet published. For one thing, I shall want to base future

work, at least partly, on the papers now in your hands. It is also discouraging to accumulate for years

unpublished results, as I have been doing. Finally, there are material difficulties: the papers you have

seen, represent my first real effort at research in pure mathematics and theoretical physics; I was

hoping that their publication would eventually enable me to transfer my activities entirely from the field

of research in engineering and applied physics to that of pure science, and to do some serious work

on theoretical physics. Failure to obtain publication has forced me to adjourn such plans sine die, and

my present work is leaving me less and less time for pure research.

Yours sincerely

[J.E. Moyal]

c/o. Goscote Hotel,

Goscote Hall Road,

BIRSTALL.

Leics.

April 25th, 1945.

Dear Professor Dirac,

There are a few points in the paper I sent you which I should like to amplify.

First, regarding the range of validity of the F(p,q) distributions, I have been considering the possibility

of a modified interpretation of the mathematical formalism. You will have noticed that one of the

difficulties of the theory is that the method of forming F(p,q) does not lead to functions that are defined

positive for all p and q when applied to a system in a single eigenstate. This might be interpreted,



reverting partly to the point of view expressed in your book, as indicating that simultaneous probability

distributions for p and q have no precise meaning for a system in a single eigenstate, or again, that a

classical particle picture is not valid for a system in a pure state, and that the hypothesis of pure state

is incompatible with the simultaneous measurement of p and q. The classical particle amongst a

number of states in such a manner is to make F(p,q) positive.

This would limit the possibility of giving the probabilities of simultaneous values for p and q. However,

as M.S. Bartlett points out in his paper, it does not necessarily upset the mathematical structure of the

theory or its equivalence to classical wave mechanics. If, as I think, this equivalence is correct, then

the theory should lead to correct results for the various quantities obtained by wave mechanics, such

as frequencies and transition probabilities, even when dealing with negative functions F(p,q). The

appearance of the latter should then be taken to mean that the situation is such that simultaneous

prediction of the values of p and q is impossible, but would not impair the calculation of other

experimentally determinable quantities.

It would be possible to use the formalism of this theory to supplement in certain cases, the

perturbation method in the calculation of transition coefficients. This can be done as follows: if the

system is originally in the unperturbed eigenstate k, with the phase space eigenfunction

fkk(p0,q0)corresponding to the q-space eigenfunction uk(p0,q0)

(1) 

the phase space distribution F(p,q,t) at time t would be obtained by substituting in fkk(p0,q0) the

classical solution p(t), q(t), in terms of the initial values p0 , q0, for the system under the action of the

perturbing forces (when it is possible to find such solutions). In other words, one would apply to

fkk(p0,q0) the contact transformation in time of classical mechanics to obtain F(p,q,t) at time t; one

could then expand the latter in terms of unperturbed phase space eigenfunction 

(2) 

and obtain thus directly the transition coefficients a*kn(t)akn(t)=Akn from state k to state n.

Applied, for example, to the schematic case of an oscillator of change e, following the application of a

perturbing electric force of large wavelength, this method leads for the transition coefficient from the

ground state to the k-th state to the exact expression

(3) 

(calling (E the increase in mean energy). The first term of the expansion of A0kin power of (E

coincides then with the first approximation by the perturbation method

(4) 

I have been considering the application of this method to radiation oscillators, in view of the possibility

that some of the divergences may be due to a mathematical breakdown of the perturbation method.

Best regards,

[J.E. Moyal]



P.S. I have just received your letter but must defer answering for a few days, as I am moving to

London. My new address will be 18. Ambrose Ave. N.W. 11.

11-5-45

Dear Moyal,

Thanks for your letter and your references to Whittaker and others. These papers are very interesting,

though not directly connected with the subject under discussion.

I still do not agree that your d.f. gives correctly the average values of all Hermitian operators

considered in classical mechanics. It is true that it works alright for , but it goes wrong as soon

as one applies it to more complicated examples. For example your d.f. would give the same average

for the two Hermitian operators QP2Qand PQ2P, whereas they ought to differ by 2%2. You may

answer that these two Hermitian operators do not correspond to classical quantities. To anticipate this

answer I have worked out another example, which certainly is of practical importance. Take a

harmonic oscillator of energy . Its average energy when it is at a temperature T is the average

value of the Hermitian operator . I have checked that this average value is not given correctly

by your d.f. Your d.f. gives the correct average for quantities of the form  and for quantities

expressible linearly in terms of such quantities, e.g.  for any f(a,b) or , but is not

more general than this. Do you not agree?

