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THE WEYL CORRESPONDENCE BRIDGE

Weyl’s correspondence map, by itself, merely provides a change of
representation between phase space and Hilbert space

~+  Mutual language to contrast classical to quantum mechanics on
common footing.

— (2;)2/d7dadxdp a(x,p)exp(it(p — p) +io(x — x)),

Inverse map (Wigner):

1 : h h
_ —yp o 7
a(z, p) 27T/dy e <:U + Qy‘ x Qy>
PHASE SPACE HILBERT SPACE
a Weyl
quantuml l quantum
axb Groenewold
classical h:Ol l Bracken h=0
ab Weyl

~+ A plethora of choice-of-ordering quantum mechanics problems
reduce to purely x-product algebraic ones: varied deformations
(ordering choices) can be surveyed systematically in phase space.
(Curtright & Zachos, New ] Phys 4 (2002) 83.1-83.16

[hep-th /0205063])



0.23 Synopses of Selected Papers

The decisive contributors to the development of the formulation are Hermann Weyl
(1885-1955), Eugene Wigner (1902-1995), Hilbrand Groenewold (1910-1996), and Jose
Moyal (1910-1998). The bulk of the theory is implicit in Groenewold’s and Moyal’s semi-
nal papers.

But confidence in the autonomy of the formulation accreted slowly and fitfully. As a
result, an appraisal of critical milestones cannot avoid subjectivity. Nevertheless, here we
provide summaries of a few papers that we believe remedied confusion about the logical
structure of the formulation.

H Weyl (1927)"V%? introduces the correspondence of “Weyl-ordered” operators to
phase-space (c-number) kernel functions. The correspondence is based on Weyl’s for-
mulation of the Heisenberg group, appreciated through a discrete QM application of
Sylvester’s (1883)°V®2 clock and shift matrices. The correspondence is proposed as a gen-
eral quantization prescription, unsuccessfully, since it fails, e.g., with angular momentum
squared.

J von Neumann (1931)N¢*3!, expatiates on a Fourier transform version of the *-
product, in a technical aside off an analysis of the uniqueness of Schrédinger’s repre-
sentation, based on Weyl’s Heisenberg group formulation. This then effectively promotes
Weyl’s correspondence rule to full isomorphism between Weyl-ordered operator multi-
plication and %-convolution of kernel functions. Nevertheless, this result is not properly
appreciated in von Neumann'’s celebrated own book on the Foundations of QM.

E Wigner (1932)"V%8%2, the author’s first paper in English, introduces the eponymous
phase-space distribution function controlling quantum mechanical diffusive flow in phase
space. It notes the negative values, and specifies the time evolution of this function
and applies it to quantum statistical mechanics. (Actually, Dirac (1930)P73 has already
considered a formally identical construct, and an implicit Weyl correspondence, for the
approximate electron density in a multi-electron Thomas—Fermi atom; but, interpreting
negative values as a failure of that semiclassical approximation, he crucially hesitates
about the full quantum object.)

H Groenewold (1946)¢7°4, a seminal but inadequately appreciated paper, is based on
Groenewold’s thesis work. It achieves full understanding of the Weyl correspondence as
an invertible transform, rather than as a consistent quantization rule. It articulates and
recognizes the WF as the phase-space (Weyl) kernel of the density matrix. It reinvents
and streamlines von Neumann’s construct into the standard x-product, in a systematic
exploration of the isomorphism between Weyl-ordered operator products and their ker-
nel function compositions. It thus demonstrates how Poisson Brackets contrast crucially
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to quantum commutators—"“Groenewold’s Theorem”. By way of illustration, it further
works out the harmonic oscillator WF.

] Moyal (1949)M°% enunciates a grand synthesis: It establishes an independent for-
mulation of quantum mechanics in phase space. It systematically studies all expectation
values of Weyl-ordered operators, and identifies the Fourier transform of their moment-
generating function (their characteristic function) with the Wigner Function. It further
interprets the subtlety of the “negative probability” formalism and reconciles it with the
uncertainty principle and the diffusion of the probability fluid. Not least, it recasts the
time evolution of the Wigner Function through a deformation of the Poisson Bracket
into the Moyal Bracket (the commutator of x-products, i.e., the Wigner transform of the
Heisenberg commutator), and thus opens up the way for a systematic study of the semi-
classical limit. Before publication, Dirac contrasts this work favorably to his own ideas on
functional integration, in Bohr’s Festschrift?"*>, despite private reservations and lengthy
arguments with Moyal. Various subsequent scattered observations of French investiga-
tors on the statistical approachY”%, as well as Moyal'’s, are collected in J Bass (1948)Bas48,
which further stretches to hydrodynamics. Earlier Soviet efforts include Ter37/5/040,

M Bartlett and ] Moyal (1949) BM% applies this language to calculate propagators and
transition probabilities for oscillators perturbed by time-dependent potentials.
T Takabayasi (1954) THk54 investigates the fundamental projective normalization condi-
tion for pure state Wigner functions, and exploits Groenewold’s link to the conventional
density matrix formulation. It further illuminates the diffusion of wavepackets.

G Baker (1958)B%%8 (Baker’s thesis paper) envisions the logical autonomy of the for-
mulation, sustained by the projective normalization condition as a basic postulate. It
resolves measurement subtleties in the correspondence principle and appreciates the sig-
nificance of the anticommutator of the x-product as well, thus shifting emphasis to the
*-product itself, over and above its commutator.

D Fairlie (1964)7%%* (also see refs Ku67,Coh76,Dah83,Basi8y explores the time-independent
counterpart to Moyal’s evolution equation, which involves the x-product, beyond mere
Moyal Bracket equations, and derives (instead of postulating) the projective orthonormal-
ity conditions for the resulting Wigner functions. These now allow for a unique and full
solution of the quantum system, in principle (without any reference to the conventional
Hilbert-space formulation). Autonomy of the formulation is fully recognized.

R Kubo (1964)K#% elegantly reviews, in modern notation, the representation change
between Hilbert space and phase space—although in ostensible ignorance of Weyl’s and
Groenewold'’s specific papers. It applies the phase-space picture to the description of elec-
trons in a uniform magnetic field, initiating gauge-invariant formulations and pioneering
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“noncommutative geometry” applications to diamagnetism and the Hall effect.

N Cartwright (1976)““7® notes that the WF smoothed by a phase-space Gaussian
(i.e., Weierstrass transformed) as wide or wider than the minimum uncertainty packet
is positive-semidefinite. Actually, this convolution result goes further back to at least de
Bruijn (1967)7°%” and Tagolnitzer (1969)%8%, if not Husimi (1940)7*s40.

M Berry (1977)B¢77 elucidates the subtleties of the semiclassical limit, ergodicity, in-
tegrability, and the singularity structure of Wigner function evolution. Complementary
results are featured in Voros (1976-78)"°78.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer (1978)BFF78 an-
alyzes systematically the deformation structure and the uniqueness of the formulation,
with special emphasis on spectral theory, and consolidates it mathematically. (Also see
Berezin B“7°.) Tt provides explicit illustrative solutions to standard problems and utilizes
influential technical tools, such as the x-exponential (already known in ["767,GL568)

A Royer (1977)%¥77
reflections in phase space. (Further see refs

interprets WFs as the expectation value of the operators effecting
Kub64,Gro76,BV94 )

G Garcia-Calderén and M Moshinsky (1980)°M80 implements the transition from
Hilbert space to phase space to extend classical propagators and canonical transforma-

tions to quantum ones in phase space. (The most conclusive work to date is ref B¢"V02,
Further see MKN88 Hic2, DKM8S,CFZ98,DV97,GR94,Hak99,KL99,DPO1

] Dahl and M Springborg (1982)P82 initiates a thorough treatment of the hydrogen
and other simple atoms in phase space, albeit not from first principles—the WFs are
evaluated in terms of Schrédinger wave-functions.

M De Wilde and P Lecomte (1983)%"83 consolidates the deformation theory of -
products and MBs on general real symplectic manifolds, analyzes their cohomology struc-
ture, and confirms the absence of obstructions.

M Hillery, R O’Connell, M Scully, and E Wigner (1984)"°%% has done yeoman service
to the physics community as the classic introduction to phase-space quantization and the
Wigner function.

Y Kim and E Wigner (1990)X" is a classic pedagogical discussion of the spread
of wavepackets in phase space, uncertainty-preserving transformations, coherent and
squeezed states.

)Fed94

B Fedosov (1994 initiates an influential geometrical construction of the x-product
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on all symplectic manifolds.

T Curtright, D Fairlie, and C Zachos (1998)“f#%® illustrates more directly the equiv-
alence of the time-independent x-genvalue problem to the Hilbert space formulation,
and hence its logical autonomy; formulates Darboux isospectral systems in phase space;
works out the covariant transformation rule for general nonlinear canonical transforma-
tions (with reliance on the classic work of P Dirac (1933)P33); and thus furnishes explicit
solutions of practical problems on first principles, without recourse to the Hilbert space
formulation. Efficient techniques for perturbation theory are based on generating func-
tions for complete sets of Wigner functions in T Curtright, T Uematsu, and C Zachos
(2001)CY%01 A self-contained derivation of the uncertainty principle in phase space is
given in T Curtright and C Zachos (2001)%%L.

M Hug, C Menke, and W Schleich (1998)#M5% introduce and exemplify techniques
for numerical solution of x-equations on a basis of Chebyshev polynomials. Dynamical
scattering of wavepacket WFs off Gaussian barrier potentials on a similar basis is detailed
in ref SLC1L,
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76.

A WORD ON NONIONS.

[Johns Hopkins University Circulars, 1. (1882), pp. 241, 242; -
.11 (1883), p. 46.] '

IN my lectures on Multiple Algebra I showed that if u, v are two matrices
of the second order, and if the determinant of the matrix (z+ yv -+ au) be
written as )

" 22+ 2bzz + 2cyz + da? + 2exy + fi
then the necessary and sufficient conditions for the equation vy + wy =0 are
the following, namely,

" b=0, ¢=0, £=0.

If to these conditions we superadd d =1, f=1, and write uv =w, then
w=—1, v*==1, =1, wv=—vu=w, vw=—wr=1, wu=-uw=b;
and 1, u, v, w form a quaternion system. The conditio:_]s above stated will be

satisfied if
' Det. (z + yv + zu) =22+ y* + 22,
which will obviously be the case if
bl @ 1] 100
i1 0} g oy

where @ = :\/(-; 1). For then

_ z y+w0’
z+yv+am-,_y+w9 2 .
Hence the matrices
ll OH 01 IO g, |~8 0
\ 01]|~10]]8 OI 0@

construed as complex quantities are a linear transformation of the ordinary
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quaternion system 1, 4, j, k; that is to say, if we form the multiplication
table B

X ok v ot
xﬁ p\OO ,
poo\xp

v v |r| 0|0

roﬂyr

rMiT=1  —p4v=i

—ON+0r=k bu+Ov=j

Since u, v contain between them 8 letters subject to the satisfaction of 5
conditions, the most general values of A, u, », T ought to contain 3 arbitrary
constants; but it is well-known that any particular (3, j, k) system thay be’
superseded by a A (7, §', k') system, where 7/, §', & are orthogonally related
linear functions of 4, 7, £; and as this substitution introduces just 8 arbitrary
constants, we may, by aid of it, pass .from the system of matrices above
given, to the most general form. The general expréssion for the matrices
containing 3 arbitrary constants may also be found directly by the method
given in my lectures, which will be reproduced in the memoir on Multiple
Algebra in the Mathematical Journal. What goes before is by way of
introduction to the word on Nonions which follows.

Just as the necessary and sufficient condition that u, », two matrices
of the second order, may satisfy the equations vu=—uy, w*=1, v*=1, is
that the determinant to z+yv+au may be 2°+32+22 so I have proved
that the necessary and sufficient condition, in order that we may have
v=puy, =1, *=1 (u, v being matrices of the third order, and p an
imaginary cube root of unity) is that the determinant to z+ yu + v may
be 22+ 4 +4°; but if we make

0 0 1 0 01
u={p 0 0], v=|p* 0 O,
0 p* 0 0 p O
z 0 y+az
then z+'yu+:w=‘ py +pz 2 0
2

0 Py +px
of which the determinant is '
2+ (Y +2) (py + p*2) (Y + pr) = 2° + y* + 2

Hence there will be a system of Nonions (precisely analogous to the known
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1
' o ' % I’
system of quaternions) represented by the 9 matrices u? uy o
' o ' . W wd
e

and just as in the preceding case the 8 terms + 1, + %, + v, + uv form a closed
group, so here the 27 terms obtained by multiplying each of the above 9 by
1, p, p* will form a closed group. The values of the 9 matrices will easily be
found to be ' :

1 00
."010’
0 01
0 0 1 001
p 00 P 00
0 p2 0 0 p O
0 p* 0 OPO[ 0 p O
0 0 p 0 0 p) 0 0 p
1 00 p 00 : 1 00
p 00 1 00 "
0p30‘ 0 2 0
0 01 0 0 p
0 0 p
p 0O
0 p O :

These forms can be derived from an algebra given by Mr Charles S. Peirce

(Logic of Relatives, 1870).

I will ounly stay to observe that as the condition of the Determinant to
z+uy+ve (which for general values of u, v is a general cubic with the
coefficient of 2* unity) assuming the form 2*+ 3+ 2°, implies the satisfaction
_of 9 conditions, and as u, ¥ between them contain 18 constants, the most
general form of a system of Nonions must contain 18—9, or 9 arbitrary
constants; but how these can be obtained from the particular form of the
system above given, remains open for further examination.

)

[Note. For the remark made above] “These forms can be derived from
an algebra given by Mr Charles S. Peirce (Logic of Relatives, 1870),” read
“Mr C. S. Peirce informs me that these forms can be derived from his
Logic of Relatives, 1870.” I know nothing whatever of the fact of my own
personal knowledge*. I have not read the paper referred to, and am not

* T have also a great repugnance to being made to speak of Algebras in the plural; I would as
lief acknowledge a plurality of Gods as of Algebras.



14.

ON QUATERNIONS, NONIONS, SEDENIONS, ETC.
[Johns Hopkins University Circulars, 11 (1884), pp. 7—9.]

(1) SuPpposE that m and n are two matrices of the second order.
Then if we call the determinant of the matrix z + my + nz,
o + 2bay + 2cxz + dy? + 2eyz + f2°,

the necessary and sufficient conditions for the subsistence of the equation
nm=—mn 18 that b=0, ¢=0, ¢=0, and if we superadd the equations
m*+1=0,n"+1=0, then d=1 and f=1, or in other words in order to
satisfy the equations mn=—am, m?=—1, n?=—1, where it will of course
be understood that in these (as in the equations m*+1=0, n*+1=0)11is

the abbreviated form of the matrix (1) (1) and 1 of* the form (1) 'fi) s
and sufficient condition is that the determinant of # + my + nz shall be equal
to a® 4 y*+ A

the necessary

The simplest mode of satisfying this condition is to write m = (Z) 0.,
ne 0-1 - 01
10’ -7 0

4 meaning 4/(— 1), which gives mn = and nm=,
It is easy to express any matrix of the second order as a linear function

10’
of 1 (meaning (1) (1)) m, n, p, where p stands for mn.

For if Z’ Z be any such matrix it is only necessary to write
' a=f+ig, b=—h—k, |
d=f—-1ig, c=—h+ki,
and then Z’ Z=f+g5n+hn+kp.
The most general solution of the equations MN =~ NM, M*= N*=-1,
must contain three arbitrary constants, namely, the difference between the

number of terms in m and %, and the number of conditions b=0, ¢=0,
e=0, d=1, f=1, which are to be satisfied.

" [* T denotes --1.]






Quantenmechanik und Gruppentheorie.
Von H, Weyl in Ziirich.
Mit 1 Abbildung. (Eingegangen am 13. Oktober 1927.)

Einleitung und Zusammenfassung. — I. Teil. Bedeutung der Reprisentation von
physikalischen Grofen durch Hermitesche Formen. §1. Mathematische Grund-
begriffe, die Hermiteschen Formen betreffend. §2. Der physikalische Begriff
des reinen Falles. § 3. Die physikalische Bedentung der reprisentierenden
Hermiteschen Form. §4. Statistik der Gemenge. — II. Teil. Kinematik als
Grappe. §5. Uber Gruppen und ihre unitiren Darstellungen. §6. Ubertragung
auf kontinumierliche Gruppen. §7. Ersatz der kanonischen Variablen durch die
Gruppe. Das Elektron. § 8. Ubergang zu Schridingers Wellentheorie, —
III. Teil. Das dynamische Problem. §9. Das Gesetz der zeitlichen Verdnderung.
Die Zeitgesamtheit. §10. Kinetische Energie und Coulombsche Kraft in der
relativistischen Qunantenmechanik. — Mathematischer Anhang.

Einleitung und Zusammenfassung.

In der Quantenmechanik kann man zwei Fragen deutlich voneinander
trennen: 1. Wie komme ich zu der Matrix, der Hermiteschen Form,
welche eine gegebene Grifle in einem seiner Konstitution nach bekannten
physikalischen System reprisentiert? 2. Wenn einmal die Hermitesche
Form gewonnen ist, was ist ihre physikalische Bedeutung, was fiir physi-
kalische Aussagen kann ich ibr entnehmen? Auf die zweite Frage hat
v. Neumann in einer kiirzlich erschienenen Arbeit* eine klare und
weitreichende Antwort gegeben. Aber sie spricht noch nicht alles aus,
was sich daritber sagen 148t, umfaft such nicht alle Ansitze, die bereits
in der physikalischen Literatur mit Erfolg geltend gemacht worden sind.
Ich glaube, daf ich in dieser Hinsicht zu einem gewissen AbschluB gelangt
bin durch die Aufstellung des Begriifs des reinen Falles®* Ein reiner
Fall von Atomen z. B. liegt dann vor, wenn der betrachtete Atomschwarm
den hochsten Grad von Homogenitit besitzt, der sich realisieren laft.
Der monochromatische polarisierte Lichtstrahl ist ein Beispiel aus anderem
Gebiet. Der reine Fall wird reprisentiert durch die Variablen der
Hermiteschen Form; die Form selber gibt AufschluB dariiber, welcher
Werte die durch sie reprisentierte Grofe fihig ist, und mit welcher
Wahrscheinlichkeit oder Hiufigkeit diese Werte in irgend

* Mathematische Begriindung der Quantenmechanik, Nachr. Gesellsch. d.
Wissensch. Gottingen 1927, S. 1.
** Wie mir Herr v. Neumann mitteils, ist aach er inzwischen zur Auf-
stellung dieses Begriffs gelangt [Zusatz bei der Korrektur].
Zeitschrift fiir Physik. Bd. 46. 1
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bilden fiir sich eine f-parametrige Abelsche Gruppe unitirer (Vektor-)
Abbildungen, ebenso die

Vi) =-¢e( ¢ + 1, + - +1,¢)
Hingegen ist
T@V@ER U@V 1(z) = e(6,7;, + -+ + 6;7p. 1

e, Py + - + 6P+, @+ - + 7 Q)
1 d 1<
= (3 Dan)TOUE = (-3 Sow) 1@ TE. 6

i=1 i=1

und

§ 7. Ersatz der kanonischen Variablen durch die Gruppe.
Das Elektron. Unsere Entwicklungen sind bis zu dem Punkte ge-
diehen, wo die Verbindung mit der Quantenmechanik in die Augen
springt. Liegt ein mechanisches System von f Freiheitsgraden vor, so
geniigen ja die Hermiteschen Matrizen, welche die kanonischen Variablen
reprisentieren, gerade den Relationen (36), bis auf den Faktor /2, von
dem noch die Rede sein wird und den wir einstweilen in die Mafieinheiten
hineinstecken. Nehmen wir die Zahl der Freiheitsgrade f zundchst — 1
und bezeichnen in der tiblichen Weise die kanonischen Variablen mit p, g,
ihre reprisentierenden Formen mit P, ), so sagt die Relation

i(PQ—QP) =1 (38)
aus, daB die beiden durch die Matrizen i P, i@ gekennzeichneten infini-

tesimalen Drehungen des Strahlenkérpers vertauschbar sind. Die durch
sie erzeugte Abelsche Drehungsgruppe besteht aus den Drehungen

U6, ) = e(Pé + ¢7) 39
(6, t reelle Parameter, die sich bei Zusammensetzung additiv verhalten).
Die reelle Grofe im Gruppengebiet, deren Komponenten £ (6, r) der
Gleichung (19) oder

EG v =E(—0 —7) (40)

geniigen, erscheint als die Hermitesche Form
4 oo
F:jje(Pa+Qt)g(a, 1)d6dr. 41)

Eine physikalische Grofe ist durch ihren Funktionsausdruck f(p, 9)
in den kanonischen Variablen p, ¢ mathematisch definiert. Es blieb ein
Problem, wie ein derartiger Ausdruck auf die Matrizen zu iibertragen
war. Ohne weiteres klar war das nur fiir die Potenzen p%, ¢! und damit
fiir Polynome. Freilich trat schon hier die Schwierigkeit auf, daf man
nicht wubte, ob man einen Term wie p? ¢ als P2 @ oder @ P? oder P @ Pusw.
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zu interpretieren hatte. Der Ansatz ist offenbar viel zu formal. Unsere
gruppentheoretische Auffassung zeigt sogleich den rechten Weg: die
Hermitesche Form (41) reprisentiert die Grofle

+ oo
f@ o= [[ers+ a0 1dodr (42)

Nach dem Fourierschen Integraltheorem 148t sich ja jede Funktion
f(p, 9) in dieser Form eindeutig entwickeln, und wenn £ eine reellwertige
Funktion der reellen Verinderlichen p, ¢ ist, geniigt £ (6, 7) gerade der
Bedingung (40). Die Integralentwicklung (42) ist nicht immer ganz
wortlich zu verstehen; das wesentliche ist nur, dal rechts eine lineare
Kombination der e(p6 - gz) steht, in denen 6 und z beliebige reelle
Werte annehmen konnen. Wenn z. B. ¢ eine zyklische Koordinate ist,
die nur mod. 27 zu verstehen ist, so dafl alle in Betracht kommenden
Funktionen periodisch in ¢ mit der Periode 2z sind, wird die Integration
pach 7 ersetzt werden miissen durch eine Summation iber alle ganzen
Zablen ¢; wir haben dann den Fall einer gemischten kontinuierlich-
diskreten Gruppe. Die Einschrinkungen, denen f(p, g) unterworfen sein
muB, damit sie eine Entwicklung des Typus (42) gestattet, konnten
noch Bedenken erregen. Nun wissen wir aber, dal es eigentlich gilt,
e(kf (p, q)) so zu entwickeln (% irgend eine reelle Konstante), und in
dieser Fassung 148t sich die Aufgabe nach neueren Untersuchungen von
N. Wiener, Bochner und Hardy in zwingender Weise eindentig er-
ledigen *.