I have enclosed a copy of my paper. I should be glad if you would send it back in two or three weeks

time, as I do not have another copy.

Do you want me to send you back your work now? I would be willing to help you publish it if you

would change it so that it does not contain any general statements which I think to be wrong. I would

suggest it would be better to publish the quantum theory part separately from the rest, because it is on

rather a different footing (according to my view).

Yours sincerely,

P.A.M. Dirac

18-5-45

Dear Moyal,

Your theory gives correctly the average energy when the system is in a given state, (i.e. represented

by a given wave function) but not when the system is at a given temperature. Take a harmonic

oscillator with energy . The probability of its being in the n-th state is proportional to the

average value An of . According to your theory

with



When the An’s have been calculated, we can get the average energy by

It is not very easy to calculate An, but is quite easy to calculate  from the known property of wave

functions

Thus

and

We now get

which is the classical result and not the quantum one.

In Bartlett’s paper which you just sent me, the quantum values for the energy of the harmonic

oscillator are assumed and the correct value for  was obtained because of this assumption. You can

always get the right answer by borrowing sufficient results from the ordinary quantum theory. The true

test of a theory is whether it always gives consistent results whichever way it is applied, and my way

of evaluating given above shows that your theory does not always given consistent results. The

discrepancy in this case arises because I use your d.f. for calculating the average of , and this

quantity is not expressible linearly in terms of .

You say your theory gives a different value for , and this can only mean that your theory is not

consistent with the usual quantum values for the energy, otherwise there is no room for any

uncertainty in the value of . Your theory gives a value for  greater than the usual one by

an amount > (with ). Thus for a harmonic oscillator in its state of lowest energy

your theory will give fluctuations in energy corresponding to , instead of a constant energy.

Surely you must agree that your theory is wrong in this case, and that therefore it has limitations.

The general statement in your work that I disagree with is the one (given in your last letter) that

dynamical variables must be of the form . The square of the energy of a harmonic

oscillator, namely  is not of this form, and if you replace it by something that is of this form

you get energy fluctuations in the state of lowest energy, which I this is a self-contradiction.

Yours sincerely,

P.A.M. Dirac

18 Ambrose Avenue

London N.W.11.

May 15th, 1945.



Dear Professor Dirac,

Many thanks for your letter and enclosed paper. I have not yet had time to read the latter, but I shall

do so as soon as possible.

I am not quite clear as to how you worked out the average energy for an oscillator at temperature T.

The theory in my paper gives correctly the average energy for a Maxwell-Boltzmann assembly of N

oscillators. I enclose the draft of an unfinished paper by M.S. Bartlett and myself which gives the

relevant calculations in §4 (you may also find §2 & §3 of some interest). A difference with the orthodox

method is found not in the expression for the average energy , but in the standard deviation, which

comes out as  instead of  (not neglecting the ground state energy). I

have always found so far that my treatment leads to the same average values as the usual methods,

but shows difference in the fluctuations: this may lead to an experimental test of the theory.

I agree that my d.f. yields correct averages for quantities expressible linearly in terms of expressions 

 such as

(1) 

but this includes quite a wide class of functions. In fact, it can be shown (c.f. McCoy, Proc. Mat. Acad.

Sc., 18 (1932) 634) that (1) is equivalent to the form for Hermitian operators mentioned in my last

letter.

(2) 

For a polynomial term p2q2 the corresponding operator (P2Qs)0 obtained by (1) or (2) can be cast in a

more symmetrical form

(3) 

In particular, for the term (P2Q2)0 mentioned in your letter, (2) and (3) lead to

(4) 

(by the way, surely QP2Q–PQ2P=0 !).

The hypothesis on which I base my derivation of the d.f. (and therefore the rest of the theory) is

equivalent to the assumption in the standard (matrix) theory that dynamical observables must be of the

form (1) (non-dynamical operators might be construed in the statistical theory as symmetry, etc.

conditions on the d.f.). Relation (1) is obviously more restrictive than Heisenberg’s exchange relations

alone: it might be considered as the basic postulate of a well-defined form of quantum kinematics. In

this form, it has been given by H. Weyl, who bases his arguments in its favour on group-theoretical

considerations: iP, iQ generate a unitary Abelian group in 'ray'-space; the hypothesis is then that

dynamical observables are the matrices of the representation of this group’s algebra, which are given

by (1) if the group is supposed irreducible. My argument is, that it leads to a theory that is consistent

both with the Schrödinger equation and the usual statistical interpretation. I think it should be possible

to prove that it is the only form of quantum kinematics that does so, and that a different form would

necessitate revising either the statistical interpretation, or the wave-equation — but this is only a



necessitate revising either the statistical interpretation, or the wave-equation — but this is only a

conjecture so far.

Summarizing, I think it would be fair to say that my paper gives a derivation of classical quantum

mechanics on a purely statistical basis, (plus Newtonian mechanics) which is equivalent to the

standard matrix theory with the addition of Weyl’s postulate for a quantum kinetics and furthermore

that it shows the consequences such a theory entails with regards to the problems of determinism,

probability distributions, fluctuations, quantum statistics, etc. Would you agree to this character; and

the controversial issue it raises? I am not clear, however, as to exactly what general statements you

think are wrong.

I shall not need my typescript until there is a need of revising it for publication, so that you can return it

whenever you have finished with the problems of determinism, fluctuations, quantum statistics, etc.

Would you agree to this statement of the position?

I thank you for your (conditional) offer to help me publish my papers. I have no objection to publishing

the quantum theory part separately; I agree, it is on a different footing from the rest, because of its

more tentative character; and the controversial issue it raises. I am not clear, however, as to exactly

what general statements you think are wrong.

I shall not need my typescript until there is a need of revising it for publication, so that you can return it

whenever you have finished with it.

[J.E. Moyal]

18 Ambrose Avenue

London N.W.11.

May 26th, 1945.

Dear Professor Dirac,

I thank you for your letter of the 18th. With regards to your derivation of the average energy for an

oscillator at fixed temperature, I don’t know how this method works out in the standard theory, but the

reason for the result you obtained on the basis of my theory is fairly obvious. You start with a Maxwell

d.f. for p and q

(1) 

You then work out the coefficient

(2) 

Since the fnm(p,q)

(3) 

form an orthogonal set in phase-space, the coefficient An is merely the Fourier coefficient ann in the

expansion



(4) 

(It is possible to show that in (4) ann=0 for n!m). You then proceed to show through the An that for (1)

(5) 

but this is of course obvious by a direct calculation

(6) 

The correct method for evaluating  for an assembly of oscillators in my theory is the one given in my

joint paper with Bartlett, and it leads to the usual result

(7) 

I don’t think your remark on getting the right answer 'by borrowing sufficient results from the ordinary

quantum theory' quite fair: in so far as my theory is equivalent to the ordinary theory, it leads to the

same eigenvalues for the mean of the energy, as I have shown in my paper. In order to prove an

inherent inconsistency in my theory one would have to show that the method you use follows

necessarily from my basic postulates, but this is not the case. My method on the other hand is based

on a theory for statistical assemblies resulting from these postulates (c.f. my paper, §10). As such, it is

quite consistent with the rest of the theory, and also appears to lead to correct results.

The difficulty regarding the dispersion  for the energy of the oscillator in a single eigenstate is more

serious. I think it is connected with the fact that f(p,q) can be negative: if the conclusion is (in

accordance with your views) that a joint d.f. for p and q is impossible in a single eigenstate, then the

probability distribution for , and consequently the  dispersion, have no direct physical

meaning. This could be interpreted through the fact that it is impossible to measure the energy in a

single eigenstate in a finite time. Only a d.f. giving the band-width and intensity distribution of the

spectrum lines would have a physical meaning, and could be compared with experiment. This would

involve, however, extending the theory to include radiation.

I am prepared to mention your objections concerning the operator forms  in the body

of my paper (do you agree that with the imposition of this restriction on operators for dynamical

variables in the usual matrix theory, the latter becomes equivalent with my theory?)

I do not think there are any inherent inconsistencies in my theory, but I agree that this restriction leads

to results that do not tally with certain hitherto accepted features of the usual theory, and may possibly

clash with experimental results. Should the latter prove to be the case, then in my view the conclusion

to be drawn from my work would be, that the usual statistical interpretation of classical quantum

mechanics must be revised. Comparison with the experiment of such differences with the usual theory

might perhaps be sought for in the fluctuations for statistical assemblies, the intensity distributions of

spectral lines, or the calculation of transition probabilities.

If you agree to the above, then I should be glad to know if you are still prepared to help me in

publishing my work and what form of publication you would suggest. I think I could condense the

mathematical part into a paper in two parts of 15–20 pages each, and the quantum mechanics part

into 20–25 pages.