Die Ubertragung auf 7 Freiheitsgrade liegt auf der Hand. Ins-
besondere sahen wir, wie aus der Forderung der Irreduzibilitét
im Falle der kontinuierlichen Gruppen die charakteristische
kanonische Paarung entspringt. Fiir endliche Gruppen freilich
existiert nicht ein so einheitliches Schema. Das ist im Einklang mit den
physikalischen Tatsachen. Denn aus den Entwicklungen von P. Jordan**
ging bereits hervor, daB beim magnetischen Elektron g, so gut wie 6, als

#* N.Wiener, On representations of functions by trigonometrical integrals,
Math. ZS. 24, 575, 1926; S.Bochner und G.H.Hardy, Note on two theorems
of N. Wiener, Journ. Lond. Math. Soc. 1, 240, 1926; S.Bochner, Darstellung
reell variabler und analytischer Funktionen durch verallgemeinerte Fourier- und
Laplaceintegrale, Math. Ann. 97, 635, 1927; vgl. dazu ferner die von H.Bohr
stammende Theorie der fastperiodischen Funktionen; am einfachsten bei H. Weyl,
Math. Ann. 97, 338, 1926.

*% 79, f. Phys. 44, 21—25, 1927, Nach P.Jordan, Uber die Polarisation
der Lichtquanten, ebenda, S.292, ist die Kinematik der Lichtquanten die gleiche.
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die ,kanonische Konjugierte“ von ¢, angesehen werden kann. Hochstens
von einem Tripel, nicht von einem Paar kanonisch konjugierter Grifien
konnte hier verniinftigerweise die Rede sein. Bestifigen wir, dall gerade
auch in diesem diskreten, dem Kontinuierlichen am meisten entgegen-
gesebzten Falle unsere Formulierung genau das Richtige trifft! Sie lautet,
um das noch einmal zusammenzufassen, so: Der kinematische Cha-
rakter eines physikalischen Systems findet seinen Ausdruck
in einer irreduziblen Abelschen Drehungsgruppe, deren Sub-
strat der Strahlenkérper der ,reinen Fialle“ ist. Die reellen
Griofen dieses Gruppengebietes sind die physikalischen
Grofen; die Hermiteschen Matrizen, als welche sie vermige
der Darstellung der abstrakten Gruppe durch Drehungen er-
scheinen, sind die Représentanten der physikalischen Grgf8en,
deren Bedeutung im I Teil auseinandergesetzt wurde.

Nun: die frither beschriebene zweidimensionale Drehungsgruppe B,
welche der Vierergruppe isomorph ist, kennzeichnet, wie der Vergleich
mit §2, (12) lehrt, die Kinematik des magnetischen Elektroms.
Da n == 2 ist, sind alle GroBen nur zweier Werte fahig. Die einzigen
physikalischen Groflen, welche existieren, sind die mit Hilfe reeller Zahl-
koeffizienten gebildeten linearen Kombinationen von 1, 6,, 6,, 6,. Aber
das maguetische Elektron ergibt sich nicht nur als Sonderfall der Theorie,
sondern die ihm eigentiimliche Kinematik ist iiberhaupt die
einzig mogliche, wenn alle GréBen nur zweier Werte fahig
sein sollen, wenn n — 2 ist. Beweis: Wir wissen schon, daf unter
dieser Voraussetzung jedes Gruppenelement ¢ aufer dem Einheitselement
von der Ordnung 2 ist. Die beiden Eigenwerte der korrespondierenden
zweidimensionalen Matrix A sind daher entgegengesetzt gleich. Wahlen
wir ein bestimmtes ¢ == 1, so konnen wir das zugehorige A samt einem
normalen Koordinatensystem so festlegen, daf

1 0
A ==
o @
wird. Die mit A vertauschbaren Matrizen U unserer Gruppe haben not-
0
wendig die Gestalt ((): c,’]; wenn sie nicht ~ 1 sind, ist ¢ —= —¢,

U also ~ 4. Es gibt Gruppenelemente, deren Matrix B nicht mit 4
vertauschbar ist. Wir wissen, dafl in der Gleichung

AB — ¢BA
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¢ eine zweite Einheitswurzel, darum ¢ — — 1 sein mufl. Daraus folgt,
dafl B die Gestalt

o 3

hat. Die Zahlen b, b’ sind vom absoluten Betrag 1. Wir wihlen ein
bestimmtes solches B, das gemif B® — 1 geeicht sei: bb' — 1. Aufer-
dem kann man b zu 1 machen, indem man das bisherige normale Koor-
dinatensystem e, e, durch e, be, ersetzt; (43) wird dadurch nicht an-
gegriffen: ' '

B=, , (45)

Iy

Jede Matrix U unserer Gruppe, welche mit A vertauschbar ist, ist ~ 1
oder ~ 4. Wenn sie nicht mit A4 vertauschbar ist, hat sie die Form (44),
und demnach ist ihre Zusammensetzung U B mit dem durch (45) gegebenen
bestimmten B eine Diagonalmatrix. Als solche ist sie mit 4 vertauschbar,
also ~ 1 oder ~ A. Das Resultat ist, daf jedes U~ einer von den
vier Matrizen 1, 4, B, AB ist. Es liegt in der Tat die Vierer-
gruppe vor und die Darstellung B derselben.

§ 8 Ubergang zu Schriodingers Wellentheorie. In shnlicher
Weise, wie soeben der Fall n =— 2 behandelt wurde, wollen wir jetzt
zeigen, daf die zweiparametrigen kontinuierlichen Gruppen nur
einer irreduziblen Darstellung in unserem Sinne (aufer der identischen)
fahig sind. Wir erhalten jene Gruppen durch Grenziibergang aus den
zweibasigen endlichen. Die irreduzible Abelsche Drehungsgruppe
mit der Basis A, B babe die Dimensionszahl ». In der Kommutator-

gleichung
4B =¢¢BA (46)

ist ¢ eine n-te Einheitswurzel. Diese Gleichung gilt es jetzt ndher zu
untersuchen. Die Kommutatorzahl & sei eine primitive m-te Einheits-
wurzel, d. h. & sei die niederste Potenz, welche =— 1 ist; m ist Teiler
von %. Die Drehungen A, B sind von einer in # aufgehenden Ordnung:
A" ~ 1, B* ~ 1, und die Matrizen konnen daher so geeicht werden, daB
A" — B — 1 ist. Durch geeignete Wahl des normalen Koordinaten-
systems sei B auf Hauptachsen gebracht; die Glieder in der Haupt-
diagonale, b;, sind lauter n-te Einheitswurzeln. Die Gleichung (46)
liefert fiir die Koeffizienten von A4 = ||a;.][:

[

Eaik _— &a;- (47)
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konnen wir dazu benutzen, um auch die zweite Teilmatrix in die Einheits-
matrix umzuwandeln; und so fort bis zur (m — 1)-ten. Die damit erzielte
Normalform wird nicht zerstort, wenn die Variablen jeder Klasse unter-
einander der gleichen unitiren Transformation unterliegen. Diese Trans-
formation kann man schlieflich, wie man weil, noch so bestimmen, daf
die letzte Teilmatrix A eine Diagonalmatrix wird. Nunmehr nehmen
wir eine Umnumerierung vor, indem wir zunichst aus jeder Klasse das
erste Glied auslesen, darauf aus jeder Klasse das zweite usf. Dann
zerfillt 4 in d Teilmatrizen, die sich ldngs der Hauptdiagonale aneinander-
reihen. Wegen der vorausgesetzten Irreduzibilitit ist nur eine davon

vorhanden: ¢ = 1, » == m. Wir haben die Normalform (die nicht aus-
gefilllten Felder ,stehen leer¢):

0 1 &

0 1 grti
4 = 1 y B = gmt+2

a 0 0 0...0 gntr—1
Die Exponenten in B sind n aufeinanderfolgende ganze Zahlen, ¢ ist eine
primitive n-te Einheitswurzel. Die Gleichung 4» = 1 liefert endlich
noch ¢ — 1. Lassen wir die Variablennummern von r ab laufen und

verstehen alle Indizes mod.n, so lauten die beiden Abbildungen:
A m = m_y, B: = &hmy.
Daraus sofort die Wiederholungen:
A% xp = x,_,, B 3, — iy, (48)

Jetzt 1aBt sich in aller Strenge der Grenziibergang zu kontinnier-
lichen Gruppen vollziehen. Es sei (89) die kontinuierliche zweipara-
metrige irreduzible Abelsche Drehungsgruppe. Die Basis 4P, ¢ Q sei
nach (38) normiert. Wir identifizieren in unserer Betrachtung 4 mit
dem infinitesimalen ¢ (£P), B mit ¢(y @), £ und 5 reelle infinitesimale
Kounstanten. Es ist ¢(6 P) == 45, e(r Q) — B!, wénn im Limes s = ¢,
ty = ¢ wird. & fallt mit e(£7) zusammen, & ist = e(§k7). €(z Q)
ist die Reprisentation der physikalischen Grofle ¢¢7¢; diese ist also (bei
beliebigem reellen ) der Werte fihig ¢f?é%, wo % die ganzen Zahlen
durchliuft. Mit anderen Worten: die GroBe g ist der Werte k§ fibig,
ihr Wertbereich das zusammenhéngende Kontinuum der reellen
Zahlen von —oc bis - oco. (Dabei ist ¥ freilich mod.n, k& mod.n£
zu verstehen; aber n§ ist ein Multiplum von 2 z/y, folglich im Limes
unendlich groB.) Darum schreiben wir jetzt g an Stelle von k£, unter
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g zugleich eine Variable verstehend, welche den Wertbereich der physi-
kalischen Grofe g durchliuft, und VE. (¢) an Stelle von x. 1 (g) ist
eine willkiirliche komplexwertige Funktion, welche der Normierungs-

[lv@rdae =1 (49)
unterworfen ist. Ihre Werte sind aufzufassen als die den verschiedenen
Werten von ¢ entsprechenden Komponenten eines ,reinen Falles* in dem-

gleichung

jenigen normalen Koordinatensystem, das aus den Eigenvektoren der
GroBe g besteht. — An Stelle der zweiten Gleichung (48) erhalten wir
im Limes

V=9V Y (9 = €70 P(9): (50)
das ist die unitire Abbildung V., welche die Grofle ¢72 darstellt. Der
gleiche Grenziibergang an der ersten Gleichung liefert die unitdre Ab-
bildung

v =9Us: ¥ (9 = ¢¥(q—0) (1)
welche ¢f°P reprisentiert. Beide Abbildungen sind in der Tat unitér,
weil sie die Gleichung (49) invariant lassen; sie bilden, den verschiedenen
Werten von 6 bzw. ¢ entsprechend, zwei einparametrige A belsche Gruppen
linearer Funktionaltransformationen:

Uspo = UpUp, Verw = ViVu.
Y U, V, ist die Fuuktion ¢79. ¢ (g — 6), ¥ V, U, aber — @~ ¢ (¢ — 6),
so dal, wie es sein muf, die Kommutatorgleichung gilt:
YUV, = &% . 9V, U,.
Der Grofe e(6p + ©g) entspricht nach (37) die Abbildung
V(@ > ¥ (Q) = eI ey (g — o).

Geht man endlich auf die infinitesimalen Operationen zuriick — was

freilich im allgemeinen nicht zweckmiBig ist —, so bekommt man als
Représentation von
Ay (9) .
Pp: 6¢:z-ﬁ, von ¢q: 0 = ¢q.v¢(q) (52)

Damit sind wir bei der Schrddingerschen Fassung angelangt.
Die Eigenfunktionen 4, (¢) seiner Wellengleichung haben danach die Be-
deutung, dal sie die unitdre Transformation angeben, welche zwischen
den beiden Hauptachsensystemen der Griofe ¢ nnd der Energie B ver-
mittelt. Im Hinblick auf den ersten Teil ergeben sich daraus die be-
kannten Paulischen Ansitze fiir ihre Wahrscheinlichkeitsbedeutung.
Die Ubertragung auf mehrere Freiheitsgrade ist miihelos durch-

tithrbar. Die Kinematik eines Systems, die durch eine konti-
Zeitschrift fiir Physik. Bd. 46, 8






Die Eindeutigkeit der Schridingersehen Operatoren.
Von

J. v. Neumann in Berlin.

1. Die sogenannte Vertauschungsrelation
h
PQ—QP=-5—1

st in der neuen Quantentheorie von fundamentaler Bedeutung, sie ist es,
die den ,Koordinaten-Operator“ R und den ,Impuls-Operator% P im wesent-
lichen definiert'). Mathematisch gesprochen, liegt darin die folgende An-
nahme: Seien P, @ zwei Hermitesche Funktionaloperatoren des Hilbertschen
Raumes, dann werden sie durch die Vertauschungsrelation hbis auf eine
Drehung des Hilbertschen Raumes, d. i eine unitére Transformation U,
eindeutig festgelegt?®). Es liegt im Wesen der Sache, daB noch der Zusatz
gemacht werden muB: vorausgesetzt, daB P, @ ein irreduzibles System
bilden (vgl. weiter unten Anm.%). Wird nun, wie es sich durch die
Schrodingersche Fassung der Quantentheorie als besonders giinstig erwies,
der Hilbertsche Raum als Funktionenraum interpretiert — der Rinfachheit
halber etwa als Raum aller komplexen Funktionen £(g) (— oo < ¢ < + o)

*dg —, so gibt es nach Schrodinger ein besonders

+ o
mit endlichem f |7(q)

einfaches Losungssystem der Vertauschungsrelation

hod
Q: fla)—qf(e), P (@)~ 557,70 %)

') Vgl. Born-Heisenberg-Jovdan, Zeitschr. f. Phys. 84 (1925), S. 858—888, ferner
Ditac, Proc. Roy. Soc. 109 (1925) w. f. Besonders in der letztgenannten Darstellung
ist die Rolle dieser Relation fundamental, Einen interessanten Versuch zur Begriindung
des im folgenden zu diskutierenden Eindeutigkeitssatzes machte Jordan, Zeitschr. L.
Phys. 87 (1926), S. 383—3886. Indessen beruht dieser auf Konvergenzannahmen iiber
Potenzreihen unbeschriinkter Operatoren, deren Giiltigkeitsbereich fraglich ist.

®) Dieselbe bewirkt ein Ersetzen von P, @ durch UPU™, UQ U™, wodurch weder
der Hermitesche Charakter noch das Bestehen der Vertauschungsrelation berithrt wird.

%) Vgl Schrodinger, Annalen d. Phys. 79 (1926), 8. 784—756.
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Sind nun dies die im wesentlichen einzigen (irreduziblen) Lésungen der
Vertauschungsrelation?

Indessen ist die Aufgabe in dieser Form nicht geniigend prizis for-
muliert. Denn als P, @ sind, wie es die Schrodingerschen Losungen zeigen,
auch unbeschréinkte, nicht iiberall definierte Operatoren ins Auge zu fassen,
und fiir diese wird der Operator PQ — QP nicht iiberall definiert sein,
wihrend es der (auf der anderen Seite der Vertauschungsrelation stehende)

] h
Operator 5—

wenn ihre Definitionshereiche (d. h. der der linken Seite) n#her umschrieben
werden. Dieser Schwierigkeit kann man folgendermaBen aus dem Wege gehen:

Durch formale Operatorenrechnung folgt aus der Vertauschungsrelation
(F(x) analytisch, F'(x) seine Ableitung, vgl. Anm. %))

1 ist. Die beiden Seiten kénnen also nur gleichgesetzt werden,

h ’
PF(Q)—F(Q)P=51(Q),
Ay
und hieraus fiir F(z)=e *
2w, 271
e lpen o pypl
Hieraus folgt wieder formal
2x , L)
TE N ppyer = F(P+p),
und somit fir F(z)=¢ *
2 2t 25 dmy E
eqrape‘ﬁlmz er fogn 1

Diese Gleichung ist von Weyl aufgestellt und als Ersatz der Vertauschungs-
relation vorgeschlagen worden*). Thr groBer Vorzug besteht in folgendem:
Es ist unter Umstinden moglich, mit Hilfe der Operatoren P, @ einpara-

2nq R
metrige Scharen U(e)=¢ * aP, V(p) =e? zu. definieren, die unitér
sind, und dem Multiplikationsgesetz

U(e)U(B)=TU(e+p), V()V(B)=V(e+§)

geniigen®). Dann stehen auf beiden Seiten der Weylschen Gleichung

- U()V(f)=e " V(B)U(«)

1) Vgl. Weyl, Zeitschr. f. Phys. 46 (1928), Seite 1—46.
) Vgl. Weyl, Anm. ¢), ferner Stone, Proc. of Nat. Academy 1930. Im Schrédinger-

schen Falle wird, wie man leicht erkennt:

24

U F@—fla+a), V@) fld)—e® 7q).
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Orthogonalsystem:
(d() B(e)f,9)=(B(e)f, A ()" g) =n§;(3 (@) f, @) (@, A" (@) g)

=n§(ﬁ (@) g, 9,) (B (&), @,).

Dasselbe gilt, wenn an der Stelle von ¢ mehrere Variable «, 8, ... stehen.
Wir kehren nun zu unserem Problem zuriick, ersetzen aber in V(p)

p durch %—; p. Dann lautet es so:

Aile U(e),V(B) seien unitdre Operatoren, die mefbar von «, g ab-
hdingen. Es gelten die Relationen
U UPB)=U(a+),  T(@)V(B)=T(etp),
U)V(8) ="V (B)U(e).
Alle derartigen Systeme sind zu bestemmen.
Wenn wir die (von e, § meBbar abhéingende, unitire) Operatorenschar

S(e, B)=e U V()= V(H)U(e)

einfithren, so kénnen wir die obigen Relationen zu

8 (e, 6)8(r, 0) = """ 3 (a4 5, 8 4-9)
zusammenfassen. Infolgedessen ist §(0,0) die Einheit, und daher S(—«, —f)
zu S (e, B) reziprok, also 8 (e, )*= S(—«, — B). Bs sollen nun Linear-
aggregate der S (e, ) betrachtet werden, diese werden folgendermaBen de-
finiert: Sei e (e, 8) eine iiber die ganze «, f-Ebene absolut integrierbare
Funktion, dann ist wegen der Schwarzschen Ungleichheit

(8 (e, B)F, )| < [8(w B)F1-1g] =1 7[-19],
d. h. beschrénkt, also auch das Integral

[fa(eB) (S p)fg)dedp

absolut konvergent. Und zwar ist es, wenn wir ¢ = [[|a(a, f)|dadp
setzen, absolut < ¢-|f||g|. Dabei ist es in f linear und in g konjugiert-
linear. Daher ist ein Satz von F.RieB anwendbar®), wonach bei festem f
ein £ existiert, so daB dieser Ausdruck fiir jedes g = (f * g) ist, und zwar
ist || < e-|f]. f* ist durch 7 bestimmt, und zwar ist die Abhingigkeit
linear, wir konnen also einen linearen Operator 4 durch Af=f * definjeren,
nach der obigen Formel ist 4 auch beschrinkt. Wir schreiben symbolisch

A=[[a(e,p)8(x f)duds,
obwohl die Definition eigentlich

(4f,9)=J[ a(w8) (8 (e )1, 9) dudp
lautet. @ («, f) heile der Kern von 4.

%) Vgl. auch a.a.0. Anm, 7), Math. Annalen 102 (1930), S. 94, Anm. %),
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- Wir beweisen einige Rechenregeln fiir diese Operatoren Dafl .4 den
Kern aa (e, f) hat, ist klar, A* hat wegen S(a, f)*=8(—a,— f) den
Kemn a(—«, —§), 48 (u,v) und 8 (u,v) 4 wegen der Multiplikations-
regel der S (e, ) den Kern

e‘%'75(0”)"/"10 ~}ilav—pgu)

ale—u,§—v) bzw. a(e—u, f—uv).

Haben A4, B die bzw. Kerne a(ex,f), b(«, ), so hat 4+ B offenbar
a(a, )+ (e, ), bei AB dagegen ist eine kleine Rechnung notwendig:

(ABf,9)=(Bf, 4%g) = [[0(a, f) (8 (o, )1, 4™¢) dudf
— [[0(a,p) (A8 (a, B)F, 9) dedf
= o, p) et " aly — e, 5 —B) (S (1, 8) £, g) dedBdy ds
=[J{fSe ?“” “aly— a6 —p)0(«,p) dedB](8(r,6) f,g) dydd.

Der Kern von AB ist also (statt y, d schreiben wir wieder «,f, statt

w8 &Eq) [[e T qa—E B—1y)0(E ) dEdy. (Die absolute
Integrierbarkeit folgt aus der Deduktion.)

Schlieflich zeigen wir: wenn A verschwindet, so ist auch sein Kern
(bis auf eine Lebesguesche Nullmenge) gleich 0. Aus 4= 0 folgt némlich
S(—u, —v)A8(u,v)=0, also, da dieses den Kern giev—Fu (e, B) hat,

JL e a(a, B) (S (@) f, g) dudf =0.

Somit ist jedenfalls
[IP(e 8) ale, B) (S, B) £, 9) dudp =0,

wenn P (e, f) ein Linearaggregat von endlich vielen e***+) igt, also fiir
jedes trigonometrische Polynom mit einer Periode » > 0 in «, f. Da der |
zweite Faktor absolut integrierbar ist, und der dritte beschrinkt, kénnen
wir mit dem ersten (P (e, f)) Grensiiberginge ausfilhren, falls dieser dabei
gleichmifBig beschrinkt bleibt. So kénnen wir die Klasse der P(«, f) suk-
zessiv erweitern: 1. zu allen stetigen Funktionen mit einer Periode p > 0
in e, B, 2. zu allen beschrinkten stetigen Funktionen, 3. zu allen beschrénkten
Funktionen der ersten Baireschen Klagse. Wenn also 9 ein beliebiges (end-
liches) Rechteck in der «, f-Ebene ist, so kénnen wir P (e, f) in % gleich 1
und auflerhalb = 0 setzen, es wird: :

[Ja(e.p) (81 g) dedf=0

fiir alle diese 9. Daher ist (mit Ausnahme einer o, f-Nullmenge)
a(e,B) (8(e,B)f,g9)=0. Dies gilt bei festem f, g, ist aber nur 7 fest,
wahrend ¢ ein vollstindiges normiertes Orthogonalsystem durchliuft, so
gilt es fiir dieses 7 und alle genannten g auch noch mit Ausnahme einer
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rules regarding the relationship between the

®(Qqs e 5Q Dyseesby)

and the R , we stated the following special rules in
IIT.1. and III.3.:

L . If the operators R, S correspond to the
simultaneously observable quantitles ®, &, then the
operator aR + b3 (a, b real numbers) corresponds to the
quantity af+ be.

F. If the operator R corresponds to the quan-
tity ® , then the operator F(R) corresponds to the
quentity F(® ) [F(A) an arbltrary real function].

L., F. permit a certain generalization. That of
F. is rigorously implied, and runs as follows:

F*. If the operators R, S, ... correspond to
the simultaneously measurable quantities ®, &, ... (which
are consequently commutatlve; we assume that thelr number
1s finite), then the operator F(R, S, ...) corresponds to
the quantity F(®, &, ...) .

In this case, we shall assume that F(i, p, ...)
is a real polynomial in A, u, -.. , so that the meaning
of F(R, S, ...) may be clear (R, S, ... commutative)

although F*. could also be defined for arbltrary

F(», u, -..) [for the definition of the general

F(R, 8, --.) , see the reference in Note 94]. Now since
each polynomial 1s obtained by repetition of the three
operations ax, A + u, Ap , 1t sufflices to consider these,
and since Au =-% [(r +u)® - (» - w?, i.e., 1s equal to

L TS L R S P N R DA L

we can also replace these three operations by axr, A + u,
»2 . But the first two fall under L., and the latter under
F. Consequently, F*. i1s proved. :

On the other hand, L. 1s extended in quantum
mechanlcs even to the case where %, &€ are not simultane-

ously measurable. We shall discuss this question later
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Note on Exchange Phenomena in the Thomas Atom. By P. A. M.
Dirac, Ph.D., St John’s College.

[Read 19 May 1930.]
Introduction.

For dealing with atoms involving many electrons the accurate
quantum theory, involving a solution of the wave equation in
many-dimensional space, is far too complicated to be practicable.
One must therefore resort to approximate methods. The best of
these is Hartree's method of the self-consistent field*. Even this,
however, is hardly practicable when one has to deal with very
many electrons, so that one then requires a still simpler and rougher
method. Such a method is provided by Thomas’ atomic model }, in
which the electrons are regarded as forming a perfect gas satisfying
the Fermi statistics and occupying the region of phase space of lowest
energy. This region of phase space is assumed to be saturated, with
two electrons with opposite spias in each volume (27A4)*f, and the
remainder is assumed to be empty. Although this model hitherto
has not been justified theoretically, it seems to be a plausible ap-
proximation for the interior of a heavy atom and one may expect
1t to give with some accuracy the distribution of electric charge
there,

The method of the self-consistent field has recently been estab-
lished on a very much better theoretical basis in a paper by Fock§,
which shows how one can take into account the exchange pheno-
mena between the equivalent electrons. Fock shows that if one takes
the best approximation to the many-dimensional wave function that
1s of the form of a product of a number of three-dimensional wave
functions, one for each electron, then the three-dimensional wave
functions will satisfy just Hartree’s equations. In this way a theo-
retical justification for Hartree’s method is obtained. The exclusion
principle of Pauli, however, requires that the wave function repre-
senting a number of electrons shall always be antisymmetrical. One
would therefore expect to get a better approximation if one first
made the product of a number of three-dimensional wave functions
antisymmetrical, by applying permutations and taking a linear
combination, and then made it approach as closely as possible to

* Hartree, Proc. Camb. Phil. Soc., Vol. 24, p. 111 (1927).

+ Thomas, Proc. Camb. Phil. Soc., Vol. 23, p. 542 (1926). See also Fermi,
Zeit. fiir Phys., Vol. 48, p. 73 (1928).

*+ h denotes Planck’s constant divided by 2.

§ Fock, Zeit. fiir Phys., Vol. 61, p. 126 (1930}



382 Dr Dirac, Note on exchange phenomena in the Thomas atom

where D denotes the diagonal sum (or integral) of the matrix

following it. To verify the constancy of this quantity, we observe
that, from (11), .

D (pB)=||(¢"|pla") (d'| Blg") dg'dg"”

o4 J

= ‘ JJ (qnlp I q:)(qrqtnl V[q"q“’)(fI“’ IPI qur)dqrdqndqm dqi"

- J J @] elg" NG T V] d" )" |pld ) dg" dg"’ dgtv

s
=D (pB),
and similarly D (pA)=D (pA).

Hence 4 Dp(Hy+4B—3A4))

dt
=D {p(Ho+3B—14)] +3D (pB)— 4D (p4)
=D {p(Ho+ 3B -1 4)] +1D (5B)— 3D (54)
=D (pH).

Thus ik 5 D lp(Ho+3B—34)} =D (Hp~ pH) H)
=D(HpH)- D(pH? =0,

since the diagonal sum of a product is not changed by a cyclic
permutation of the factors. Hence D {p (Hy+ 3B —}.4)} is a con-
stant of the motion. It way be interpreted as the energy integral,
D+(p Hg) being the proper energy of the electrons (their kinetic
energy plus their potential energy in the field of the nucleus),
3 D (pB) being their interaction energy and —4D(pA4) being a
correction for exchange effects.

Reduction to a classical density function.

We shall now examine what the equation of motion (9) becomes
when the electron density p is spread over such a large volume of
phase space that we can neglect the fact that the momenta p do
not commute with the coordinates ¢ and reduce our description of
the atom to a classical one. We shall also now neglect the spin
variables. Each element (¢'|e|g") of the matrix representing any
dynamical variable & will now be connected with a certain Fourier
component in the p-variables of a(gp) considered as a function of
commuting ¢’s and p’s. We shall have, in fact,

(@' lelg"y = @mh)® | algp) 0= dp ......... (14),
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the connection being most accurate when the ¢ on the right-hand

side is taken to be the mean of ¢" and ¢”. The converse equation
will be

e(gp) = ] (q'la]q)eia-00h d (g’ —g") ...... (15).

If we apply equation (15) to the matrix (¢'| B|¢’’) defined by
the first of equations (18), we obtain for the corresponding classical
function B (gp) of commuting ¢’s and p’s,

Bap) =[5 —q)ea-rmma(g - ¢ [ L1ElD g

T(qq"')
_ rrl p lq:u) d "
€ J T( qru) 9
ez

- dq’ 'Y
*(21rh)3,[ r(qq:)JP(QP AP’ i (16),

with the help of (14) applied to p. Thus B (qp) 1s independent of
P, as it must be since the matrix (¢"|B|q”") 1s diagonal, and it is
" just that function of ¢ which corresponds to the potential arising
from a distribution of electrons of density p (¢p) per volume (27h)®
of phase space.

If we now apply (15) to the matrix (¢'| 4|¢") defined by the
second of equations (13), we obiain

A —_— 62 J (q | f)lqu'") —':,(q’-—q )p/hd r
(gp) rqq) (¢ —¢")
" e—ia—¢") (p—p /R

=(2—7m)~3jp(qp’)dp’J T I

with the help of (14«) apPIIed to p. The second integral here can
be evaluated. The ¢’ — ¢" and p — p’ appearing in the exponential
are really vectors and thelr product should be understood to mean
their scalar product. If we denote by 6 the a.ngle between these
two vectors and by o the magnitude of ¢" — ¢”, which is the same
as 7(g'q"’), we have for this second integral

J‘ e~ ia—a") (p—p" [k

® r1
f Y = —ig} ‘lcos 8k
"7 2 —q") Jﬂ o-do-j _1e p—p 2mrd (cos 8)

= Jo 4'7T'}Ld0' sin{a|p—p'|/M}/|p—2|

=dmh?/|p—p'[”
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Hence 4 (gp) = 27r2hj | ;(E]‘;')Iz dp’ e (17).
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These expressions for B (g) and 4 (gp) substituted in (12) will
give us a classical Hamiltonian governing the motion of the
distribution of electrons. To proceed with the solution we shall
now make an assumption concerning the form of p, which seems to
be plausible when we are dealing with the state of lowest energy
of the atom, namely the assumption that for each value of g the
phase space is saturated, with two electrons per volume (274), in
a region for which the magnitude of the momentum p is less than
a certain value P, and is empty outside this region. In symbols

plgp)=2  |p|<P

=0 Ip|>P,
where P is a certain function of ¢. This assumption gives us at
once from (16)
_ & [P(g)dq
B(g)_sw%sj ol 18),

and from (17), after a straightforward integration,

i ‘1 Ip’2 1- ' Ip] |
A = lo +2P ...(19).

For a stationary state of the atom p must be constant, so that the -
Poisson bracket of p with H must vanish. With p of the form which
we have assumed, this condition becomes that H must be constant
along the boundary between the saturated and unoccupied phase
space, t.e. H (¢P) must be constant. Now

H (¢P)=H,(¢P) + B(q) — 2é*/mh. P.
The constancy of this gives us a condition for the unknown

function P.
For an atom with atomic number Z, we shall have

282 p2
r ' 2m’

where r denotes distance from the nucleus. We may assume
spherical symmetry, so that P is a function of 7 only. We now get
for the value of H on the boundary
Ze P 2P
H@P) ===+ 5~
4e? 1',23, ’ Jmfar ’
+5 73 [rjor Py dr' + . r P3(r")dr' | .
By equating to zero the differential coefficient of this with respect
to 7, we get
Zet  d (P2 2e2P) de* 1 J"

?+(—i; 2m wh ) 3mhEst

r2P3(r")dr' =0.

0
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Multiplication by 7% and a further differentiation then give
2 2
d { d (P 2¢ P)} 4 eps ... (20).

dr O9m  wh 37wh2

This i1s a differential equation which determines P, the maxi-
mum momentum for an electron, as a function of . It differs from
the corresponding equation in Thomas’ theory only on account of
its having a term linear in P on the left-hand side, which term
may be considered to represent the exchange effects. This term
will not be very important in the interior of a heavy atom, since
the ratio of its coeflicient to that of the P2 term is 4¢®*m/mh, which
18 4/7r times the momentum of an electron in the first Bohr orbit
in the hydrogen atom. For a sufficiently large value of r, however,
the extra term causes P to become negative, and then to oscillate
with decreasing amplitude and increasing period as r—»o. A
negative value for P has, of course, no physical meaning. The fact
that our theory gives this meaningless result for the outside of the
atom is hardly surprising, since the approxxmatlon we made of
regarding p as a function of commuting ¢'s and p’s is certainly not
valid for this region. We may expect equation (20) to be more
accurate than Thomas’ equation in the interior of the atom, in
spite of the fact that it is inapplicable outside.
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On the Quantum Correction For Thermodynamic Equilibrium

By E. WIGNER
Department of Physics, Princeton University
(Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/hT] where V is the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of .. The formula is developed for this correction by means of a probability func-
tion and the result discussed.

1

N classical statistical mechanics the relative probability for the range

p1 to prdpr; e to petdpe; - - - 5 pu to putdp, for the momenta and x;
to x1-+dx1; xe tO X9+dxe; - - - ; %, to x,+dx, for the coordinates is given for
statistical equilibrium by the Gibbs-Boltzmann formula

P(wy, » v ®n; 1, 0 0y pa)d%s - - - ddndpr - - - dpn = e Pedxy - - - dandpy - - - dpn (1)
where e is the sum of the kinetic and potential energy V'

2 2 2
=l ) @
20y

and f is the reciprocal temperature 7" divided by the Boltzmann constant
B =1/kT. 3)

In quantum theory there does not exist any similar simple expression for
the probability, because one cannot ask for the simultaneous probability for
the coordinates and momenta. Moreover, it is not possible to derive a simple
expression even for the relative probabilities of the coordinates alone—as is
given in classical theory by e #V(@; - #»)_ One sees this by considering that this
expression would give at once the square of the wave function of the lowest
state |¢0(x1 C e Xy) [2 when 8= is inserted and on the other hand we know
that it is not possible, in general, to derive a closed formula for the latter.

The thermodynamics of quantum mechanical systems is in principle,
however, given by a formula of Neumann,®! who has shown that the mean
value of any physical quantity is, (apart from a normalizing constant de-
pending only on temperature), the sum of the diagonal elements of the matrix

Qe (4)

where Q is the matrix (operator) of the quantity under consideration and H
is the Hamiltonian of the system. As the diagonal sum is an invariant under

1 J. von Neumann, Gétt. Nachr. p. 273, 1927,
749
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transformations, one can choose any matrix or operator-representation for
the Q and H. In building the exponential of H one must, of course, take into
account the non-commutability of the different parts of H.

2

It does not seem to be easy to make explicit calculations with the form
(4) of the mean value. One may resort therefore to the following method.

If a wave function ¥(x; - - - x,) is given one may build the following
expression?

P(xl,“‘,anPl,"‘;Pn)
1 n 0
b o

¢(x1 —_ yl ce e Xy — y")e2i(1’1yl+"'+17nyn)/h (5)
and call it the probability-function of the simultaneous values of x; - - - x,
for the coordinates and ¢, - - + p, for the momenta. In (5), as throughout

this paper, % is the Planck constant divided by 27 and the integration with
respect to the y has to be carried out from —o to . Expression (5) is.
real, but not everywhere positive. It has the property, that it gives, when
integrated with respect to the p, the correct probabilities [\//(xl Ce X)) I2
for the different values of the coordinates and also it gives, when integrated
with respect to the x, the correct quantum mechanical probabilities

© 2
f PP f ¢(x1 PP xn)e—i(pxwl'!'"'+I’n-’¢n)/hdx1 [P dxn
—o0

for the momenta p1, - - -, p,. The first fact follows simply from the theorem
about the Fourier integral and one gets the second by introducing x;+7ys
=ur;Xr—yr=0into (35).

Hence it follows, furthermore, that one may get the correct expectation
values of any function of the coordinates or the momenta for the state ¥ by
the normal probability calculation with (5). As expectation values are addi-
tive this even holds for a sum of a function of the coordinates and a function
of the momenta as, e.g., the energy H. In formulas, it is

f_:"'fjj"'fdxl"'dxnd;bl"'d;bn[f(Pl"~Pn)+g(x1'--xn)]

P(x1~--xn;P1"'Pn)

ARy (RS

+ g(x1 RPN xn)]‘l/(xl .0 xn)dxl - dx,

for any v, f, g, if P is given by (5).

2 This expression was found by L. Szilard and the present author some years ago for another
purpose.
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Of course P(x1, * - -, %Xn; P1, - * + , Pn) cannot be really interpreted as the
simultaneous probability for coordinates and momenta, as is clear from the
fact, that it may take negative values. But of course this must not hinder the
use of it in calculations as an auxiliary function which obeys many relations
we would expect from such a probability. It should be noted, furthermore,
that (5) is not the only bilinear expression in ¥, which satisfies (6). There
must be a great freedom in the expression (5), as it makes from a function
Y of n variables one with 2%z variables. It may be shown, however, that there
does not exist any expression P(x1 - - + %,; $1 - - - P») which is bilinear in
¥, satisfies (6) and is everywhere (for all values of x1, - - -, %u, $1, * =+, Pn)
positive, so (5) was chosen from all possible expressions, because it seems to
be the simplest.

If Y(x;, - - -, x.) changes according to the second Schrédinger equation
04 LI LY
th— = — — 4+ V(xg, »+ -, % 7
Py e (2 y Tn)¥Y (7
the change of P(x1, + « -, Xn; 1, © -+, Pn) is given by
9P " py OP Gt Bl (/20 Mt el Ghrkes B p
oo yE2T .3 ®)
ot =1 My 0xp dxr - - - Gayn PSLEIIED W ptic - Apn
where the last summation has to be extended over all positive integer values
of Ny, + - -, N, for which the sum N;+No+ - - - +\, is odd. In fact we get for
dP/dt by (5) and (7)
P 1 f fd A, @2 (Pyrte - +payn) [ b
—_— = e o oe e nel YT T PrYn v
o (hm)r e
L A N
'{Z“—_[” Y@ — Y1, 00y % — Ya)
k 2mk axk2
azlp(xl V1, X yn)
+¢(x1+yl:"')xn+yn)* (9)
axk2
i
+7[V(x1 + oy, %t oY)

— V(= oy % — V) W+ vy, % Y)W — X — yn)}-

Here one can replace the differentiations with respect to x; by differentiations
with respect to v, and perform in the first two terms one partial integration

with respect to v, In the last term we can develop V(xi+v1, - * -, Xu+¥n)
and V(x1—y1, + + -, %, —%,) in a Taylor series with respect to the y and get
or 1 f fd dv. @2 Pk onyn) [ h
— = e dy,eiPirte et Pryn
ot (wh)» - 4
Pk (w1 + g1, - -, a0+ ya)*
: Z#“ - V(%1 — Y1, 00, Fn — V)
x My Oyx



0.6 Hilbrand Johannes Groenewold

29 June 1910 — 23 November 1996°

H Groenewold

Hip Groenewold was born in Muntendam, The Netherlands. He studied at the
University of Groningen, from which he graduated in physics with subsidiaries in math-
ematics and mechanics in 1934.

In that same year, he went of his own accord to Cambridge, drawn by the presence
there of the mathematician John von Neumann, who had given a solid mathematical
foundation to quantum mechanics with his book Mathematische Grundlagen der Quan-
tenmechanik. This period had a decisive influence on Groenewold’s scientific thinking.
During his entire life, he remained especially interested in the interpretation of quantum
mechanics (e.g. some of his ideas are recounted in Saunders et al.”). It is therefore not
surprising that his PhD thesis, which he completed eleven years later, was devoted to this
subject ©™°4.  In addition to his revelation of the star product, and associated technical
details, Groenewold’s achievement in his thesis was to escape the cognitive straightjacket
of the mainstream view that the defining difference between classical mechanics and
quantum mechanics was the use of c-number functions and operators, respectively. He
understood that these were only habits of use and in no way restricted the physics.

Ever since his return from England in 1935 until his permanent appointment at theo-
retical physics in Groningen in 1951, Groenewold experienced difficulties finding a paid
job in physics. He was an assistant to Zernike in Groningen for a few years, then he
went to the Kamerlingh Onnes Laboratory in Leiden, and taught at a grammar school in
the Hague from 1940 to 1942. There, he met the woman whom he married in 1942. He
spent the remaining war years at several locations in the north of the Netherlands. In
July 1945, he began work for another two years as an assistant to Zernike. Finally, he

°The material presented here contains statements taken from a previously published obituary, N Hugenholtz, “Hip Groe-
newold, 29 Juni 1910-23 November 1996”, Nederlands Tijdschrift voor Natuurkunde 2 (1997) 31.
S Saunders, ] Barrett, A Kent, and D Wallace, Many Worlds?, Oxford University Press (2010).

a: Concise QMPS Version of August 28, 2014 16




worked for four years at the KNMI (Royal Dutch Meteorological Institute) in De Bilt.

During all these years, Groenewold never lost sight of his research. At his suggestion
upon completing his PhD thesis, in 1946, Rosenfeld, of the University of Utrecht, became
his promoter, rather than Zernike. In 1951, he was offered a position at Groningen in
theoretical physics: First as a lecturer, then as a senior lecturer, and finally as a profes-
sor in 1955. With his arrival at the University of Groningen, quantum mechanics was
introduced into the curriculum.

In 1971 he decided to resign as a professor in theoretical physics in order to accept
a position in the Central Interfaculty for teaching Science and Society. However, he
remained affiliated with the theoretical institute as an extraordinary professor. In 1975
he retired.

In his younger years, Hip was a passionate puppet player, having brought happiness
to many children’s hearts with beautiful puppets he made himself. Later, he was espe-
cially interested in painting. He personally knew several painters, and owned many of
their works. He was a great lover of the after-war CoBrA art. This love gave him much
comfort during his last years.

a: Concise QMPS Version of August 28, 2014 17




Physica XII, no 7 October 1946

ON THE PRINCIPLES
OF ELEMENTARY QUANTUM MECHANICS

by H. J. GROENEWOLD

Natuurkundig Laboratorium der Rijks-Universiteit te Groningen

Summary

Our problems are about

o the correspondence a <——> a between physical quantities 4 and quan-
tum operators a (quantization) and

g the possibility of understanding the statistical character of quantum
mechanics by averaging over uniquely determined processes as in classical
statistical mechanics (interpretation).

a and § are closely connected. Their meaning depends on the notion of
observability. .

We have tried to put these problems in a form which is fit for discus-
sion. We could not bring them to an issue. (We are inclined to restrict
the meaning of « to the trivial correspondence a — a (for lim % — 0) and
to deny the possibility suggested in f).

Meanwhile special attention has been paid to the measuring process
(coupling, entanglement; ignoration, infringement; selection, measure-
ment).

For the sake of simplicity the discussion has been confined to elemen-
tary non-relativistic quantum mechanics of scalar (spinless) systems with
one linear degree of freedom without exchange. Exact mathematical
rigour has not been aimed at.

1. Statistics and correspondence.

1.01 Meaning. When poring over
« the correspondence @ < a between observables @ and the
operators a, by which they are represented in elementary quan-
tum mechanics,
5 the statistical character of elementary quantum mechanics
{we need o for 8), we run a continuous risk of lapsing into meaning-
iess problems. One should keep in mind the meaning of the concep-
tions and statements used. We only consider

— 405 —
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406 H. J. GROENEWOLD

M ,: observational meaning, determined by the relation with what

is (in a certain connection) understood as observation,

M;: formal meaning, determined with respect to the mathematical

formalism without regard to observation.

Only M, is of physical interest, M, is only of academic interest.
Dealing with }M; may sometimes suggest ideas, fruitful in the sense
of M,, but may often lead one astray. 4

1.02 Quantization. Very simple systems suffice for demonstrating
the essential features of « and B. In elementary classical point me-
chanics a system is described by the coordinates ¢ of the particles
and the conjugate momenta p. We only write down a single set $,g,
corresponding to one degree of freedom. Any other measurable
quantity (observable) a of the system is a function a(p,q) of p and ¢
(and possibly of the time #). The equations of motion can be express-
ed in terms of Poisson brackets

(@.b) _ath Geth (1.01)

When the same system is treated in elementary quantum me-
chanics, the (real) quantities a are replaced by (Hermitian)
operators a, which now represent the observables. In the equations
of motion the Poisson brackets (1.01) are replaced by the ope-
rator brackets

Z’-, h Planck’s constant of action). (1.02)

[a,b] =% (ab—ba) (h=7-

Problem «, is to find the correspondence a — a (other problems
o are stated further on).

1.03 Statistical character. The statements of quantum mechanics
on observations are in general of statistical character. Problem 8 is
whether the statistical quantum processes could be described by a
statistical average over uniquely determined processes (statistical
description of the Ist kind, type S!) or not (statistical description of
the 2nd kind, type S?). The observability of the uniquely determined
processes may be required (proper statistical description, type S,) or
not (formal statistical description, type S;). (Classical statistical
mechanics, e.g. are properly of the 1st kind, type S}).