I return your typescript, which I read with great interest, especially as I have treated the same subjects

in my paper and arrived at different conclusions. For example, the operator form I use constitutes a

general method for forming functions of observables which (as compared with yours) is unambiguous

when the latter are non-commuting, and does not depend on their order. We have already discussed

the d.f. for p and q at one instant of time, but I have also given an expression for their distribution at

two instants of time, in terms of the phase-space eigenfunctions in my main paper (§14), and in terms

of the transformation function  in §2 of the paper on the oscillator I sent you, which it is interesting

to compare with your results on the same subject. My conclusion regarding trajectories in my theory is

that for a conservative and unperturbed system they reduce to those of classical mechanics, I

discussed the resulting implications with regards to the principle of uncertainty and the problem of

determinism in §15, and showed in the succeeding paragraphs, that it leads to correct results in

examples on the free and uniformly accelerated particle, and the oscillator. I have also worked out in

collaboration with Bartlett an alternative method of calculating  from Hamilton’s principal function

in classical mechanics based on Whittaker’s work.

[J.E. Moyal]

6-6-45

Dear Moyal,

I expect to be going abroad in a few days time and not to be back till the end of July, so I am returning

your papers herewith in case you should need them in the meantime. Thanks for returning my paper.

It now appears that the dispersion of the energy in a stationary state is the simplest example which

shows the limitations of your theory. This dispersion will be pretty general on your theory, and will

probably occur with all stationary states and all dynamical systems. This is not a difficulty that can be

got around in any way, because it contradicts the whole idea of sharp energy levels — it would imply a

lack of sharpness in the energy levels much too great to be reconciled with experimental evidence. It

shows therefore that the joint d.f. does not work in the case of E2. Also it does not work for higher

powers of E.

If the limitations in the applicability of the joint d.f. are clear[ly] stated, which would mean partly

rewriting it, I would be glad to help you publish your work. The quantum theory part of your work could

form a paper which I could communicate to a scientific journal. With regard to the remainder, I do not

know how much of it represents new research work and how much is an exposition of known results.

Do you have any suggestion about where it should be published? What did Fowler say about it?

Yours sincerely,

P.A.M. Dirac

18 Ambrose Avenue,

LONDON N.W. 11,

17th June, 1945

Dear Professor Dirac,

I was sorry to see in the press that your visit to the U.S.S.R. was cancelled at the last moment: I

expect you must be very annoyed at the whole incident.



expect you must be very annoyed at the whole incident.

Your letter and my papers reached me only on Tuesday: the delay was apparently due to the fact that

the envelope had broken open during transit; fortunately nothing seems to be missing.

I agree that the occurrence of non-zero dispersions in eigenstates is the main difficulty or limitation in

my theory. I did point it out and discuss it at some length in the paper I sent you, and will of course do

so again as clearly as I can when I redraft it for publication (which I intend to do in any case in order to

produce a condensed version.)

My work on Random Functions is new. Professor Fowler’s original suggestion was to present the

whole work for publication in the Proc. Roy. Soc. (including the part on Quantum Mechanics) as three

separate papers. My intention was then to rewrite it in a more condensed form, cutting out

appendices, some of the examples, etc., so as to have three papers of 15 to 20 pages each. Would

you consider this now as a suitable arrangement?

Bartlett has told me that you are holding colloquiums on Quantum Mechanics in Cambridge. Would it

be possible for me to attend some of these? I shall be visiting Cambridge fairly regularly in connexion

with my present duties, and it may prove possible to arrange for these visits to coincide with the date

of your colloquium.

[J.E. Moyal]

7 Cavendish Avenue,

CAMBRIDGE

26.6.45

Dear Moyal,

The quantum theory part of your work could be written up as one paper, and the remainder as two

more, provided it divides naturally into two parts. If it does not divide it might be better to keep it as

one long paper. Probably the Proc. Roy. Soc. is the best journal for them.

We have been having Colloquiums, usually on Friday afternoons but sometimes on Monday

afternoons. They will probably be resumed in October and we would be glad if you could come to any

of them.

Yours sincerely,

P.A.M. Dirac

18 Ambrose Avenue,

London N.W. 11

10th July, 1945.

Dear Professor Dirac,

Many thanks for your letter of the 26th. As you suggest, I am now rewriting the part of my work on

quantum mechanics as a separate paper. As regards the rest, I am rewriting it as a paper in two parts,

which could then appear either separately or together, whichever is more convenient.