1.04 Transition operator. Before going on we have to deal for a
moment with the operators and the wave functions.
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The Hermitian operators a form a non-commutative ring. The
normalized elements (wave functions) of (generalized) Hilbert
space on which they act from the left are denoted by ¢, the adjoint
elements on which they act from the right are denoted by %,. Unless
otherwise stated the inner product of ¢f, and ¢, is simply written
L%, The outer product of ¢}, and ¢, defines the transition operator

kvp& = (?v'-?T;.u kip. = k;u!' (103)

Take a complete system of orthonormal wave functions g,. The
orthonormality is expressed by

{Lo = '8 . (1.04)
the completeness by
5 <P,u.(PT = 1. (1.05)

In continuous regions of the parameter u the Weierstrasz
3-symbol must be replaced by the Dirac 3-function and the sum
by an integral. (1.04) and (1.05) show that every (normalizable)
function ¢ can be expanded into

¢ =2 f, 9, with f, = ¢l 0. (1.06)
[z
k,, and k], transform ¢, and ¢}, according to
K, 0 = 0,5, and oLkl = 8,9 (1.07)
(that is why they are called transition operators). (1.04) gives
KKy = K8, (1.08)

In particular k,, and k,, are for p #v orthogonal projection
operators (belonging to 9, and ¢, respectively).

The trace of an operator a (resulting when a acts towards the
right upon itself from the left, or opposite; when it bites its tail)
is (according to (1.05)) defined by

Tra =2 f.p;’,_ a9, (1.09)
I

\

{Because the right hand member is invariant under unitary trans-
formations of the g, this definition is independent of the special
choice of the complete orthonormal system of ¢,). This gives

Tr(k,2) = gl a g, (1.10)
(1.04) and (1.05) can be written
T7k,, = 3y, (1.11)

Sk = 1 (1.12)

SPA———
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and further imply

Tr(kpvku’,u/) = gp’psw’; (1.13)
E k,, Tr(k,2) = a (for every a). (1.14)

(1.13) and (1.14) show that every operator a (with adjoint af) can
be expanded into
a=Ya,k, with o, = Tr(k,a). (1.15)
v
%, is the matrix element (1.10) of a with respect to ¢, and q,.
It follows further that if T7(ac) = 0 for every a, then ¢ = 0 and
therefore (1.14) is equivalent to

Z Tr(k,,b) Tr(k,a) = Tr(ab) (for every a andb). (1.16)
/2%

Further
Tr(ab) = Tr(ba). (1.17)
When a is a Hermitian operator
' at =a, of =a, (1.18)

(the asterik denotes the complex conjugate), the system of eigen-
functions ¢, with eigenvalues a,

ag, = a,9, (1.19)

can serve as reference system. In this representation (1.15) takes the
diagonal form
a= E @Ky (1.20)
1.05 Statistical operator 1). The quantum state of a system is said
to be pure, if it is represented by a wave function g,. The statistical
operator of the state is defined by the projection operator k,, of ¢,
We will see that the part of the statistical operator is much similar
to that of a statistical distribution function. The most general quan-
tum state of the system is a statistical mixture of (not necessarily
orthogonal) pure states with projection operators k,, and non-
negative weights k,, which are normalized by
Sk,=1 (1.21)
N
(In some cases the sum diverges and the right member actually
should symbollically be written as a 8-function). The statistical
operator of the mixture is (in the same way as it would be done for
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a distribution function) defined by

k=2Xkk, ' (1.22)
"
and because of (1.21) normalized by
Trk = 1. (1.23)

(we will always write 1 for the right member, though in some cases
it actually should be written as a 3-function). For brevity we often
speak of the state (or mixture) k.

An arbitrary non-negative definite normalized Hermitian ope-
rator k (T7k = 1) has non-negative eigenvalues k&, for which Z £,=1

N . L I3

and corresponding eigenstates with projection operators k.. There-
fore k can according to (1.20) be expanded in the form (1.22) and
represents a mixture of its (orthogonal) eigenstates with weights
given by the eigenvalues.

The statistical operator k,, of a pure state is from the nature of
the case idempotent (k2,, = k). If on the other hand an idempotent
normalized Hermitian operator k is expanded with respect to

its eigenstates k,, with eigenvalues ky, we get
K=k, B2 =Fk,; Trk=1 Zk, =1 (1.24)
©

so that one eigenvalue £, is 1, all other are 0. Then ks the projection
operator of the pure state ¢,

k =k, (1.25)

Therefore pure states and only these have idempotent statistical
operators. ,
Suppose the normalized statistical operator k of an arbitrary
quantum state is expanded in some way into other normalized (but
not necessarily orthogonal) statistical operators k, with non-nega-
tive weights &,
k=2*kk,; k >0 (1.26)
This gives
k—12 =Sk (k—K) -} Shik —k2  (1.27)
If we expand with respect to pure states k, (k2 =k,), (1.27) be-

comes )
k— k2 = } SRk, — k)2 (1.28)

7,8
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This shows that k — k? is a non-negative definite operator. If the
given state is pure (k? = k) all terms at the right hand side of (1.27)
(which are non-negative definite) must vanish separately. For the
terms of the first sum this means that all states k, with non-vanish-
ing weight (%, > 0) must be pure, for the terms of the second sum it
means further that all these states must be identical with each other
and therefore also with the given state (k, = k). The given state is
then said to be indivisible. If the given state is a mixture, k — k2
must be positive definite. Then at least one term at the right hand
side of (1.28) must be different from zero. This means that at least
two different states k, and k; (k, # k) must have non-vanishing
weight (k, > 0, k&, > 0). The given state is then said to be divisible.
Thus pure states and only these are indivisible. This has been proved
in a more exact way by von Neumann?).

1.06 Observation. In order to establish the observational meaning
M,, one must accept a definite notion of observation. We deal with
3 different notions:

0,: the classical notion: all observables a(p,g) can be measured
without fundamental restrictions and without disturbing the system,

Oy: the quantum notion (elucidated in 2): measurement of an ob-
servable, which is represented by an operator a, gives as the value
of the observable one of the eigenvalues @, of a and leaves the system
in the corresponding eigenstate k,,, (cf. (1.20)); if beforehand the
system was in a state K, the probability of this particular measuring
result is Tr(kk,,). ,

Suppose for a moment that the statistical description of quantum
mechanics had been proven to be formally of the 1st kind S}, but
with respect to O, properly of the 2nd kind SZ. Then (if any) the
only notion, which could give a proper sense to the formal descrip-
tion, would be

O,: the utopian notion: the uniquely determined processes are
observable by methods, hitherto unknown, consistent with and
complementary to the methods of O,.

With respect to quantum theory classical theory is incorrect,
though for many purposes it is quite a suitable approximation (for
lim B — 0). With regard to the utopian conception quantum theory
would be correct, but incomplete. In this a description is called
correct if none of its statements is in contradiction with observa-
tional data. It is-called complete if another correct description,
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in finding the appropriate form of the required operators a. This
suggests the problem (not further discussed here) whether all or only
a certain simple class of operators a occur in quantum mechanics.

Suppose for a moment that all relevant quantum operators a had
been fixed in one or other way. Then one might ask for a rule
a— a(p,q), by which the corresponding classical quantities a(p, ¢)
are uniquely determined (problem 2,). Problem «, would be easily
solved in zero order of %, ambiguities might arise in higher order.
Now (with respect to O,) the classical quantities have only a meaning
as approximations to the quantum operators for lim % — 0. There-
fore, whereas in zero order of 7 it is hardly a problem, in higher order
problem o has no observational meaning M, (with respect to O,).

Problems «; and «, could be combined into problem «;, asking for
a rule of one-to-one correspondence a(p,q) < a between the clas-
sical quantities a(p,q) and the quantum operators a. Beyond the
trivial zero order stage in %, problem «; can (with respect to 0,) only
have an observational meaning M,, as a guiding principle for de-
tecting the appropriate form of the quantum operators (i.e. as pro-
blem 2;). A formal solution of problem «; has been proposed by
We y1?) (cf. 4.03). We incidentally come back to problem ozin 1.18.

1.10 Quantum observables. In this section & will not denote a clas-
sical quantity a(p,g), but it will stand as a symbol for the observable,
which (with regard to 0,) is represented by the quantum operator a.
According to O, two or more observables a, b, . . . . can be simultane-
ously measured or not, according as the corresponding operators
a, b,.... respectively do or do not commute i.e. as they have all
eigenstates in common or not. Problem «, deals with the (one-to-one)
correspondence 4 <— a between the symbols ¢ and the operators a.
Problem o has no sense as long as the symbols @ are undefined. They
may, however, be implicitely defined just by putting a rule of cor-
respondence. (When the symbols & are identified with the classical
quantities a(p,q), problem «, becomes identical with problem z3).
Von Neumann?) has proposed the rules

if a <— a, then f(a) «— f(a), I
ifa <= aandb «<— b,thena + b < a - b. II

7(a) is defined as the operator, which has the same eigenstates as a
with eigenvalues f(a,), where a, are those of a. Then I seems to be
obvious. The observable f(a) can be measured simultaneously with
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a, its value is f(a,), where a, is that of 2. When a and b commute,
a -- b has the same eigenstates as a and b with eigenvalues a, + b,,
where @, and b, are those of a and b. Then IT seems also to be ob-
vious. @ + b can be measured simultaneously with ¢ and 3, its value
is a, + b, where a, and b, are the values of 2 and b. When a and b
do not commute, II is proposed with some hesitation. Because ac-
cording to O, the probability of finding a value g, for ¢ in a state k is
Tr(kk,,) (and because of 1.20)), the expectation value (average

e
value) of ¢ in this state is

Ex(a) = 2 Tr(kk,,)a, = Tr(ka) (1.31)
"

and similar for b. If one requires that for a certain pair of observables
a and b always _
Ex(a + b) = Ex(a) + Ex(b), (1.32)

one must, because of
Tr(k(a + b)) = Tr(ka) + Tr(kb), , (1.33)
have that
Ex(a + b) = Tr(k(a + b)). (1.34)

Because this has to hold for all states Kk, @ and b have to satisfy rule
I1. When II is given up for certain pairs «,b, the additivity of the
expectation values of these pairs has also to be given up.

In 4.01 it will be shown that, if I and II shall be generally valid,
the symbols & have to be isomorphic with the operators a. But then
there is no reason to introduce the former, their task (if any) can
be left to the latter. Accordingly for the sake of brevity we shall
henceforth speak of the (quantum) observable a.

When on the other hand, the symbols & are intended as real com-
muting quantities, the general validity of I and II cannot be main-
tained. As long as the symbols @ are not further defined, problem
oy comes to searching for a one-to-one correspondence 2 <— a
between the commutative ring of real symbols @ and the non-com-
mutativering of Hermitian operatorsa. There may be no, one or
more solutions. After the pleas for I and for II, one might be in-
clined to maintain 1 and to restrict II. In 1.13 we meet with a par-
ticular case (problem «5) for which II has to be maintained and there-
fore I has to be restricted. Because we are further exclusively in-
terested in problem «5, we will not examine the possibility of solu-
tions for which 11 is restricted.
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(the o, are the same as in (1.15)). These relations show, that the
functions 4(£) can be regarded as elements of a (generalized)
Hilbert space, in which the %,,(£) form a complete orthonormal
system; (1.52) expresses the orthonormality, (1.53) the completeness.

We now show that the correspondence a «+— «(%) has to be a
one-to-one correspondence. Suppose for a moment there are opera-
tors k,, to which there correspond more than one functions kw,(i),
which we distinguish by an index p, kK, <— &, ,(£). Then the ex-

Ppression
2 S E F; p(E) s (8) Burwr; p(E)

evaluated with (1 52 ) gives ky,; o (5) evaluated with (1.53) it gives

ky; p(€). Therefore £, (&) and &y, ,(£') have to be identical. To
each operator a and only to this one there has to correspond one and
only one superquantity a(£). As a consequence the superquantities
a(£) must depend on the same number of parameters (at least if
they are not too bizarre) as the operators a, i.e. on twice as many as
the wave functions o.

Thus to each (normalizable) real functmn a(€) and only to this one
there corresponds one and only one Her mitian operator a, which
represents an observable quantity (with respect to O,). In other
words every real function a(£) is a supsrquantity. Because this also
holds for the (real and imaginary parts of the) parameters £ them-
selves, none of them can be hidden in the sense defined above. (An
observable quantity may occasionally be inobservable in a measur-
ing device adepted to an incommensurable quantity; in this sense a
parameter may occasionally be hidden). In particular all parameters
must obey (1.48).

Comparing (1.15) and (1.54) we see that the correspondence
a <> a(E) canbe expressed by ‘

a(g) = Tr(m(E)a), a = [dEm(E)a(), - (1.59)
m(g) =‘§ ky, k5 (€); m'E) = m(D). (1.56)

The Hermitian transformation nucleus m(g) satisfies the rela-
tions

with

TrmE) =1, (1.57)
JaEm(E) =1; (1.58)
Tr(m() m()) = 3E—E), (1.59)

[ dE Tr(m(E) a) Tr(m(E) b) = Tr(ab) (for everyaand b) (1.60)




ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS 449

and with (4.01)
ab < ab (for all a and b) or ab <— ba (for all 4 and 5). (4.05)

This means that the rings are isomorphous.

It follows that, if one ring is commutative and the other not, I and
II are inconsistent ?). (When the commutators arc of the order of i,
the discrepancy is according to (4.03) of the order of 72).

4.02 Bracket expressions. Then V'. For the correspondence a <— a
between the commutative ring with generating elements $ and ¢
and the non-commutative ring with generating elements p and q
with commutator (3.01) (p <— p and g <— q) we show that the
rule (cf. 1.18)

i a(p,g) < aand b(p,g) < b, then (a(p.q), b(p.g)) < [ab] V’

is self contradictory.
With

P? < X, ¢ < Xp; P =¥y, G Y2 (4.06)

. we find from

F#*9) =t i [xdl =P, 407
3 (%p) =0« 3[x,p] =0
(and similar relations for ¢% and X,) that
e S e ) (4.08)
and from
P =P~ vl =p" + o, (.09

1) =0« %[y,pl =0
(and similar relations for ¢® and y,) that
PPt 3ap +dy > € 300 4y (410)
(¢1, ¢3; dy, dy are undetermined constants). Further we get
Hp° .2 =12 <>1[(0*+3e1p+dy), (@%co) ] =4 (pPPa+ap?) +61Q, @
pg* < $(Pa®+9°p) +cop
and
L(p2.¢%) = p% < 3(p® + 3cip + dy), (@@ + 3629 + )]

=1P%® + a%p?) + 1A + @ + ep® o (412)
Physica XII 29



450 H. J. GROENEWOLD

With (4.11) we get Co
3 ,Mz)— $°¢* < 5 [(3(p*a + qp’) + a1q), ( (PG® + @°P) + )]
1 (pPQ? + @°p?) + 7P —c1@® —op® — R (413)
(4.12) and (4.13) can only be identical for ¢; = ¢; = 0 and % = 0.
Therefore V' is self inconsistent (the deficiency is of the order of 2.
4.03 Weyl's corvespondence. And finally III and IV with para-
meters p and ¢ (i.e. for the same rings as in 4.02). We denote the
density function by p(p,9). The rules (cf. 1.13)
1 <1, 111
if a(p,g) «<— a and b(p,q) <— b,
then [fdp dq o(p.q) a(p.g) blp.g) = Tr(ab) IV
can be satisfied by (1.55)
alp.g) = Tr(m(pg)a), a = [/ dp dg e(p.g) m(p.g) alp,g) (4.14)

with a transformation nucleus m(p,q), which satisfies (1.57), (1.58);

(1.59), (1.60)
Trm(pg) = 1, (4.15)

JIdp dq o(p.g) m(p.g) = 1; (4.16)
Tr(m(p,g) m(p'.q)) = o7 (p,9) 8(p — #') 3¢ —¢), (417)
J] dp dq o(p.q) Tr(m(p.g) a) Tr(m(p,g) b) =
= T7(ab) (for everyaand b), (4.18)

When we replace in (1.56) the complete orthonormal systems
k%,(p.q) of (1.54) and k, of (1.15) by the complete orthonormal
systems

L a4 o5 310 and 67 9 of (3.20),

h
we find a solution
(? q f dx dy eh (-"P+CVQ) (xﬁ+yq) (4.19)
of (4.15), (4.16); (4.17), (4.18) with the density function
1
olg) =+ - (420)

Then we get for (4 14)
alp,g) = /dx dye" (b +yq) T?’( ,, (xp+yq) )

a~_//dxdyeh(@+y47 1 /:[dpd h(—"f"‘}'yﬂa(p,q).

(4.21)
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With the Fourier expansions (3.10) and (3.20) this correspon-
dence reads

[ / dx dy a(xy) €% 7 LGP / f dx dy alxy) e® PV (4.22)

which is W e y1s correspondence 2).

II is a consequence of IV and is therefore satisfied by the cor-
respondence (4.21). We will see what is left of I and V. If ¢ «— a
and b «<— b according to (4.21) we find with (3.04)

ab:%f[.... fdxdydx’dy’dpdqdf)'dg’.

i i) |
67 ((x+2)p+(¥+y)q )827’ (xy” —'yx) (x!’+yq+x1> +9°9") (?,q) b(p7q) (423)

With the variables

Z_—._x—}—x', n:y—”—yl’ c:—.:?ngi5 s 1':.4___!:.?_,
, , (4.24)
’ xX—% ’ - ’ 4 7/ ’
g =it =t o= =1
this becomes

ab = %—;[f o f dZ d dZ d dodxds’ d=' g o) 35 ()
) 0 4 ) b — b+ 37)
= %[ f [ f 2% dn do d= ¥ T o G
alc +3n 7w —31E) blo—im 7+ 19
[Nyﬁdf%d_h@wm — % (o)
(5 10548 (e ))(e 10545 b, )). (4.25)

The expressions in brackets at the end are 2 symbolical represent-
ation of Taylor expansion. With the substitution

E>x,1> Y, 0> b 7> g 4.26)

we get by partial integration

ab=% jdxclyﬁm’ﬂq)i{fdﬁdq .

—%MW( alpg) €T W T8 b, q)). (4.27)
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This gives for the Hermitian operators § (ab <4 ba) and L.

’ 2
. (ab — ba) the correspondence
‘ oszb— e _3c b(p,q) < % (ab + ba), (4.28
a(p.g) C 2(315 Py a¢> 2 - ba), (4.28)
. h(8 © 3 ¢ i
a(p,q) sin o] (*&5‘—8?— gg) b(p,g) <~ = (ab—ba). (4.29)

To the neglect of terms of order of %% and higher (4.28) and (4.29)
would read

a($.9) b(p,q) < } (ab + ba), (4.30)

V3 7 3 ¢ /
6.0 % (555 — 525 M) — 5 (ab—ba). (431

(4.30) would lead to I, (4.31) is equivalent to V’.

We examine which functions f(a) satisfy 1. From (4.28) we see
that the correspondence

ifa «<— a, then a” <— a” (for every integer 7) (4.32)

only holds if
A8 © 3 0
N O g = gl :
a*cos > (8 5 % F j)) a' = a"*' (for all integers % and 7). (4.33)

First take for a a homogeneous polynomial in 4 and ¢ of degree #.
An elementary calculation shows that the condition

(s 2 8 6 ,
dCOS-Q-(ga—q——gq—%) a=a (434)
or ' .
58 8 8y |

is only satisfied if a is of the form (xp + yg)”. Then it follows that
any polynomial in p and g can only satisfy (4.33) if it is a poly-
nomial in xp + yg. This finally means that I can only be satisfied
if a is a function of a certain linear combination xp - yg of p and ¢-
With the helpof the Fourier expansion (4.22) it is easily seen that
every (normalizable) function of xp + yq does satisfy I. Therefore the
least restricted form of I, which is consistent with the correspondence
(4.21) is

. fep + y9) «<— f(xp + yq). (4-36)
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As to V', we see from (4.31) that for the correspondence (4.21) the
bracket expression ((a(p,9), b(p,q))) (cf. 1.14) defined by

if a(p,q) «<—aand b(p,q) <D, then ((a(p.g), b(p,q)))<—[a,b] (4.37)

is given by .
2 . (k3 ©C 3 ¢

(@) b)) = alpg) 350 (5 55 52— 55 75 ) Hba)- (439)
If a(p,q) or b(p,q) is a polynomial in p and ¢ of at most 2nd degree,
we have a special case for which the bracket expressions ((2,0)) and
(a,b) coincide.

The correspondence (4.21) is a solution of ITI and IV. We have
not investigated the possibility of other solutions with the same
parameters p and g.

5. Quasi-distributions.

5.01 Proper and improper representations. With We yl's cor-
respondence (4.22) as a special solution of

1«1 111
if k «— k(p,q) and a <— a(p,g),
then Tr(ka) = ';I;[ [ ap dq k(p.q) a(p.q) v

(with parameters p and ¢ and density function p(p,q) = 1/A), we
obtain a special case of a transformation between a representation in
terms of operators k and a and a representation in terms of functions
k(p,g) and a(p,q). Quantum statistics are usually represented in
terms of operators, classical statistics in terms of functions. We as-
sert that the usual description is also the proper one. The statistical
operator k of the quantum representation and the statistical distri-
bution function k(p,q) of the classical representation are non-ne-
gative definite, but in general the quantum %(p,9) and the classical
k are not. This makes that for orthogpnal states, for which

THik) =+ [[dp dg bp.g) alp.g) =0, (500)

the product k,k, or %;(p,q)k,(p,q) vanishes in the proper representa-
tion, but in the improper representation it need not. The equations
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of motion of the quantum k are described by infinitesimal unitary
transformations, those of the classical 4(p,q) by infinitesimal ca-
nonical transformations (contact transformations), but the equa-
tions of motion of the classical k and the quantum £(p,q) are in
general not of these types. Because the improper representation is
formally equivalent to the proper one, it is (provided it is not mis-
interpreted) a correct description, though it is in general a rather
impracticable one.

In spite of its deficiences, or rather because of them, we discuss
some aspects of the improper representation of quantum mechanics
in terms of £(p,q) and a(p,q), i.e. the quasi-statistical description of
the Ist kind Q! (cf. 1.19). It more or less illustrates the ways along
which some opponents might hope to escape B o hr’s reasonings
and von Neumann’s proof and the places where they are
dangerously near breaking their necks.