Thank you for your invitation to the colloquiums; I am looking forward to attending them.

I enclose some notes in which I have tried to develop a method which would overcome the difficulty

about non-zero-dispersions for eigenvalues in my theory and also extend it to generalized canonical

coordinates. This is still tentative in character, and there are several things I still want to clear up, but I

should be glad in the meantime to have your opinion on this development. I also enclose some notes

comparing the results in your paper with mine.*

Yours sincerely

[J.E. Moyal]

18 Ambrose Avenue,

London N.W. 11,

21st August [1945]

Dear Professor Dirac,

You may be interested in a paper by Wigner, Phys. Rev. 40 (1932), 749, which anticipates my

derivation of the p–q distribution. I believe Bartlett has told you about this.

I understand from Bartlett, that you are leaving for the U.S. on the 30th. Would it be possible for me to

send you the m.s. of my papers to you there, if and when I complete them?

With my best wishes for a pleasant journey.

Yours sincerely,

[J.E. Moyal]

17 Cavendish Avenue,

CAMBRIDGE,

31-10-45

Dear Moyal,

Your new version is more in accordance with the standard quantum mechanics, but it is considerably

more complicated as you need a different joint prob. distr. for each system of coordinates. You are

definitely departing from classical statistics when you make the joint prob. distr. depend on the system

of coordinates, and if you depart so much from the usual classical ideas is there any point in trying to

fit things into a classical framework? What advantages does your system have over the usual

statistical interpretation of quantum mechanics? Any results that you get from your system must either

conform to the usual quantum mechanics or else be incorrect. I think your kind of work would be

valuable only if you can put it in a very neat form.

I am returning your paper herewith,

Yours sincerely,

P.A.M. Dirac
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O',o6o et o3,o4o"uo-
Lue poussée leucocytaire avec polynucléose s'est développée

et fut

d'autant plus marquée que l'évolution fut plus rapide.

Certaines modifications de la moelle osseuse méritent d'être
soulignées.

Inconstantes, nous les avonsobservéesdans les tout derniers jours
de l'évolution

de l'insuffisance parathyroïdienne, d'une part chez un chien mort de tétanie
le 11' jour,

d'autre pari, surtout, chez deux chiensdont la survie prolongée par

l'absorption journalière de 2- de lactate de calcium,

a atteint 2.3,28 jours.

Chez ces animaux, atteints de cet état de cachexie progressi\e, décrite par

E. Gley, s'est développée tardivement dans la moelle, une réaction réticulo-

endothéliale intense, faite de noyaux nus, du
type histiocytaire, baignant dans

les mailles du collagène.Cette réaction tend à étoufferle tissu
myéloïde normal

qui persiste cependant. On constate .3à de cellules indifférenciées

Cet aspect n'est donc pas
celui de la leucémie aiguë. Il s'oppose, jusqu'à un

certain point, à l'aspect fibreux que prend la moelle osseuse dans l'hyperpara-

ihyroïdie. Mais si l'on se
rappelle que le

système réticulo-endothélial de la
moelle est le plasmode dont les éléments donneront naissance, en se libérant,

aux lignées myéloide et peut être monocytaire du sang, il n'est pas illogique

de penser que, dans certains cas, sous l'influence d'une insuffisance para-

thyroïdienne, la prolifération de ce tissu puisse aller jusqu'à la libération de

formesjeunes indifférenciées,leucoblastiques.C'est là, pour
l'instant du moins,

une hypothèse de travail qui peut éclairer notre observation.

CORRESPONDANCE.

M. Dakio Acevedo adresse des remerciments pour
la distinction accordée à

"es travaux en \\)?\o.

M. le SECRÉTAIREperpétuel
signale parmi les pièces imprimées de la

Correspondance

Bulletinde /~c' pulrrtexrhztti~tzede Tome 1, fascicule I, janvier à

juin it)4'

MECANIQUEONDULATOIRE. Sur les
rapports entre In théorie

des mélanges
et la

statistique classique. Note de M. Jacques Yvo.