5.02 Transition functions. For the transition functions ku(9.9)
corresponding to the transition operators (1.03) according to (4.21)
we find with the help of the g-representation (occasionally expres-
sing the inner product explicitely by an integral) similar to (3.16)

x & i %z 0
kuw(B.9) [dx dy &% 0 [ag o8 (g T TN 1 o)
A R A )
= [axdlig 2 H TP T E o)
- f FAE L _ﬁ)‘
fdxcpﬂ(q—l— 2)67‘ cp,,(q 5 ‘ (5.02)

Because the wave functions ¢, are only determined but for a
factor &#* ¥u (y real), the &,,(p,g) are only determined but for a factor
e V=), The distribution functions, which are thus obtained with
Weyl's correspondence 2) become identical to those given by
Wigner?1).
5.03 Proper value. 1In a distribution k or k(p,q) a quantity a or
a(p,q) can be regarded to have a proper value if the condition (2.10)

Tr(kf(@)) = j(Tr(ka)) (5.03)

or

7 /dfbquibQ)f(“(P»q ——f( fdﬁqu(;bq) ?q)) (5.04)
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is satisfied for every f. Whereas the validity of (5.04) is for a proper
(non-negative definite) k(p,g) already guaranteed by the validity
of the special case f(a) = a2, it is not for a proper k or an improper
k(p,q). For a proper k the validity of (5.03) or (2.11) requires that a
is of the form

a(zp - ¥q) (5.05)

and k an eigenstate of a. For any k(p,g) the validity of (5.04) re-
" quires that k(p,q) is of the form

3alp.g) — @), (5.06

which is a proper (i.e. non-negative definite) one. Because (5.03) and
(5.04) are identical, the conditions (5.05) and (5.06) are equivalent.
This means that the eigenstates of the operators a(¥p -+ yq,) and
of no other operators correspond with proper (and orthonormal
and therefore non-overlapping) distributions of the form (5.06), in
which a,, is the corresponding eigenvalue. This case would be rather
encouraging for a statistical description of the Ist kind S, if it
were not just an exceptional case.
The eigenfunctions of a(xp + yq) are in g-representation

9p(g) = ——1'\/96:}1/6; (= 357 be=+70) for x # 0,
i (5.07)
2lg) = vy 8lyg —¢) 7 for x = O.
(v(p) real arbitrary). The corresponding eigenvalues are alp)
a(xp + yQ)3, = alp)9, (5.08)

o, which is the eigenvalue of xp + yq (for arbitrary fixed x and y),
runs between — oo and -+ co. The domain of eigenvalues of
a(xp + yq) is therefore the same as that of the functions a(z)
(— oo <z < o). This means that the domain of the proper values
of observables, which have such, are unrestricted by quantum
conditions.

Inserting the eigenfunctions (5.07) in (5.02) we get

i/ PPy, .
((l:,“"q;, ,u.z v""}‘(Py)"“Y(Py)). (5'09)

kulp.q)= (xzb yg—2T P”)

(The expression in brackets in the exponent in (5.09) isa canonical
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conjugate of xp + yg). The %,,(p,q) are actually of the form (5.06).

5.04 The harmonic oscillator. After we have treated in 5.03
a special case for which the k(p,g) are of proper type themselves,
we now deal with a case for which their equations of motion are
of proper type. According to (1.43) and condition V' they are if
((H(p,9),k(p,9)) coincides with (H(p,9),k(p,q)) and according to
(4.38) this is the case for every k(p,q) if H(p,q) is a polynomial in
p and ¢ of at most 2nd degree. This condition is satisfied for the
harmonic oscillator, for which H(p,q) coincides with the classical
Hamiltonian :

_? T_"fz_é 2 . g P i
Hpg)= - +—=¢=5 0?+7%); = =1 =qVme. (5.10)
m is the mass, o the classical circular frequency of the binding. We
consider p’ and ¢" as new canonical coordinates and omit the dash.

In g-representation the normalized stationary solutions of the
wave equation

X __wv( '232,2> | -
— T =7 —h Y o4(9) (5.11)
are A
o)) =Ty (i—)e‘i”“ (n=0,1,2,....). (5.12)
Vnl Ve VA S

The Hermitian polynomials Hn(——\/—q—ﬁ-> have the generating

function

e:e‘%zgz=ooon_1‘(\jh)H(\_§%) ' | 5.13)

(5.02) becomes with (5.12)

X
1 x 2 q+ A
kmn(ﬁ:9)= ——~1—-——____/dx e 2h (q+§) Hm(_____z) .

V2 L

i 1 %\2 —= 5
e (3 H”<____2>3“"""""f"". (5.14)



0.7 José Enrique Moyal

1 October 1910 — 22 May 19987

] Moyal

Joe Moyal was born in Jerusalem and spent much of his youth in Palestine. He
studied electrical engineering in France, at Grenoble and Paris, in the early 1930s. He
then worked as an engineer, later continuing his studies in mathematics at Cambridge,
statistics at the Institut de Statistique, Paris, and theoretical physics at the Institut Henri
Poincaré, Paris.

After a period of research on turbulence and diffusion of gases at the French Ministry
of Aviation in Paris, he escaped to London at the time of the German invasion in 1940.
The eminent writer C.P. Snow, then adviser to the British Civil Service, arranged for him
to be allocated to de Havilland’s at Hatfield, where he was involved in aircraft research
into vibration and electronic instrumentation.

During the war, hoping for a career in theoretical physics, Moyal developed his ideas
on the statistical nature of quantum mechanics, initially trying to get Dirac interested in
them, in December 1940, but without success. After substantial progress on his own, his
poignant and intense scholarly correspondence with Dirac (Feb 1944 to Jan 1946, repro-
duced in M°¥%) indicates he was not aware, at first, that his phase-space statistics-based
formulation was actually equivalent to standard QM. Nevertheless, he soon appreciated
its alternate beauty and power. In their spirited correspondence, Dirac patiently but in-
sistently recorded his reservations, with mathematically trenchant arguments, although
lacking essential appreciation of Moyal’s novel point of view: A radical departure from
the conventional Hilbert space picture M¥*. The correspondence ended in anticipation
of a Moyal colloquium at Cambridge in early 1946.

1The material presented here contains statements taken from a previously published obituary, ] Gani, “Obituary: José
Enrique Moyal”, ] Appl Probab 35 (1998) 1012-1017.

a: Concise QMPS Version of August 28, 2014 18




That same year, Moyal’s first academic appointment was in Mathematical Physics at
Queen’s University Belfast. He was later a lecturer and senior lecturer with M.S. Bartlett
in the Statistical Laboratory at the University of Manchester, where he honed and applied
his version of quantum mechanics 2M%°.

In 1958, he became a Reader in the Department of Statistics, Institute of Advanced
Studies, Australian National University, for a period of 6 years. There he trained several
graduate students, now eminent professors in Australia and the USA. In 1964, he re-
turned to his earlier interest in mathematical physics at the Argonne National Laboratory
near Chicago, coming back to Macquarie University as Professor of Mathematics before
retiring in 1978.

Joe’s interests were broad: He was an engineer who contributed to the understanding
of rubber-like materials; a statistician responsible for the early development of the mathe-
matical theory of stochastic processes; a theoretical physicist who discovered the “Moyal
bracket” in quantum mechanics; and a mathematician who researched the foundations of
quantum field theory. He was one of a rare breed of mathematical scientists working in
several fields, to each of which he made fundamental contributions.

a: Concise QMPS Version of August 28, 2014 19
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QUANTUM MECHANICS AS A. STATISTICAL THEORY
By J. E. MOYAL
Communicated by M. S. BARTLETT
Received 12 November 1947

1. INTRODUCTION

Statistical concepts play an ambiguous role in quantum theory. The critique of acts
of observation, leading to Heisenberg’s ‘ principle of uncertainty’ and to the necessity
for considering dynamical parameters as statistical variates, not only for large aggre-
gates, asin classical kinetic theory, but also for isolated atomic systems, is quite funda-
mental in justifying the basic principles of quantum theory; yet paradoxically, the
expression of the latter in terms of operations in an abstract space of ‘state’ vectors is
essentially independent of any statistical ideas. These are only introduced as a post hoc
interpretation, the accepted one being that the probability of a state is equal to the
square of the modulus of the vector representing it; other and less satisfactory statistical
interpretations have also been suggested (cf. Dirac(1)). '

One is led to wonder whether this formalism does not disguise what is an essentially
statistical theory, and whether a reformulation of the principles of quantum mechanics
in purely statistical terms would not be worth while in affording us a deeper insight
into the meaning of the theory. From this point of view, the fundamental entities
would be the statistical variates representing the dynamical parameters of each
system; the operators, matrices and wave functions of quantum theory would no longer
be considered as having an intrinsic meaning, but would appear rather as aids to the
calculation of statistical averages and distributions. Yet there are serious difficulties
in effecting such a reformulation. Classical statistical mechanics is a ‘erypto-deter-
ministic’ theory, where each element of the probability distribution of the dynamical
variables specifying a given system evolves with time according to deterministic
laws of motion; the whole uncertainty is contained in the form of the initial distribu-
tions. A theory based on such concepts could not give a satisfactory account of such
non-deterministic effects as radioactive decay or spontaneous emission (cf. Whit-
taker (2)). Classical statistical mechanics is, however, only a special case in the general
theory of dynamical statistical (stochastic) processes. In the general case, there is
the possibility of ‘diffusion’ of the probability ‘fluid’, so that the transformation with
time of the probability distribution need not be deterministic in the classical sense.
In this paper, we shall attempt to interpret quantum mechanics as a form of such
a general statistical dynamics.

I. QUANTUM KINEMATICS
- 2. THE EXISTENCE OF PHASE-SPACE DISTRIBUTIONS IN QUANTUM THEORY

In the accepted statistical interpretation of quantum theory, the possible values of
a dynamical variable s are the eigenvalues s, of the corresponding operator (observable )
7-2
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s in the Hilbert space of the state vectors. The probability of finding s, in a state ¥ is
then equal to the square of the modulus | a; |2 of the projection g, of ¥ on the corre-
sponding eigenvector ;. A complete or irreducible representation for a given mechanical
system is given by a set of commuting observables s such that their eigenvectors i,
span the whole space, i.e. such that any ¢ = %a;i ¥r,. Hence we obtain directly from

¥ the joint distribution of the variables s. It is known, however, that these s are not

sufficient in themselves to specify the system completely; we need, in addition, another

complementary set, say r, which does not in general commute with s; for example,

a complete representation is given by either the Cartesian coordinates q or their con-

jugate momenta p, but the complete dynamical specification of the system requires

both g’s and p’s. Hence, the phase-space distributions of complete sets of dynamical
- variables, which are required for a statistical theory, are not given directly by .

It has been argued (3) that such distributions do not exist, because of the impossi-
bility of measuring non-commuting observables simultaneously. This argument is not
conclusive for two reasons; one is that the impossibility of physical measurements does
not preclude us from considering the proposition that there exists a well-defined pro-
bability for the two variables to take specified values or sets of values; in fact, the theory
of probability is introduced to deal with such situations where exact measurement is
impossible (see Jeffreys (4)). The other reason is that it is possible in principle to form
operators G corresponding to functions G(r,s) of non-commuting observables; the

expectation value of G in a state ¢ is then given by the scalar product (¥, Gi). Butthe

joint distribution of  and s can be reconstructed from a set of such expectation values,
e.g. the values of all the joint moments #%s?. The formalism of quantum theory allows
us therefore to derive the phase-space distributions indirectly if a theory of functions
of mon-commuting observables is specified and conversely. ‘

There are serious difficulties to be met, however, in defining these distributions

unambiguously. This may be seen, for example, in the case of the harmonic oscillator. -

The energy eigenvalues form a discrete set &, = (n+ $)hv. The corresponding eigen-
functions u,(q), v,(p) are sets of Hermite functions, continuous in p and ¢. Hence any
joint distribution for p and ¢ in a state consistent with the individual distributions
P(@)¥*q) = Py af muf(Q) u(g) end  B(p)$*(p) = T afa,vi(p)vi(p)
i, .

i,k

- must extend continuously over the whole (9, ) plane, while any joint distribution
for the energy H = $(p?/m+ 27rmvq?) and the phase angle 8 = tan— p/q consistent with
probabilities a,,a} for ,, will be concentrated on a set of ellipses

3(p¥fm+2mmyg?) = (n+3) .

We are thus forced to the conclusion that phase-space distributions are not unique for
a given state, but depend on the variables one is going to measure. In Heisenberg’s words (5), -
‘the statistical predictions of quantum theory are thus significant only when combined

with experiments which are actually capable of observing the phenomena treated by
the statistics’. Since the introduction of statistical concepts in atomic theory is

justified by an analysis of the interaction between observed system and observer, =

it is perhaps not surprising that different distributions should arise according to the
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experimental set-up. For example, measurement of the spectra of an atom corresponds
to a distribution with discrete values for the energy and angular momenta. Direct
transformation of this distribution to (p,q) space, corresponding to a distribution
concentrated on discrete orbits, would not be appropriate for the treatment of collisions
of the same atom with a beam of electrons; the appropriate distribution in the latter
case arises from wave functions filling the whole space continuously, and is incom-
Patible with discrete orbits.

The statistical interpretation of quantum kinematics will thus have to give methods
for setting up the appropriate phase-space distributions of each basic system of dynamical
variables in terms of the wave vectors, and for transforming such distribution into
one another.,

3. PHASE-SPACE DISTRIBUTIONS IN TERMS OF WAVE VECTORS

We denote by r a set of commuting observables or operators giving a complete repre-
gentation, s the complementary set, such that s do not commute with r and that r
and s together form a basic set of dynamical variables, characterizing a given system;
r and s are their possible values or eigenvalues (these are, of course, ordinary com-
muting variables). The most natural way of obtaining the phase-space distribution
F(r,s) is to look for its Fourier inverse, i.e. the mean of exp{i(rr+6s)} (known in
statistical terminology as the characteristic function) On forming the corresponding

operator

M(r,6) = exp {i(rr +0s)} = Z 'TI‘+0S) (8:1)

the characteristic function in a state i is given by the scalar product

M(7,0) = (Y, eXm+09)), (3-2)
. From well-known formulae for Fourier inversion, the phase-space distribution function
is then 1 ‘ .
Fir,s) = s f f (3, o408 ) @i 09 . 36 (3-3)
for continuous eigenvaluest, and
F(r, 8p) = f W girr+-08) W) e—i(fm—ﬂsL) drdf (3-4)
¢ T——>oo 4T

for discrete eigenvalues 7;, s;, (Cramér (6))1.
The operator (3-1) takes a specially simple form for canonically conjugate coordinates

and momenta ¢, p (pq—9qp = £[i),
M('T, B) = ehihnl git girk — g—}irD gifa ghire (3-5)

(cf. Kermack and McCrea (7)). From the second expression for M, we find

M(r,0) = f?#

T When no limits are specified, all integrals are to be taken as from —co to +co.
I The term distribution function is used in this paper to denote the probability density of
continuous eigenvalues, and the finite probability of discrete eigenvalues.

T) €029 (q + $iT) dg, (3+6)
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and hence by Fourier inversion
1 ,
F(2,9) = 5= [ #4(a—¥ir) = g + i dr, (37)

an expression first given by Wigner(8). From the first operator form of M in (35),
and by expressing ¥(¢) in terms of the momentum wave function ¢(p)

¥ = 1 [4(z) varap, (39
we find, by a series of partial integrations,

M(r,0) = 1 [ [ 17(a) §() vy v scos00.dpdg

= pt f f XA D 34 [ () b p) 7P| ArPHID dpp I (3-9)

and hence the alternative expression for the phase-space distribution

F(p,g) = It X0 2%00 90 [y % (g) b p) 9], (310) |

It is shownin Appendix 1 that the Heisenberg inequality ApAg > 37 follows directly
from the expression for F(p, ¢) given above. In this sense, the expression of the phase-
space distributions in terms of the wave vectors may be considered as a more complete
formulation of the uncertainty principle than that given by the inequalities, since it
should contain all possible restrictions on the probabilities and expectation values of
non-commuting observables.

This choice of expression for the phase-space distributions constitutes a new hypo-
thesis, not already included in the basic postulates of quantum theory as they are
usually formulated. The discussion of certain difficulties associated with this choice,
in particular the appearance of ‘negative probabilities’ for certain states, is made
clearer by further developments of the theory, and will therefore be deferred to §15.
Other possible choices and the possibilities of experimental verification are discussed
briefly in §17.

4. PHASE-SPACE EIGENFUNCTIONS

If we insert the expansion of the wave vector ¥ in terms of an orthonormal set of

eigenvectors U= Say (4-1).
:

in the expression (3:3) for F(r,s), we find for the latter the expansion

F(')‘, S) = ZZI a‘=lk a’lcflk(h 3)’ (42)
. ke
where the functions fj,(r, s) are the Fourier inverses of the matrices
My(7, 0) = (Y, €XHPYry) = mify(~7, — 6) (4-3)
of the operator (3-1) in the representation of the ;. Explicitly, we have
, 1 ) , ‘
Jue(7,8) = g J‘ f (47, eXre+08) o, y g=itrr+68) i 46, (4-4)

f”c 7'“, 8/9 4T2f f Z 67‘("-’-05)'9[/' —'L(Tr“+¢955) d,rdg, (4:.5) ‘ W .

where (4
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where (4-4) refers to the case of continuous eigenvalues 7, s and (4-5) to that of discrete
eigenvalues 7,, s,. The functions fy(7, s) form a complete orthogonal set in the Hilbert
space of the phase-space functions F(r, s), satisfying the relationst

[ttt ) drds = hta 8 (4-6)
X ule, Al 8) = B33~ (s =), (&)
and also the ‘self-orthogonality’ relations |
f Julr, 8) drds = oy, (4-8)
;fn(’f,é‘) =B (49)

Tn the general cage, this follows from the fact that (4-3) and (4-4) or (4-5) form a unitary
transformation from a vector, say vy, of components yr*, 1), in the product space of
the vectors 1* with the vectors ¢, to fy;,. The vectors 1, form a complete orthogonal
(and self-orthogonal) set, and these properties are invariant under a unitary trans-
formation. Furthermore, it is easily seen from their definition that the f;;, form a
Hermitian matrix with respect to their subscripts 7, &

flk(’r’s) zfl::kl('r:'g)‘ (4:‘10)

We shall see later (§§7 and 8) that the f;;, can be interpreted as the eigenfunctions of
characteristic equations for the phase-space distribution functions, corresponding to
the eigenvalue equations of the 1’s; we therefore call them phase-space eigenfunctions.

Tn the case of the canonical coordinates and momenta ¢ and p, relations (46)—(4-9)
can be proved by elementary methods (cf. Appendix 2), and the fy(p,q) have the
explicit expressions, corresponding to (3-7) and (3-8),

Fulps@) = 5 [V a—n) eyl +ipnyar, (@11)

ful 0, q) = Wt MO FE20[YH(g) by p) P U], (412)

Substituting the eigenfunctions yr,(q) = h~*€®'?% in a p-representation, we find
’ + "o S
fopr(,0) = W18 E L) (413)
The expansion of F(p,q) in terms of f,,
F(p,0) = 2 [#5(6) 810" 8 2L e aptays

= o [#(o+ 410) e o~ 318 a0, (¢14)
is the equivalent of (3-7) in terms of the momentum wave functions ¢(p)

t Integration must be replaced by summation in what follows when the eigenvalues of r, s
are discrete,
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5. MEAN VALUES , OPERATORS AND MATRICES OF FUNCTIONS
OF THE DYNAMICAL VARIABLES

The mean value of an ordinary function G(r, s) taken with respect to the phase-space
distribution #(r,s) is

G = ffG(r, s) F(?’, s)drds

= f f f f Gl(r, 8) (W, eXre+98) ofp) o= +98) i ds dr 4G

= (gﬁ, {ffy(fr, g) ellr+08) deﬁ} g[r) , (5-1)
‘where ¥(7, 0) is the ordinary Fourier inverse of G(r, s)
0,6 = [[ 60,9y et (5

G is thus the mean of the operator
G = ffy(fr, 0) eX™+08) dr dg, (5°3)

which is thus the operator corresponding to the ordinary function G{r, ) in our theory.

It now follows that the matriz Gy, of G in any representation of eigenvectors yr, can be
obtained by integration of the ordinary function G(r,s) with respect to the corresponding
phase-space eigenfunction fy,(r, s)

Gy, = f‘f@('r,s)fm(r,s)drds . ffffG(r,s) (g, ef+00 o dr ds dr A0
= (¥, GYry). (5-4)

Since fy, is a Hermitian matrix with respect to [ and k, we see at once from (5-4) that
Gy, will be Hermitian if G(r, s) is real.

The operators and matrices corresponding to any function of the basic variables
7, 8 are thus uniquely defined by the phase-space distributions. In other words, our
theory of phase-space distributions is equivalent to a theory of functions of non-
commuting operators. Inversely, this theory of functions defines the phase-space
distributions uniquely.

In the special case of functions G(p,q) of canonically conjugate coordinates and
momenta, (5-3) coincides with an expression derived by Weyl(9) on group-theoretical
considerations. An alternative expression corresponding to (3-10) for F(p, ) is

G = cii %0000 G (q, p), (5-5)

where G(q,p) is obtained directly from the ordinary function G{(p,q) by writing all
the operators p to the right (e.g. g"p™), and this order is maintained when applying the
operator e8P0 40 G, (cf. Appendix 3 for the proof; see also McCoy (10)). The form
of the usual operators of quantum theory: energy, angular momenta, radial momenta,
ete., are not changed when they are derived by this method from the corresponding
classical functions of p and g.
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II. QUANTUM DYNAMICS

6. THE LAWS OF MOTION OF GENERAL DYNAMICAL STOCHASTIC PROCESSES

We now come to the statistical interpretation of quantum dynamics. What we have to
do for this purpose is to find the temporal transformation laws of the phase-space
distributions of quantum theory corresponding to the quantum equations of motion.
As mentioned in § 1, this cannot be done within the framework of classical statistical
mechanics, which is a ‘crypto-deterministic’ theory, but appears rather as a special
case in the general theory of dynamical stochastic processes. We start therefore with
a brief survey of the integral and differential relations through which laws of motion
can be expressed for such processes. The theory will be developed for Cartesian
coordinates and momenta only.

The fundamental integral relation connecting the probability distributions F(p, g; t)
and Fy( Do, 905 o) at times £ and to for a given mechanical system is

297 (;Z, j‘ K ]9; q l meO’ (Po: QOa to) dpodgm (6'1)

where K is the distribution of p, ¢ at ¢ conditional in p,, g, at t,. K is therefore the
temporal transformation function, and must express the laws of motion of the system.
While F, and F depend on the initial and final states of the system, K must be indepen-
dent of these states, and depend on the inherent dynamical properties of the system.
Hence the assumption that K is homogeneous, i.e. invariant for a translation of the
origin in ¢, and dependent only on the interval {—{, (as long as there are no external
time-dependent forces acting on the system).

K gives the transformation for finite intervals. We now derive the corresponding
infinitesimal transformation. The characteristic function A for the differences ¢—§¢,
p~1n conditional in &, 7 is

AT, 09,8 t— H ella—D+r—M K (p,q | 1,8; t —ty) dpdg. (6-2)

We make the second assumption that in the stochastic processes of physics, the pro-
bability of a transition from £,  to g = §, p =7 in a small interval ¢t — ¢, is of the order of
t—t,. For ¢ =1, obviously K = 8(p—)8(g—§) and A =1. Hence (A—1)/(t—1)
tends to a finite limit L when ¢t ¢,

lim A:

B ) 0

= L(t,0|n,§). (6-3)

We shall call L the derivate characteristic function. If M(r,0; t,) is the characteristic
function at ¢,

(7,6 1) = [ 90 Ty, €519 (6:4)

then the characteristic function at ¢ is

M(r,61) = f f SO9D A (7, 8| 9, &5 1—t0) Foft, E; to) diy .
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Hence A i f f B=1 gierson By, £; ) dyde
to—>t
- [[zr.6019,5y00m0 79, £ yan . (6:5)
This can be expressed in the operational form
oM 19 10
i . 6
E L( 4 f;ar’@'ae)M(T’@’ 2 (6:6)

(first suggested to the author by Prof. M. 8. Bartlett). (6-5) and (6-6) express the
infinitesimal transformation corresponding to (6-1) in terms of characteristic functions;
they can be inverted to express this transformation directly in terms of distribution
functions. This may be achieved in two ways; if L admits a Fourier inverse

S(r.a178) = [[Lr,0|9,8) exv-mavarao, (67
we obtain for F the integro-differential equation
0
57007 f S(p:q|71,€) F7,&; t) dn dE. (6-8)

If, on the other hand, it is possible to expand L in the form

L(r,07,8) = f f _Mno Z(;n;(,”“f,) (2= "7);:(9 ) K(p.q| 1, £ t—to) dpdg
ro(iT)r (i) o (1 £) (6:9)

=n=0'r=0 (n—r)irl
(where the o,,,.(7,£) are called the derivate moments of the system), then F satisfies
the differential equation of infinite order

sPwan=3 5 A0 ) (N e o Fe.gn. (©010)
at .p3Q! 0 =0 (n ’)‘)l’)"' ap aq nr .,psq 23,9, °
This reduces to an equation of finite order if the expansion (6:9) for L terminates,
i.e. if the derivate moments vanish above given powers of p and ¢.

7. EQUATIONS OF THE MOTION FOR THE PHASE-SPACE
DISTRIBUTIONS OF QUANTUM THEORY

In order to derive the equations of motion for the quantum phase-space distributions,
we look for the time derivatives of their characteristic functions. We find from the
Poisson-bracket form of the quantum equations of motion

o= [rommpeda - [roME-mMy@a @

' where M(r, 6) is the characteristic function operator (3-5), and H the Hamiltonian

operator, expressed from (5:3) by
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W (o, ) being the Fourier inverse of the corresponding classical Hamiltonian H(p, ¢).
Hence, using expression (3-5), we obtain

) o %f f f A0+ (1700 — ] W () Y(q) ety (g) dg dordpy
| = 3 [[[[sin 71— o) st eamsomary o,
(6:6) | x MR~k (q) B (p) eP2™] dpp dg dodp.
cpress the. : Using expression (8-10) for F(p, q; t), we obtain the two equivalent expressions
functions; * § oM _ 1 f f : 1 1 j
stribution | = = 7 | | H (0 + 370, q— ¥fir) - H(p— 36,9+ 3r)] F(p,q; t) err00dpdg,  (7-3)
‘ E oM ([, ., (2. K[d 8 2 0
e = (rp+00) | gl — | — e e e .
(6 7)'1:; , at ”ez o {ﬁsm2 [BPFBQH 5101-13%] Hp.9 F(pg; t)} pdg,  (T4)
! where 0/9pg, 8/ in the right hand of (7-4) operate only on H and 3/0p, 8/0¢5 only
on F. The comparison of (7-3) with (6-5) gives the derivate characteristic function
(68) L(r,0| p,q) = 7 [H(p+ 40, g — §#ir) — H(p — §40, g + ¥ir)]. (7-5)

If L possesses a Fourier transform

7
t,) dpdq S(p,q]n €)= ¥ f f [H(n+ 340, £~ 3hir)— H(y — 310, £+ $fir)] eltrr—oH8E~a1drdh, (7-6)

then F(p,q; t) satisfies an integro-differential equation of form (6-8)

?
L (00 8) = ”S(ip,qlﬂ,é) F(n,&; t)dnde, (7-7)

with the kernel S given by (7-6). Similarly, we find from (7-4)

2. %[0 @ ) a]

—sin—~ | — e — | , 7 1), .
fi 2[8171?8(/11 0P ¢z (9,9) F(p:g;1) (7:8)

which is easily shown equivalent to (6:10) with derivate moments

a r a 2n+41—r
agvn+1.,<p,q>=<—1>n+"<%ﬁ)2n(51—,;) (5;1) H(p,q), o ip:@)=0.  (1:9)

Inversely, the quantum equations of motion, and in particular the Schrédinger
equation, may be derived from the equations above for F(p,q;¢) (cf. Appendix 4).
There is thus complete equivalence between the two.

Finally, we may notice the analogy between the right-hand side of (7-8) and the

d
a_tF(psqz t) =

terminates

stributions

d from th classical Poisson bracket. This may be generalized in the following way. It may be
shown by a method similar to that leading to (7-8), that the commutator i%[RG — GR]
(71 of two operators R, G obtained (e.g. by (5-3) or (5:5)) from the ordinary functions
' R(p,q), G(p,q) is identical with the operator corresponding (by the same rules) to
[amiltonia 9 [0 0 3 9
pein s | B0 612 (7-10)

In other words, (7-10) is the analogue of the classical Poisson bracket when the laws
of quantum mechanics are expressed in phase-space, and the commutator is the
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corresponding operator in a g- or p-representation. It is also seen from this that oper-

ators whose classical analogue is 0 may correspond to non-vanishing phase-space .

functions in the present theoryt.

8. THE CHARACTERISTIC EQUATIONS OF PHASE-SPACE EIGENFUNCTIONS

The expansion of the distributions F(p, ¢; £) of a conservative system in terms of its =

energy phase-space eigenfunctions f;;,(», q) is, from (4-2), _
F(p,q; t) = X af ay, fy(p, q) XF-ERR, (81)
ik

Substituting in (7-7) and identifying term-by-term, we see that the f;;, are the eigen-
functions of the homogeneous integral equation

Fulprd) = %’—E— f 80271, ) fauln, ) . (8:2)

The kernel 8 can therefore be expanded in terms of the f;;,

S(p: q I 7, 5) = 27”1'5270(Ei_ Elc) fz‘lc(p’ Q) fz#;c(’)?’ g) (8'3) : ‘

Similar characteristic equations can be found for the eigenfunctions g,,(p,q) of
any operator G corresponding to the classical function G(p,q). Let y, be the eigen-

= Ys2(9). (8+4)

valuesof G . : Guy(g)

Calculating the mean of the commutator [G, M] from the two sides of (8:4)
[t 1eM-ME1u@ g = (- [[ 00945, 0)apdg

= f [G{p + 36, g~ }ir) — G(p — 46, g+ Hir)] gy, ) €57+99 dp dg

d 0 g 9

201 . ) -
= ZH‘MTMM sm—[—w———————] G(p,9) 9:4(p,q) dpdg, (8-5) |

0p, 09 OpPadq,

we find the characteristic equations for g,,

- %ﬂ&; P22 |7, 6) guuln, E)

2 .h[a 0 a 0

%0,%05 Igog,| O P D IwP.0); 8-6
210p,9%¢ apaagg] (p Q)gm@ 9) (8:6)

g’zk(p: q ==

Y=Y
where the kernel

So(0a11,6) = [ [ 1609+ 410, 4= 47) ~ 6o~ 416, -+ i) avr-»a- 2y dg

= 2 (7 = 72) 02, 2) 9507, ) Ol

T This question was raised by the referee.
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The transition probabilities ¢, (f) from state & to state n are the diagonal coefficients
G = %hn %, Whose expression in terms of K will clearly be

Glcn = O"I‘c‘n“kn = fff K(p, q ‘ Do; 9p> t)flck:(_pm QO) fnn(.p: Q) dpodgodpdq (10'4)

11. THE PROBLEM OF DETERMINISM IN QUANTUM MECHANICS

The present theory should help to elucidate the question whether quantum mechanics
is deterministic in the classical kinetic theory senset, since it permits a direct com-
parison between the two. The infinitesimal time transformation of quantum phase-
space distributions (7-8) may be written in the form

or 2 . #(0 0 _

S+ sing (o T H .0 Po.s =0, (1)
where {0/dp, 0/dg} is the phase-space differential operator giving the classical Poisson
bracket. The corresponding transformation of classical kinktic theory is given by

Liouville’s theorem OF 2 0
=+ {5}5, @}H(p,q) F(p,q;t)=0, (11-2)

Its deterministic character may be seen from the fact that the characteristics of this
first order partial differential equation are simply the classical paths in phase-space.
Alternatively, we may say that F is an integral invariant of the transformation
generated by the operator {0/dp, 9/0g}; an element S, of phase-space will transform to
S, in the interval ¢, and

f < F(py, q0) dpodqy = f < F(p,q;t)dpdq.

This no longer holds in the case of quantum theory; the transformation generated by
the operator (2/%) sin $7{0/0p, 0/dq} is equivalent to {9/0p, 9/0q} when applied to Hyp, Hyg,
but not in general when applied to HF, so that while §; will transform into S, exactly
as for the corresponding classical system, yet generally

fs F(po, 90) dpodyy :*:fs F(p,q;t)dpdg.

Hence the present theory leads to the conclusion that quantum theory is not generally
deterministic in the classical sense.

In the correspondence principle limit, when h—>0, the quantum equation (11-1)
is seen to reduce to the classical equation (11-2); this will equally well be the case if
the Hamiltonian H(p,q) is a second degree polynomial in ¢ and p, leading to the
surprising conclusion that systems such as a free or uniformly accelerated particle, or
a harmonic oscillator, are deterministic in quantum theory: this should not be taken
too seriously, since even small perturbations or non-linear terms would, according
to (11-1), destroy this deterministic character.

The phase-space transformations with time of quantum theory form a continuous
unitary group, which reduces therefore to the group of contact transformation of

(11-3)

(11-4)

T Cf. in this connexion Whittaker (2), Jeffreys(12) and also Reichenbach (25).
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We see thus that symmetry (or antisymmetry) conditions introduce a probability
dependence between any two particles in B.E. (or F.D.) assemblies even in the absence of
any energy interaction. For example the coordinates and momenta of the two particles
will be correlated, with covariance

ME10s) = G 0a— 102 = ¥ Dt | @i [%
ok (14-8)

K P1Ds) = 291102—1—9—11; = ViZ;cmnk l B |2;

where @,,,, B, are the matrices of the individual g’s and p’s,

Q= [ [atutp0)tvds, P~ [ [stutp.0)apdg

Tt is this dependence which gives rise to the ‘exchange energy’ between the particles
when they interact.

15. LIMITATIONS OF THE STATISTICAL APPROACH TO QUANTUM THEORY

The results obtained so far seem to offer a fairly complete scheme for treating quantum
mechanics as a form of statistical dynamiecs. It is important now to return to the
difficulties mentioned at the beginning of this paper, and discuss the limitations of
this approach.

First, we notice that phase-space eigenfunctions must generally take negative as
well as positive values, since they are orthogonal. Only one eigenfunction (generally
the ground state one) may possibly be non-negative for all values of the dynamical
variables, except for singular eigenfunctions involving delta functions, such as the
momenta eigenfunctions (4:13). Hence, on taking for example Cartesian coordinates
and momenta p, ¢ as the basic system, the phase-space distribution in the nth energy
eigenstate formed according to the method of § 3 would be the diagonal eigenfunction,
Son(Ps q), which can be negative, and is therefore not a true probability. This is not
really surprising, because we have seen in § 9 that the dynamical equations are those of
a Markoff process. The existence of eigenfunction solutions for the fundamental equa-
tions (9-8), (9-9) of Markoff processes is well known (see Hostinsky (11)), and it is also
known, that these eigenfunctions are not generally probabilities by themselves. Pro-
bability distributions are expressed as non-negative linear combinations of these
eigenfunctions.

In the language of quantum theory, we may say that true probability distributions
of any given set of non-commuting variables do not exist for every state; the physical inter-
pretation would be that where the distribution, as calculated by the method of § 3, can
take negative values, it is not an observable quantity. This is a restatement of the
necessity, already discussed in § 2, for postulating the existence of different phase-gpace
distributions according to the basic set of dynamical variables. Take, for example,
a system composed of one proton and one electron. The distribution F(p,q) corre-
sponding to the ¥(g) of a Gaussian wave-packet is positive for all p and g, and is hence
an observable quantity. On the other hand, there would be no observable (p,9)
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distributions for the energy eigenstates of a hydrogen atom, though an observable
distribution may exist for some other set of variables.

It is usually accepted that a dynamical variable G is exactly equal to its eigenvalue
g, when the system is in the corresponding eigenstate. This means that the operator
W corresponding to the function W(G) should be equal to the function W of the
operator G, W = W(G), since if @ is exactly equal to g,, the mean of Wis W = W(g,,),

and hence W = (lﬁn? Wi,) = (T/f'm ¢-n wn! (9.) 1)0,” = (15-1)

Now it is easily seen (Appendix 5) that according to the theory of funcmons of § 5 this
condition is fulfilled only when G is a function of some linear combination of the basic
variables 7, s: G(ar+ bs). This again is connected with the necessity for phase-space
distributions adapted to the experimental situation; if the latter involves observation
of @, then the distributions must be set up for some set of variables », s such that
G= G((M‘ -+ bs). '

In order for the scheme to be consistent, it should be possible to prove that if a state
i admits a non-negative phase-space distribution F at the time ¢ = 0, then F will be
non-negative at any time ¢. This is easily seen for isolated systems possessing at least
one cyclic coordinate 8. Suppose that ¢ and its conjugate g are obtained by a canonical
transformation from the original system g¢;, p;, and let @, F; be the other (transformed)
coordinates and momenta, H(g, 6, P, @;) the transformed Hamiltonian. Then

0H oH

= 0, ] = constant = w. (15-2)
The transformed equation of the motion (7-8) can be written
oFf OoF 2. fifo @
T 05 +3sin {a..a BQJHF 0. (153)

Separating the variables, we have
(g: 0a (8 Q‘L’ t) ((9 t) r(g; Pia Qi):

oF, oF\ .
ﬁ—’l(_é? tw W) 2iu (4 constant), (15-4)

F, = etutH0jo),

Comparing with the expa,nsion of F in energy eigenfunctions, we see that it must be
of the form ( Qz; t) = E a a, Qﬂ (g, Q )ez'{(Ei—E,.)(lJr&/w)}/ﬁ (15+5)

Hence, if #>0 for all @ att = 0, 1t must be non-negative for all ¢. Thls proof was
suggested to the author by Prof. M. S. Bartlett.

Finally, we may discuss the meaning in the present theory of observables having no
classical analogue. §§2-5 on quantum kinematics are framed so as to apply to such
observables as well as to those having a classical analogue. The phase-space distribu-
tions represent for both types the joint distributions of eigenvalues for non-commuting
sets, and are subject to the same restrictions. The quantum equations of motion in
Phase-space, on the other hand, were expressed only for Cartesian coordinates and
momenta, so as to bring out the relationship with the theory of general stochastic
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processes. It is clear, however, that they can be extended to general quantum observ- |

ables, say r and s. If F(r, s,t) is their joint distribution, then asin §7, 0.0t is obtained
by Fourier inversion of ;
’ o= (v my), (15:)

where M = ¢i(rr+09),

16. PRACTICAL APPLICATIONS OF THE THEORY

The foregoing restrictions are necessary as long as we require probabilities in phase-
space. They may be relaxed in practical applications of the theory, where we introduce
phase-space distributions as aids to calculation, and where the observable quantities
we wish to calculate are necessarily non-negative, independently of whether the phase-
space distribution takes negative values or not. It is not difficult to see that the phase-
space distributions and eigenfunctions obtained by the rules of §§ 3 and 4, though not
necessarily non-negative, obey the other fundamental rules of probability theory,
i.e. the addition and multiplication laws. Bartlett (15) has discussed the introduetion
of such ‘negative probabilities’ as aids to calculation, and has shown that they can
be manipulated according to the rules of the caloulus of probabilities (with suitable
precautions) provided we combine them in the end to give true (non-negative) pro-
babilities. Fle remarks that ‘ where negative probabilities have appeared spontaneously
in quantum theory, it is due to the mathematical segregation of systems or states
which physically only exist in combination’.

Now this relaxation will be possible in practical applications, because the phase-

space distributions contain more information than is generally required for com-

parison with observations. For example, if we wish to calculate the way the distribution
in space p(q;t) of a wave-packet varies with time, we may use the method of §10,

because p(q;t) = fF(p, g; t)dp = ¥(g;t) Yr*(g; t) will never be negative, even if F(p, ¢; )

can be negative. Similarly, transition probabilities calculated by the method outlined
in the same paragraph will always be non-negative, whether F takes negative values
or not. Finally, we may use the methods of §§12-14 to calculate the phase-space
distributions of members of an assembly even if the phase-space distribution for the
whole assembly can be negative.

We conclude that in applications of the theory, we need not be concerned whether
the phase-space distributions are true probabilities, provided that the final results,
expressed either as linear combinations of these distributions or as integrals over part
of their range, are necessarily true, non-negative probabilities.

17. UNIQUENESS OF THE THEORY AND POSSIBILITIES
OF BXPERIMENTATL VERIFICATION

The statistical approach to quantum theory involves the introduction of an addi-
tional postulate on the form of the phase-space distribution, which is equivalent to
a theory of functions of non-commuting observables. The choice of this postulate is
not unique. Dirac(16) has given a theory of functions of non-commuting observables
which differs from the one obtained in § 5 of this paper; it has the advantage of being
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Appendix 5. Operators corresponding to functions of linear
combinations of the basic variables

According to (5-2) and (5-3), the operator corresponding to G{ar+bs), where a
and b are constants, is ‘

G= f f eUrs+09 d@fJG(ar + bs) e~ dpds. A (A 5-1)
Changing to the variables
T 0 T 0
| £ =ar+bs, n=ar—bs, }\:—2—&—&5—5, b= 5= g5 (A 5-2)
we find G = f f gHA+par+HA~pmbs] d/\d,u, f f G(g) e—tAE+py] d§ dy
_ f etz ) f Q) N df = Glar+bs). (A5:3)

I should like to acknowledge my indebtedness to Profs, P. A. M. Dirac, H. Jeffreys
and the late R. H. Fowler for their criticisms, suggestions and encouragement in
carrying out this work, and my gratitude to Prof. M. S. Bartlett for many invaluable
discussions and the communication of his various results referred to in the text.
M. J. Bass and Dr H. J. Groenewold have studied the same subject independently
(cf. Bass (19)(20), Groenewold (21)), and I have benefited from discussions and corre-
gpondence with them. The papers of Powell (22), Stueckelberg (23). Dedebant (24) and
Reichenbach’s book (25) also have a bearing on the questions discussed in the present
paper (I am indebted to Prof. Bartlett for these last references).

SUMMARY

An attempt is made to interpret quantum mechanics as a statistical theory, or more
exactly as a form of non-deterministic statistical dynamics. The paper falls into three
parts. In the first, the distribution functions of the complete set of dynamical variables
specifying a mechanical system (phase-space distributions), which are fundamental
in any form of statistical dynamics, are expressed in terms of the wave vectors of
quantum theory. This is shown to be equivalent to specifying a theory of functions of
non-commuting operators, and may hence be considered as an interpretation- of
quamtum kinematics. In the second part, the laws governing the transformation with
time of these phase-space distributions are derived from the equations of motion of
quantum dynamics and found to be of the required form for a dynamical stochastic
process. It is shown that these phase-space transformation equations can be used as
an alternative to the Schrodinger equation in the solution of quantum mechanical
problems, such as the evolution with time of wave packets, collision problems and the
calculation of transition probabilities in perturbed systems; an approximation method
isderived for this purpose. The third part, guanium statistics, deals with the phase-space
distribution of members of large assemblies, with a view to applications of quantum
mechanics to kinetic theories of matter. Finally, the limitations of the theory, its
uniqueness and the possibilities of experimental verification are discussed.
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THE EXACT TRANSITION PROBABILITIES OF QUANTUM-
MECHANICAL OSCILLATORS CALCULATED BY THE
PHASE-SPACE METHOD

By M. S. BARTLETT awp J. E. MOYAL
Received 14 September 1948

1. INTRODUCTION

"' The calculation by the usual perturbation methods of transition probabilities between

the unperturbed states of a quantum-mechanical system yields approximate results,
valid only for small perturbations. The object of this paper is to calculate the exact

! transition probabilities between the unperturbed states of quantum oscillators, valid

for large as well as small perturbations, by using the ‘phase-space’ method developed

| by one of the authors (Moyal (1), referred to henceforth as (I)).

We give first the main results of (I) required in this paper. The probability distribu-

| tion in phase-space of a system in a state described by the wave-function 1(g) in
1 g-space isT

1 . )
F(p,0) = 37 [¥*a—§ir) o g + i) (1)
Corresponding to the expansion of ¥(¢; ¢) in terms of energy eigenfunctions ,,(q)
Y(g:t) = Zagu,(g) e Mt (1-2)
n

we have an expansion for F(p,q;t)
F(p,g;1) = 3 6ty fin(p,g) eFs-B0 (1-3)

~in terms of the energy phase-space eigenfunctions

il D> 9) = 5= |uilg — HiT) €77 uy (g -+ 3ir) dr. (1-4)

These functions form a complete orthogonal system in phase-space which is also ‘self-

| orthogonal’ and hermitian with respect to the indices k, 7, i.e.