Se limitant à des problèmes
sans

spin, Wigner () a montréla possibilitéde

calculer, en
mécanique quantique, notamment à propos

de questions
de

thermodynamique, les moyennes à l'aide d'un formalisme identique à celui de

la statistique classique. Wigner remarque toutefois que la densité de proba-

('1 Séancedu r1 juillet 19^6.

i?) Phys.Net.,'*0. iç^S?.,p. 719.
•



348
ACADÉMIE DES SCIENCES.

bilité qu'il utilise, fonction des coordonnéeset des impulsions,
ne mérite pas ce

nom à proprement parler parce qu'elle ri'est pas nécessairement positive. Il lui

semble de plus que cette densité n'est pas déterminée d'une manière univoque

et qu'elle ne permet
à coup sûr le calcul correct des moyennes que dans le cas

assez limité où l'opérateur quantique correspondant dépend seulement soit des

coordonnées, soit des impulsions,
et jamais des deux à la fois.

Récemment, J. Bass (3), puis E. Arnous (*), ont repris cette question et,

somme toute, tombent d'accord avecWigner sur l'ensemblede ces conclusions.

Je me propose de montrer ici que les réserves faites sur l'étendue du

domaine d'application de la densité de Wigner
sont entièrement injustifiées, et

d'indiquer
de manière précise comment les calculs doivent être conduits.

Je me servirai à cet effetdes résultats acquis dans une Note antérieure (5) dont

je conserverai les notations.

J'insiste sur le tait que pour
donner à la question tout son intérêt, il ne faut

pas
se limiter, comme le font J. Bass et E. Arnous, à des cas purs,

mais qu'il

faut envisager
leproblèmedans lecadre de la théorie des

mélanges.
La situation

est représentée alors par
un noyau 3l(x, y) self-adjoint auquel la théorie

quantique impose d'être normé et d'avoir des valeurs propres positives.
Dans

la Note précédente, j'ai associé à tout opérateur
différentiel self-adjoint G

opérant
sur les fonctionsde xune fonction de l'espace et de l'impulsion g{x,p)

et à tout noyau self-adjoint ÏÏLune fonction n(x, p) qui permettent de calculer

la moyenne relative à G suivant la relation

Ce formalisme est déjà le formalisme de la statistique classique, mais utilise

des quantités complexes. Mais, formons maintenant

l'aide de ces fonctions, l'hermiticité de G et de 91 s'exprime plus simplement

qu'à l'aide de g et de n [formules (2) et (9) de la précédente Note}. Pour que G

et 91 soient self-adjoints,
il faut et il suffit en effet que, respectivement, y et D

soient réels, get n s'expriment en fonction de y et D par
les formules inverses

de (2) et (3),

(•) Comptes rendus, 218, 1944, p- <4 »•

(/) Comptes
rendus, 221, 1940, p. 489.

(;) Comptes rendus, 223, 1946, p. 3u.
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Ces nouveaux résultats me paraissent
entrainer que, contrairement à ce que

pouvait penser Wigner,
il n'existe pas

d'autre fonction analogue qui soit

susceptible de jouir des mêmes propriétés.
D est défini d'une manière unique.

Quant à la formule (7), elle fait correspondre univoqucrnent et sans ambi-

guïté des expressions
de forme classique aux grandeurs quantiques

Une application immédiate des remarques précédentes
est l'énoncé sui-

vant (il n'est actuellement justifié naturellement que dans le domaine quantique

très restreint ou je me suis placé)

Lorsque, dans la théorie des
mélanges,

on fait tendre la constante de Planck

vers zéro, cette théorie se confond, à la limite, avec la
mécanique statistique

classique.

Le raisonnement relatif à ce passage à la limite fait naturellement intervenir

l'équation évolutive de D, qui est une conséquence de l'équation de Schrô-

dinger, que Wigner
a formulée et qui tend à la limite vers l'équation de

Liouville.

Introduisons y et D dans ( 1 ) à la place de g et n. L'équation de la moyenne

devient, après quelques transformations,

Maintenant le formalisme est beaucoup plus près
du formalisme classique.

La densité de probabilité D permet donc de calculer une
moyenne quelconque.

Ce progrès
a été acquis en introduisant la fonction y qui peut se déduire

directement de l'opérateur G en effectuant le calcul suivant

La différence fondamentale entre la théorie des mélanges et la
statistique

classique est que, en
statistique classique, D est essentiellement positif,

cependant qu'en statistique quantique D, essentiellement, correspond à un

noyau 01 dont les valeurs propres
sont positives,

ce qui est évidemment

beaucoup moins simple. Cette dernière condition est l'expression du principe

d'incertitude elle empêche que D puisse présenter
un maximum infiniment

aigu à la fois par rapport aux deux variables x et p. Je rappellerai la formule

de Wigner qui permet de calculer directement D à partir de DZ.C'est


