J‘jfknf?c"n’dﬁ d‘] = k_lalclc' a'rm': f flcndpdq = é\Icn: flcn :f'r:l;k (1'5)

k Furthermore, the matrix Gy, corresponding to an ordinary function G(p, ) is given by

G, = HG@, q) frn(2,q) dpdy. (1-6)

The transformation with time of F(p,q; t) corresponding to the quantum equations

S of the motion is given symbolically by

%F(p,q; ) = ;Lsin{ﬁ (—a—-—a— - ——8—3—)}1:[(10, 0 F(p,g; %), (1-7)

+ When no limits are specified, all integrals are to be taken as from —co to + co.
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where 9/0py, 0/dqg operate only on the classical Hamiltonian H(p,¢) of the system;
0[opw, 0[0qm on F(p,q,t). This is seen to be an extension of Liouville’s theorem

0F oHOF O0oHOF

B " dgop opog
and reduces to the latter in the correspondence principle limit (— 0) and for systems
whose Hamiltonian is a polynomial of the 2nd degree or less in p and g. For such systems
(and they include the free and the uniformly accelerated particle, and the oscillator)
the transformation with time of F(p,q; ) is of the ‘deterministic’ type of classical
kinetic theory, each element of the distribution transforming in phase-space according
to the laws of classical mechanics. A direct verification of the deterministic character
of these systems in given in Appendix 1 and in § 2.1

Equation (1-7) specifies the infinitesimal transformation with time of F(p,q;1).
The transformation over a finite interval t—#, can be given in terms of a ‘transforma-
tion function’ K(p,q| 24, ¢o; t—1);

I(p,q;1) szJ q | Po> Qo5 t—10) F(Dg, 005 t—15) dpo gy (1-9)

K is interpreted as the probability of p, ¢ at ¢ conditional in p,, ¢, at #,, and may be
expressed either in terms of the phase-space eigenfunctions by an expansion similar
to (1-3)

K(0:9] o o3 t=to) = 1 X finl P01 Go) fen( P ) SF—ER R, (1-10)

or in terms of the wave transformation-function

V(g qo; t—1) = Zu (q0) usi(q) e~ Bt (1-11)

by an integral similar to (1-1)

K(p,q | Pos oy t—1g) = =— J‘f?/f* — §fir | Qo ~ Eliry) €0 o~ yfe(q + it | o + $lir) dT dry.
(1-12)

The phase-space theory of quantum mechanics may be applied to calculate the
transition probabilities of a perturbed system. If K is known for the perturbed Hamil-
tonian H, and we wish to calculate the transition probabilities from the keth unperturbed
state in an interval ¢, we take as initial distribution the kth diagonal phase-space eigen-
function corresponding to the unperturbed Hamiltonian H®: By(pq, o) = fiDos B0)-
The transformed distribution after an interval ¢ is then from (1-9) and (1-3)

Foolp,q; t) =f K(p,q]| 2o, 203 1) 1 P0> 20) Ao gy = %afa,z O(p,q). (113)

The transition probability from state & to state n is then given exactly by
Pinl®) = aZ(0ant) = 1 [ | B .05 019, 0) A . (114

1 Cf., in this connexion, Coulson and Rushbrooke (7). o]
{ It may be shown that the transition probahbilities obtained. in this way are in fact identic®
with those of ordinary quantum theory; the proof of this statement is given in Appendix 2.

_ The phase

= (=1y
= (-1y

- A more co

~ The phase
- Laguerre

f kn (u

' The diago

Tt An ex
old(2).



he system,
rem,

(1)

for systemg

1ch systemg -

3 oscillator)

of classica]
e according
ic character *

f F(p,q;t).
transforma-
(1-9)

and may be |
sion similar * =

w10

(111)

Liro) drdry.

(112)

alculate the
rbed Hamil-
mperturbed

space eigen-

= i 2o, o)
3)

byt

(114

fact identical

ypendix 2.

Transition probabilities of quantum-mechanical oscillators 547
P q

In the particular case of deterministic systems the transformation function K must
reduce to a product of delta-functions expressing the contact transformation of
classical mechanics (this is verified in § 2 for the harmonic oscillator). The distribution

| at ¢ follows simply by substituting the classical solutions in the initial distribution:

Foolp, 431) = iR 2o( 2, 0, 8), 02, 4, 1)].

2. PHASE-SPACE THEORY OF THE HARMONIC OSCILLATOR
We now develop the phase-space theory of the one-dimensional oscillator of mass m,
angular frequency w, coordinate @ and momentum P. In terms of the reduced variables
g = (mwfli)t @, p = (mwh)~t P, its Hamiltonian is
H = 3(P*m+mw*Q?) = 3(p* + ¢*) fiw. (2:1)
The energy eigenfunctions in p- and g-space are u,(q), %, (p), where
wg) = (~ 1 @il o (2) @) = @roinl) e ), (29

tin() = @ f Unlg) e-91dg. (2:3)

The phase-space energy eigenfunctions are then, from (1-4),T
1
fkn(jp: Q) = 2 ((]—— 5 ) e—iTP (Q‘f‘ -—T) dr

] b
= (— 1)+ (2) L (2nthgm | Jpl)—2 f gt Ha~—hr g (%)c(e—(ariﬂ)z) (Ra_)n (e—(qur)z) dr
1

Cqy
= (- ]_)n+lc (277')-1 (2n+k7777/! kl)_é ——Q— ’ i " e(Z’-Q;—lﬂf6-7112)—5;12+T(q1—q2) dr
s/ \0g,
= (= 1)l (2ntlp2p | Jp1)—k gvi+a® i * _8 * (e-¥n—ip)ativ)) (g, = qy = (),
g1/ \0gq S

or, on introcucing the variables z = g+1ip, 2% = ¢ —1ip
I )
s %) = (= (rtnt )t () () e, (24)

A more convenient expression is obtained by substituting the variables

w = 2zz* = 2(p2+q?) = 4H[liw, 0 = tan1(p[q).
The phase-space eigenfunctions then break up into the products of an associated
Laguerre function of w and a trigonometric function of 4

k
Sin(w, 0) dwdf = §(— 1)k (k1 n!)—twik-m ghw (;&—)) (w e=®) dw (27)~t W=7 47

= 3(— 1) (I} ]y w=b0e=m) gk La~R(ap) dao (2mr) L=V 4B, (2:5)

| The diagonal eigenfunctions dre simple Laguerre functions

Frn(w, 0) dwdl = §(—1)*(nl)~Lei® (;L—U)n (we~) dw do[2m

= L(—1)yne~tw [ (w)dwdl|2m. (2-6)
t An expression for these eigenfimections has been found independently by Dr H. I. Groene-

wold (2).
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The determinism of the oscillator may be verified by calculating the phase-space
transformation function over a finite interval of time #, on using equation (1-12). The
wave transformation function over this interval is given by the well-known Mehler
expansion for Hermite polynomials (3)

U(g] go; t) = X un(go) uan(g) e~
n
= (27 sin i)~ exp {4(2 sin i)~ [(92 + ¢3) coswt — 299, ]} (2+7)
The phase-space transformation function is then
K(p,9] 9y 905 1)
= (47 sinwt)~? J fexp ({7 o — TP + (sinwt) " [(1q + 7, q,) cOs Wt —T¢y — Ty g1} drdr,

== (4772 Sillwt)—lffexp {i(sinwt)—l [T(q coswi —p Sinwt — Qo)
+7o(go cOS Wt + pysinwi— )} drdr,

= sinwtd(q coswi — p sinwt — q,) (g, coswt + pysinwt—g), (2-8)
a product of delta functions expressing the contact transformation of classical mechanics
for the oscillator. The expansion (1-10) of KX in terms of the phase-space eigenfunctions
gives the following interesting formula for the associated Laguerre functions
(3 277) -1 Z (]G | /')’b') wo—é(k—n) e—!_r “’OL}:“’“(wo) w«ix(k—-n) 8"‘1-‘”’L}é’—k(’w) a'i(n—/c) (0 —0y—wt)

k,n
= d(w—wy) 6(0—0y—wt+2rm), (2:8)

where the §-functions are normalized over the ranges of w and 0, » being an integer
such that 0<0,+ wt— 2rm < 27.

In Appendix 3, the above results are applied to derive the equilibrium phase-space
distribution of members of a statistical assembly of oscillators.

3. TRANSITION PROBABILITIES OF A PERTURBED OSCILLATOR

We shall now apply the method outlined in § 1 to calculate the exact transition pro-
babilities of a perturbed oscillator for a perturbing potential of the form ¥V = g&'(£),
where &(t) is an arbitrary function of the time. On using equation (1-14), the transition
probability from state & to state n is given in terms of the variables w = 2(p?+¢?) and
f = tan—! (p/q) used in § 2 by

o 97
Panll) = 87 f [ o 00) fut,0) sy, (31)

where w,, 6, are the initial values at ¢ = 0, w and 0 those at time ¢ obtained from the
classical solution for the perturbed oscillator

t
q = gy coswi+p, sina)t—wf (1) sinw(t—7)dr,
0
t
P = Pycoswt—q, cosa)t—wf E(r)cosw(t—T1)dr.
0
w = wy+ 2 (wya)t cos (f,—¢)+a, (3-2)

Hence

¢
where (3o)tet = z'wf & (1)etr dr,
0

T
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It is easily seen that ¢ = }iwa is the non-fluctuating part of the work done by the
perturbing force, while ¢ is the phase change of the oscillator. We now substitute these
solutions in (3-1) and also introduce two auxiliary variables y, £ which we shall equate
to 1 after all the indicated integrations and differentiations have been carried out. This
yields a closed expression for the transition probability

__1 k+n am ; o \»
lc'n'27r f J‘ ei(wo+w)( ) (wo"e_W’O) (é?u) (wn e-—gw) dwodﬁo

e ) (&) e f [ expwsa—y-5 |
+ (3= &) [oe+ 2 (wya)? cos (Gy— @)1} dw, db,

—1Yetn f Q\E [ O ,
-G (5) () e [ emims izt - g, (== 1)

where Iy(x) is the modifieel zero-order Bessel function of the first kind (Iy(x) = Jy(ix)).

The integration is easily carried out, for example, by substltutmg for Iy(z) its Taylor
expansion and integrating term by term, whence
Y=3)(E—3)

(__ 1)7c+n o] I n Icg'n (
kin! (—3?) (55) (7/+§—16Xp [—“ y+E-1 ]) (y=£=1). (33)
Carrying out the indicated differentiation on y*, £», one finds that

t=t-19 5 152 (R e 2255)
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plm(t) =

y+§—1
=f=1
or symbolically r=£¢=1
\ 0 0 1 (y—%) (g-*l)])
— (— 1\t 2 SN I B —y M2/ 2 = £ =
le(t) ( l)c Llc( a,y) Ln( ag)(,y_,r_ g___ 1 BXP[ @ v+ g__l ('y 5 1)'
(3-4)
With the use of the expression for the Laguerre polynomials generating function (3)
1 T
L o[- 2] - 5 e
a ‘probability generating function’ (p.g.f.) may be calculated for the p
Hr,0) = 3 pp, O
k,on
__ L (__;_i)ﬂ (_;3)
TN (140 TP\ T 1105y P\ T T aE
1 (r—%) (é—%))}
_ < — =£=1
{gw_le\p( v | (y=£6=1)
1 / __3(1—7)(1-—0)} .
B I—TGGXP{ fw  1—70 ' (3:6)

The coefficient of 6% in the Taylor expansion of G(r, ) in powers of & only, will be the

| pgf. Gyr) for transitions from the %th state; that of §%r" in the expansion in powers

of both 6 and 7 will be p,,,(t). Fornzk

1 e \n—k k k—p/ e \pt2v
I ()
(n—k)!'\fiw p=0r=0\fow

(n—E) (n+v)I (—2)* -
x(ﬂ'V'(% E+w) (k—p—v)! (n— k+,¢a+2v)) (37)

.plcn(t) =
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Since, as is obvious from (3:3) or (3-4), the p,, satisfy the principle of detailed balance,
i.e. Py = Do, the probability of transitions to states n < k is simply obtained by inter-
changing the indices n and % in the right-hand side of (3-7).
The p.g.f. @y(r) and the probabilities p,,(t) for transitions from the ground state are
simply those of a Poisson distribution
effiw) (r— — 1(e\" —¢ffiw .
) = 0, () = (£ )" e, (9)
These exact results may now be compared with the approximate ones obtained by
the standard perturbation method. The Taylor expansion of the approximate expres-

sion for the p.g.f. oy 1 e (1—7)(1 _0)} ©9)
(7,9) 1—70|" fiw 1—10
gives approximate values for the
plm(t) = alc,fn +7'LC(T) [(k + l) 8lc+1,n -+ 76670—1, n (2]5 + 1) 8lc,n] (3'10)

correct to the first power in e, whose expression is identical with the first approzimation
of the perturbation method. Expression (3:7) shows that in general the probability of
a 2nth-pole transition for small ¢ is of the order of (gffiw)™, i.e. only dipole transitions
have an appreciable probability. The perturbation method equates to 1 the exponential
factor exp{—e¢ffiw} in the exact expression (3:7). This procedure is justified only for
small e; as the perturbation energy increases, however, multipole transitions become pro-
gressively more probable. In order to find the most probable ones from the ground state,
let us substitute the continuous variable x for » in (3-8)

1ie\ .
o | e —effiw
Poz = 20 (i’iw) e

dpee 1 [ €V N e d
—fl%— = (ﬁ-u—)) el [log (h_w) — (logw!)] .

The most probable transition is therefore to the state n given by

3 (105! ) o = i) ~1og (cf),

where the logarithmic derivative y(x) of the factorial function z! is an increasing
function of # (Jahnke-Emde (4)). For large z, ¥ (x) ~logz, and hence nfiw = I, — By~¢-
Similar considerations apply to the general case: it will be seen from (3-7) that the mosb
probable transitions are those from states k to states n such that (n— k) fiw = B, — Ey~ ¢
Hence the physically plausible result that for large perturbations the most probable
transitions will be those for which the change in energy is approzimately equal to the work
done by the perturbing forces.
APPENDIX

(1) Free particle and particle under constant force

The way in which the phase-space method may be used to solve wave-packet problems
is easily exemplified in the deterministic cases of the free particle and the particle under
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| constant force. In both these cases, the Schrédinger equation is most easily solved in
- momentum space. We describe the particle at £ = 0 by a Gaussian wave-packet

bo(2o) = (2msg)Fexp[ — p§/dsg] (A.1.1)

| corresponding to the minimum uncertainty oys, = 4% on its position and momentum
- (of. Kennard (5)), s, and o, being respectively the mean square deviations of Py and g,
| and taking the origin at the mean of p, and g,. The corresponding phase-space dis-
1 tribution is by (1-1)

1 ; .
Fy(pg, q0) = e Pa (0o — 4fiT) eima bo( Do+ 3T dr

= (mh)~* exp [ — $(pf/s} + g3/o?)]. (A. 1-2)
The solution is then obtained simply by substituting in (A. 1-2) the classical solutions
for p and ¢ in terms of p,, g, t. In the case of the free particle, this gives for the dis-

. ! tribution at ¢
(3:10)

F(p,q; 1) = (mh) " exp[— }(p/5,) — §(g/o —ptfmoy)?]. (A.1:3)
| It is easily shown that this corresponds by (1-1) to the wave-function
P(p; 1) = (2msg) " exp [ — (p[280)> + ip|2m], (A.1-4)
which is the solution of the Schrédinger equation
L :
2m¢ 4ot (4. 1-5)

with @y(p,) as initial wave-function at ¢ = 0 (cf. Darwin (6)).

Similarly, for the particle under constant force mg we find for the same initial dis-

tribution Fy(py, ¢,)

2m i 0t

a1 1 (p—mgt\® (q— pt/m——%;gﬁ)z}] .

F(p: g5 t) - ﬁ]LeXP[ 2{( 8 ) + ( 7, (A. 1 6)
which again corresponds to the solution
. p—mgi\? © [p%  gpt? mg%") ]

) = N—texy | — (L) (£ _YEY Y T .

d(p; t) = (2msE) exp[ {( 5, ) ﬁ(Zm 5 + 5 (A.1-7)
2 i 10

. of the Schrédinger equation l)__¢ myhop _ _%op (A.1-8)

i dp

(2) Equivalence between the transition probabilities calculated by the
phase-space method and those of standard quantum theory

It is convenient in the calculations that follow to introduce Dirac’s notation:

4 \ 1 sy | q,> for the coordinate eigenfunction corresponding to state s;, at time. ¢, (85 ] g5
to the wors

for state s, at 1, gy | gy for the wave transition function from g; at & to g, at ty, {s; | s,)
for the transition matrix from s, at %, to s, at t,; the corresponding transition pro-
bability in the standard theory is then |{s, |sy) |2 The transition probability p,,
calculated by the phase-space method, is from (1-13) and (1-14)

Doy = f : -ff:isz(pz, 02) K(Ds, Qs | P15 01) Fopsa(P1s 01) d02 A0 dp; g, . (A.2-1)
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Substituting from expressions (1-4) for f,(p,¢) in terms of {s|g¢) and (1-12) for K in
terms of {gy | ¢,), we have 1 The ‘phase-

#2 ) . 1 the transitic
Pos = g3 |-+ || [ €11 04 Hm) -0 = iy | sy,

results obta
X ff(ql + 3710, | g+ 310, e0urs—0229 {q, — 3710, | g, — $6,) A0, A6, by an expon

- done by the
! transitions
however, th
probable, th
mately equa

X f(sz | gy — $imy) e72P2 (g, + 3Ty | 5) d'fz} dp, g, dpadq,

= [ [¢ss T a3 s> ity x [ [ 83 5ot | ) sl
where the change of variables ; = ¢, + ¥ir,, #{ = ¢, — }fit;, ete., has been made. Hence
D5, = | {8 | 83) I ’ (A.2-2)

i.e. the two expressions for the transition probabilities are formally equivalent. E ; ggg’;&;
T .. , (3} Szmed,

(8) Phase-space distribution of a member of a statistical assembly of oscillators (4) Jauwk:

The equilibrium distribution of the coordinates and momenta of one member of a '. éz) ]I){g;ﬁ

statistical assembly of similar particles is expressed in I, p. 114, as a sum of diagonal (7) Courso
phase-space energy eigenfunctions relative to the individual particles

J(®,9) = C Zmfrr( 2, 9), (A.31)
g -} DEpARTMEN
where C is a normalizing constant and the u, = e~%/*T in the case of a Maxwell-Boltz-  UNIVERSIT

mann assembly. On substituting from (2-6) for an assembly of oscillators, this becomes
j‘(w’ 0) — (477)—1 (1 — 6~ﬁo)/7aT) E (___ 1)n G-—%u*——nﬁo)/laTLn(w)

n

= (4mm)~Ltanh (fiw/2kT) exp { — 4[w tanh (fiw/2LT)]}, (A.32)

where the last line follows from (3-5). Transforming back from w and 8 to p and ¢, we
finally find a Gaussian distribution for the coordinates and momenta of a member of
an assembly of oscillators

f(p,9) = (@m)7 (fiw| B) exp { - §[(0®+¢°) (o] B)]}, (A.3-3)
where X is the mean energy
E = }fiw coth (fw/2kT) = fiw(e?kT —1)-2 + Liw. (A.3:4)

We may note that the mean-square deviation of the energy calculated from the
above distribution is 0% = E? instead of the usual expression ¢} = E2— (}fiw)?. This
follows from the fact that the phase-space theory of quantum mechanics yields different
distributions according to the basic system of variables chosen (see T, p. 100 for a fuller
discussion). If the energy is one of these variables, then it is quantized, with possible
values g, = (k+ %) 7w, and its distribution is simply

pley) = 2 sinh (w25 T) e—sW/kL, (A.3:5)

yielding the second value o} = B2 — (}fiw)? for the m.s. deviation of the energy. If
p and g are chosen as the basic system, then the energy distribution becomes continuous,
with a m.s. deviation of (}%w)? for each of the energy eigenfunctions, leading thus to
the first value ¢% = B2, ‘
PSP 45, 4
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SUMMARY

The ‘phase-space’ method in quantum theory is used to derive exact expressions for
the transition probabilities of a perturbed oscillator. Comparison with the approximate

results obtained by perturbation methods shows that the latter must be multiplied

by an exponential factor exp (— ¢/fiw), where ¢ is the non-fluctuating part of the work
done by the perturbing forces; as long as € is small, exp (—¢/fiw)~1 and only dipole
transitions have an appreciable probability. As the perturbation energy increases,
however, this is no longer true, and multipole transitions become progressively more
probable, the most probable ones being those for which the change in energy is approxi-
mately equal to the work done by the perturbing forces.
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Professor P.A.M. Dirac,
St. John'’s College,
CAMBRIDGE

3, Sandy Rise,
Wigston,

Leics,

February 18, 1944.

Dear Professor Dirac,

Professor Fowler has sent me a copy of his letter to Dr. Bartlett, in which he writes of his discussion
with you and Dr. Jeffreys regarding the possibilities of a statistical basis for quantum mechanics.

He suggests | should discuss the matter with you sometime, and | should be glad to do so if you can
spare the time.

You will remember no doubt we talked about this in December 1940, when | was beginning to
consider these ideas.

Yours sincerely,
[J.E. Moyal]

7 Cavendish Avenue,
CAMBRIDGE,
21.2.44

Dear Moyal,
| should be glad to meet you any week-end.

On Saturdays | have a lecture from 12—1 and a fire watching in the evening, but apart from that | could
meet you any time on Saturday or Sunday. So choose any week-end you like. The most convenient
time for me would be Saturday morning at about 10.30 or 11, when | am in the Arts School, but if this
is too early for you, would you come round to my house Saturday afternoon or Sunday?

Yours sincerely,
P.A.M. Dirac



7 Cavendish Avenue,
CAMBRIDGE,
6.3.44

Dear Moyal,

| should be glad to see you Saturday afternoon the 11tth. If you come around 2.30 it would do very
well.

| have enclosed a reprint | have just received from Whittaker, which you may care to read as it deals
with the point at issue.

Yours sincerely,
P.A.M. Dirac

3 Sandy Rise,
WIGSTON.
Leics.

June 26th, 1944.

Dear Professor Dirac,

On thinking over the objection you raised when | last saw you, to my statistical treatment of quantum
Mechanics, it has occurred to me that the difficulties are chiefly a question of interpretation. | think the
theory can be rendered acceptable by abandoning the idea, taken over from the original (Bohr)
quantum mechanics, that eigenstates have an objective reality.

One of the difficulties of the theory is that the probability distributions obtained for p and q from single
eigenfunctions, can take negative values except perhaps for the ground state. Only linear
superpositions of eigenfunctions lead to defined positive probability distributions in phase-space. Now,
as | explained in my paper, | consider the form | obtained for the phase-space distribution F(p,q) as in
a way an extension, or rather, an exact form of Heisenberg’s principle of uncertainty, in the sense that
it imposes not only the well-known inequality for the dispersions of p and q, but a special form for their
whole probability distribution. Perhaps then, the fact that phase-space distributions corresponding to
single eigenstates can take negative values may be interpreted as meaning that an isolated
conservative atomic or molecular system in a single eigenstate is a thing that cannot generally be
observed without contradicting this generalised principle of uncertainty. | think this can be conceded,
and no doubt physical arguments could be brought forward to support such a view. Only statistical
assemblies and distributions corresponding to linear superpositions of eigenfunctions such that
F(p,q,t) is always greater than zero would be observable, and would have an objective reality.

If this is accepted, it then ceases to have a meaning — to talk about a system having exact values of
energy, momentum etc. in a given eigenstate, so that the second difficulty, i.e. the fact that the theory
does not necessarily lead to such values, also disappears. The only thing that has a physical meaning
is the working out of the final statistical distributions over a number of states, representing the results
of experiments. | think that in this way my theory may be reconciled with the usual form of quantum
mechanics, and may possibly lead to new results capable of experimental verifications.



The interpretation of spectra, for example, would be obtained in the usual manner from the mean
values of electric dipole moments, leading to the same results as the ordinary theory. The physical
notation of quantum jumps must be abandoned. The possible frequencies of the spectral lines are
exhibited in the expansion of phase-space distribution at timet in terms of the phase-space
eigenfunctions for f,(p,q)

Fipgn=Y e fipqe”

The forbidden lines drop out, of course, on averaging of F(p,q,t). A more refined interpretation would
involve extending the theory to radiation and its inter-action with matter.

With regard to the Stern-Gerlach experiments, | should like to quote from C.G. Darwin’s paper 'Free
Motions in Wave Mechanics', Proc. Roy. Soc. A. 117 (1928) p. 260: 'in the Stern-Gerlach experiment,
we do not say that the field splits the atom into two groups and then separates these. We say that a
wave goes through the field, and when we calculate its intensity at the terminal plate, we find that it
has two maxima which we then interpret as two patches of atoms.' This shows that the theory of the
Stern-Gerlach experiment may be tackled by ordinary wave methods, without necessarily postulating
exact eigenvalues for the angular momenta, and in fact, Darwin gives this theory in the same paper,
on page 284. Actually, the treatment of such dynamical problems involving the evolution with time of
wave packets may be simplified by the use of the methods developed in my paper, as | have shown
for Darwin’s treatment of the free and uniformly accelerated electron, where in addition to his results, |
also obtained the joint distribution for p and q.

In fact, | regard such dynamical problems as one case where the methods outlined may have an
advantage over the usual methods. Furthermore, as the theory leads to the distributions at phase-
space, and also to correlations at two instants of time, there is a possibility it may lead to experimental
verifications in the field of electron and molecular beams. Another field where | think the theory may
be of some value is in the study of statistical assemblies, since it leads to phase-space distributions for
p and q, (equivalent to the Maxwell-Boltzmann distribution) for Fermi-Dirac and Bose-Einstein
assemblies. This may be of value in the kinetic theory of non-uniform fluids.

| should like now to submit to you a few ideas of a more speculative nature. In the theory as | have
developed it in my paper, a combination of the transformation equations for Y(p), @ (p) with Newtonian
mechanics, leads to Schrdodinger's equation and ordinary quantum mechanics. As | mentioned in the
course of our conversation, substantially the same transformation equations combined with the
mechanical equations of special relativity lead to the Klein-Gordon equation. One would expect new
forms of quantum mechanics (such as your spinor equations for the electron) to appear from the
combination of new transformation equations with the mechanical equations. As long, however, as
these mechanical equations, whether classical or relativistic, are deterministic, the form of quantum
mechanics obtained will be deterministic for isolated systems, and therefore unsatisfactory for nuclear
theory. This is, | think, a further argument in favour of the idea that a satisfactory quantum theory of
the nucleus must be based on some form of unitary theory involving the electro-magnetic field in a
fundamental manner, since one would expect then the mechanical equations for a particle to be non-
deterministic because it would never be isolated from the infinity of degrees of freedom of the radiation
field.

May | take this opportunity of thanking you and Mrs. Dirac for your very kind hospitality on my last visit
to Cambridge.



[J.E. Moyall

19.3.45.
Dear Moyal,

Some work | have been doing lately is connected with your work on a joint probability distribution F (p
g t) and has led me to think that there may be a limited region of validity for the use of a joint
probability distribution. However, | have rather forgotten the details of your work and would be glad if
you could let me see again the part of it dealing with F (p g t). | may get a more favourable opinion of
it this time. Have you done any more work on it since our previous correspondence?

Yours sincerely,
P.A.M. Dirac

3, Sandy Rise,
WIGSTON.

Leics.

March 22nd, 1945.

Dear Professor Dirac,

Unfortunately, my paper is in the hands of Professor Chapman of the Imperial College, and | only
have the one typescript. However, | have sent your letter to him with a request that he should forward
you the paper as soon as he has finished with it. On the other hand, | have just heard from M.S.
Bartlett, that he is back at Queen’s; he is pretty familiar with my work, and | feel sure he will give you
any explanation that you may require, if you care to get in touch with him, especially as he has worked
out a new and improved method for obtaining the joint distributions.

| notice you have used Fock’s operators in your paper on 'Quantum Electrodynamics'. | have been
wondering whether the work to which you refer in your letter is connected with this, as these operators
imply in a way eigenfunctions in phase-space. | thought | could see a way of tying it up with my work
when | was reading your paper, but | did not get very far with it.

| am afraid | have not done very much since | last wrote to you, as my engineering work is keeping me
pretty busy. However, | have worked out the relativistic extension for scalar wave-functions, which
leads to the wave equation

| i I dwr
Y(p—ed)y=——=

where s is the local time of the particle. This is a 'time dependent' extension of the Klein-Gordon
equation; | do not know whether it has been considered before. There is a difference in the
interpretation, however. | take s as the independent variable and the space time co-ordinates, and the
momentum energy vector as random functions of s. The ordinary probability distribution which is then
a scalar in space-time, is given as in the non-relativistic theory by p(q,s)=py*. The joint-phase space
distribution for co-ordinate-time and momentum-energy is obtained in terms of Y as in the non-

relativistic theory, and gives in the same way for the space-time conditional means of the momentum-
energy vector



[ dy dyr |
o= p— — |
e | oy ey, |

This is normal for the current density, but connects the charge density with the space-time conditional
mean value of the energy, rather than with probability, giving thus an immediate interpretation of the
negative values obtained when the energy eigenvalues are negative.

| think this interpretation of probability as a scalar in space-time is perhaps more satisfactory than as
the time-component of a Y-vector, though there is a conceptual difficulty, since p must then be
considered as variable with the local time of the particle. Another difficulty is connected with the
relation

Z”J = 4 ) =nr

which would restrict the phase-space probability distribution to a 7-dimensional hyper surface. One
way of turning this difficulty would be to consider m, itself as a random variable, perhaps capable of
taking a number of eigenvalues — but all this is purely speculative. | am not really clear about the last
part.

In collaboration with M.S. Bartlett, | have also carried further the treatment of the harmonic oscillator in
phase-space. Some of the results are rather reminiscent of those you obtain with the €-operator. This
work is fairly complete, and | should be able to let you have a typescript of it shortly, if you are
interested.

| have also been considering applications to statistical mechanics, which, since they require
distributions in phase-space, would seem to offer an obvious field to the theory. But apart from
equilibrium distributions, | rather hope that the application of the theory of random functions, will also
lead to methods generally suitable for non-uniform states and fluctuation problems.

3, Sandy Rise,
WIGSTON,
Leics.

March 23rd, 1945

Dear Professor Dirac,[Z]

My letter to Professor Chapman yesterday, crossed with his, returning my typescript which | therefore
enclose.

| also enclose the typescript of a note by M.S. Bartlett, which gives an improved method of obtaining
the joint distribution.

ATTACHMENT:
Comments on Your Letter to Professor Dirac, 26.6.44 by M.S. Bartlett.

1. General Validity

The practical issue here seems to be simply this:-



Either

i. Your theory is equivalent to the orthodox (non-relativistic) theory as regards all
possible physical experiments (cf. the earlier equivalence of the Heisenberg and
Schroédinger methods). The method used is then simply a matter of convenience,
though it would be a great advantage to possess a firmer logical basis for the
methods in current use.

ii. Or your theory is not so equivalent. In that case acceptance or rejection is firstly a
matter of experiment; but again since your theory is more rigorous than the
standard, there should be better scope for modification of the particular physical
postulates it contains.

2. Eigenstates

It also seems clear now that the analysis into eigenstates is a matter of mathematical technique. This
is supported by:-

a. The appearance of negative probabilities in the phase-space eigenfunctions. But
apart from this appeal to your theory, we may note

b. Equivalent expansions in different coordinates (e.g. the free electron in polar
coordinates by Rejansky).

c. The use of eigenfunctions as a general method of solving differential equations, the
use of Fourier series being the best known example.

d. The appearance of eigenfunctions in 'chain probability' problems. Re this point,
Jeffreys’ work is relevant, but | think the elementary algebra of wave vectors (of the
kind often used in introductory textbooks on quantum theory) indicates rather more
simply that in some respects (analogously to (c)) the technique is quite general and
has nothing to do with quantum theory as such. The relevant algebra is developed
in the attached notes.”

3. Discrete energy levels

The remarks under 1. are in sympathy with your view that here it is meaningless to ask whether the
energy levels are really discrete, but to ask whether the theoretical spectra are correct. Incidentally
one might note that while there is no objection to a conceptual discrete energy level existing over
infinite time (as | pointed out in my reply to a previous comment of yours), it is true that in practice the
observation of a spectra over a finite time implies a blurring of the lines. This is recognized and a
theory has been worked out (see, for example the early chapters of Rosseland’s Theoretical
Astrophysics). This observational fact may tend to obscure any finer points on the energy level
distributions.

Similarly with the Stern-Gerlach effect — it is a matter for agreement with experiment — though here |
shall not try to comment since | believe this effect involves electron spin, with which your theory does
not deal.



4. Interference and diffraction

Similarly also with these phenomena. There is a word of caution here. When | looked at this a little
while ago in an attempt to determine as precisely as possible from observe[d] results the form of the
uncertainty principle, | satisfied myself that the interference of protons and electrons after passing
through two narrow slits will not arise if the latter are merely passively filtering a statistical assembly of
particles with an initial distribution of position and momentum; it is essential to allow the uncertainty
principle to imply an actual change in the momentum possibility distribution consequent on the
positional probability distribution at the slits.

Compare the discussion by Whittaker (Proc. Phys. Soc. 55, p. 464, 1933) of polarisation of Nicol
prisms. He asserted that this phenomenon was impossible to explain by any what he called "crypto-
deterministic’ mechanism, citing an alleged proof by von Neumann of this. But it was clear that he was
referring to a deterministic behaviour of the protons without interaction with the prism; and this point
has been taken up by Pelzer (Proc. Phys. Soc. 56, p. 195, 1944), who shows that with such
interaction Whittaker’s assertion is not necessarily true.

This means, however, in connection with your suggestion of experimental verification with electron
beams, that in successive measurements taken on a beam of photons or electrons, the effect of each
measurement must be allowed for, and this will presumably affect the observed correlations at two
instants of time.

5. Reversibility

The reference in the last paragraph of your letter to Dirac to nuclear theory was extremely interesting,
though | think that a completely satisfactory extra-nuclear theory will not be possible either until
radiation is satisfactorily incorporated. It is pointed out in the attached Notes* that irreversible changes
appear excluded in the standard wave-vector technique (this is surprising in view of the common claim
that the processes covered are non-deterministic). There is presumably the possibility, however, as
apparently envisaged in your treatment of the electromagnetic field, of introducing irreversible changes
in the well-known statistical way from reversible ones by averaging over a large number of irrelevant
degrees of freedom after the complete equations have been set up.

20-4-45
Dear Moyal,

Thanks for sending me your manuscript again. The situation with regard to join[t] probability
distributions is as follows, as | understand it.

A joint distribution function F(p,q) should enable one to calculate the mean value of any function f(p,q)
in accordance with the formula

meand .I"{_.'r_q'” —-I} O, sV L i Valp ey (1)

| think it is obvious that there cannot be any distribution function F(p,q) which would give correctly the
mean value of any f(p,q), since formula (1) would always give the same mean value for pq and for qp
and we want their means to differ by /h. However one can set up a d.f. F(p,q) which gives the correct
means values for a certain class of functions f(p,q). The d.f. that you propose gives the correct mean



value for o= for T and © any numbers, but would not give the correct mean value for other
quantities, e.g. it would give the same mean value for «7+*, whereas we want this second quantity to
be «™ * times the first. In some work of my own | was led to consider a d.f. which gives correctly the
mean value of any quantities of the form Y. Lt je. all the p’s to the left of all the g’s in every
product. My d.f. is not a real number in general, so it is worse than yours, which is real but not always

positive, but mine is connected with a general theory of functions of non-commuting observables.
| am writing up my work for publication and | propose to refer to your work somewhat in these terms:-

"The possibility of setting up a probability for non-commuting observables in quantum mechanics to
have specified values has been previously considered by J.E. Moyal, who obtained a probability for a
coordinate ¢ and a momentum p at any time to have specified values, which probability gives
correctly the averages of any quantity of the form«*, where T and 6 are real numbers. Moyal’s
probability is always real, though not always positive, and in this respect is more physical than the
probability of the present paper, but its region of applicability is rather restricted and it does not seem
to be connected with a general theory of functions like the present one.'

Do you think this reference would correctly describe your work and do you have any objection to such
a reference?

There may be other d.f.’s which are worth considering and there is a field of research open here. Will
you be able to work on it?

Yours sincerely,
P.A.M. Dirac

18 Ambrose Avenue
London N.W. 11.

April 29th, 1945.[3]
Dear Professor Dirac,

Many thanks for your letter. | was most interested by your remarks concerning your work on a general
theory of functions of non-commuting observables, and should be very glad to see it. Are you
acquainted with the work of Whittaker, and Kermack and McCrea on this subject? The references are:
E.T. Whittaker, Proc. Ed. Math. Soc. Ser. 2, v. 2 (1931) 189-204; W.O. Kermack and W.H. McCrea,
ibid. ser. 2, v. 2. (1931), 205-219 and 220-239.

If I understand correctly your remarks concerning joint probability distributions, you consider them as
functions of the non-commuting variables P, Q, which will give correct averages for certain classes of
functions of the latter. (I shall use hereafter P, Q for the non-commuting quantities, and p, q, for the
corresponding commuting variables.) Such functions may of course prove extremely useful
mathematically, but they can hardly be called probability distributions in any ordinary sense.

My approach to this problem has been entirely different. | have looked for a probability distribution in
the ordinary sense, which will be a function of the ordinary, commuting variables p, q. Its connection
with functions of the corresponding non-commuting operators P, Q of quantum mechanics, is that it
should give correct means for such of these functions (i.e. Hermitian operators) as are formed to
represent physical quantities. If a physical quantity is given in classical mechanics by a function



M(p,q), (i.e. a Hamiltonian, or an angular momentum) a Hermitian operator M(P,Q) is formed to
represent it according to certain rules. | have looked for an F(p,q) such that it will always give

(1) M = Ilﬂ g AP ERy iy el = ”.Ul.rn.:,rln."q,r'_ulcﬂri.:n'e;

It is obvious that such a function F(p,q) should be connected with a unique method of forming the
quantum mechanics operators from the corresponding classical mechanics functions if p and g (I am
speaking of course, of the classical quantum mechanics for particles without spin). A first test for the
correctness of such an F(p,q), will therefore be that the corresponding method for forming operators
should give correctly at least all the known Hermitian operators of the theory, (since a general method
for forming these operators is not generally agreed upon in the standard theory).

The F(p,q) which | propose in my paper fulfils these conditions. It can be expressed either as a series
development in Y(p) and ¢(p) or as an integral expression in terms of the Y’s alone or ¢’s alone (the
latter is due to M.S. Bartlett) as follows

Fip.g)=e° (gl phe }
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| have shown that it corresponds univocally to the following method of forming operators (already
proposed by McCrea). Let M(p,q) be an ordinary function of p and g (e.g. some constant of the motion
in classical mechanics). To form the corresponding operator M(P,Q) we write first a function M, (P,Q)
of the non-commuting operators P, Q, which is obtained from M(p,q) by placing all the P’s to the right
of the Q’s, i.e. by replacing all polynomial terms q"p* in M(p,q) by Q™P*. The correct operator
M(P,Q)is then obtained as

(3) M(P.U) =" HMLPN

Form (2) for F(p,q) will give correct averages for all operators formed as in (3) by averaging in p-q
space over the corresponding ordinary function M(p,q), i.e.

M= Il,n' W WA Ny g oy = |FJ’-.|--II|.F'1.I1||':'|r'1ll",l_f|-:lr|l'-ll:ll-ell'

It is consequently incorrect in my view to say that the F(p,q) in my paper will give correct averages
only for functions of the form exp il + 82, Actually, it will give the right averages for all operators formed
as in (3), and in particular, for all the Hermitian operators considered in the classical quantum
mechanics of particles without spin, e.g. Hamiltonian, angular momentum, total angular momentum,
radial momentum, etc. It is easy to check that (3) does give the usual operator form for all these
quantities. In the case of the example quoted in your letter, it will give correct average for
O+ L =20+ 1) (I may mention here that this form of F(p,q) and method of forming operators is valid
for rectilinear coordinates only.)

Furthermore, the F(p,q) in my paper leads to certain forms for the space-conditional averages of the
powers of p (i.e., averages of p™for a given value of q), the first two being

(4) Pl4) = [Fip.qydp =yoy
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Early in my work (Sect. Il) | obtained a set of partial differential equations for probability distributions,
which have the form of the hydrodynamic equations of continuity and motion and express
conservation of probability. These are of quite general validity, and are not connected with any special
form of F(p,q) or any physical assumption. Substitution in these general equations of the expressions
above for the space-conditional means of p, p?, taken in conjunction with the equations of classical
mechanics, lead to the Schrodinger equation, as | have shown in my paper. The Schrédinger equation
is thus shown to result from this special form for F(p,q), the laws of classical mechanics, and the
general properties of probability distributions for dynamical variables. | think this is the other essential
condition for a correct F(p,q): that it should be consistent both with the Schrédinger equation and the
equations for conservation of probability.

Regarding the range of validity of form (2) for F(p,q), and the fact that it leads to negative values for
single eigenstates, | have already mentioned in my last letter that this may possibly mean, reverting to
your view, that joint measurement of p and q is inconceivable in pure states, but only in a combination
of states that leads to a defined positive F(p,q). | think possibly this may be a general feature for any
possible F(p,q) in quantum mechanics, because of the necessary orthogonality properties of the
phase-space eigenfunctions corresponding to pure states. Such (possibly) negative eigenfunctions,
which must be compounded to give a positive probability function, occur in the classical calculus of
probabilities in the theory of chain probabilities. However, as was pointed out by M.S. Bartlett, even the
possibly negative f(p,q) corresponding to a pure state will still lead to correct averages for operators of
form (3), so that the theory retains its usefulness even in this connection. | pointed out in my last letter
for example, how it could be used to calculate transition probabilities.

In conclusion, my view is that this form (2) of F(p,q) has quite general validity, and that the theory it
leads to, is entirely equivalent to the classical quantum mechanics of particles without spin.

| have considered the connection of this theory with the general theory of functions of non-commuting
variables. From this point of view, the theory starts with exp /(" + &7} and leads to the general method
(3) for forming observables. One might conceivably take another starting point, which would be
connected with some other method for forming observables. However, apart from other considerations
(cf. Hermann Weyl, “Theory of Groups and Quantum Mechanics” p. 275) all the other forms of F(p,q) |
tried, taken in conjunction with classical mechanics and the equations of conservation of probability,
did not lead to the Schrédinger equation, but to some different wave equation. They correspond thus
to some scheme different from the classical quantum mechanics. In particular | discarded for this
reason the first F(p,q) | tried, which was connected with the general operator form

1.|I|.II"|:_-;':| = Z:_ |,|'.I.II'__I'. i -|'.|' ||-|' I
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which gave the exponential form k¢ +¢*«* | and consequently had the form
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| believe | showed you these attempts in 1940.

One of the problems in the theory of non-commuting variables, which | have not been able to solve is:
what general transformation will leave form (2) for F(p,q) and (3) for operators invariant? It is easy to
see that this is the case for linear transformations from Cartesian coordinates, and also for the
dynamical-contact transformation of classical mechanics; but it is not maintained e.g. for a
transformation to polar coordinates and their conjugate momenta. An allied problem is to find a
general form for F(p,q) for any canonical coordinates corresponding to form (2) for rectilinear
coordinates. | am hoping your work will give me a lead in this connection.

With regards to your query, | do not, for the reasons mentioned above, think that your reference to my
work gives a correct description of it. It is certainly not correct in my view to say that form (2) for F(p,q)
is limited to giving correctly averages for quantities of the form " =**"; in fact, it will give averages for all
observables formed as in (3), and this includes as far as | know, all the observables ordinarily
considered in classical quantum theory. This would not perhaps matter a great deal, if my work was
already published, since readers could then refer to the original. | have not however been able so far
to arrange for its publication, due largely, as you will no doubt remember, to your veto, which made the
late Professor Fowler hesitate about presenting it to the Royal Society. Your criticism is thus left
without an answer. Your objection at the time, if | remember rightly, was chiefly that joint distributions
for p and g had no physical meaning and consequently no validity or usefulness. | am glad to notice
that you now think they open an interesting field of research.

Regarding your query to whether | shall be able to do further work on this subject, my main difficulty is
again the fact that my existing work is not yet published. For one thing, | shall want to base future
work, at least partly, on the papers now in your hands. It is also discouraging to accumulate for years
unpublished results, as | have been doing. Finally, there are material difficulties: the papers you have
seen, represent my first real effort at research in pure mathematics and theoretical physics; | was
hoping that their publication would eventually enable me to transfer my activities entirely from the field
of research in engineering and applied physics to that of pure science, and to do some serious work
on theoretical physics. Failure to obtain publication has forced me to adjourn such plans sine die, and
my present work is leaving me less and less time for pure research.

Yours sincerely
[J.E. Moyal]

c/o. Goscote Hotel,
Goscote Hall Road,
BIRSTALL.

Leics.

April 25th, 1945.

Dear Professor Dirac,
There are a few points in the paper | sent you which | should like to amplify.

First, regarding the range of validity of the F(p,q) distributions, | have been considering the possibility
of a modified interpretation of the mathematical formalism. You will have noticed that one of the
difficulties of the theory is that the method of forming F(p,q) does not lead to functions that are defined
positive for all p and g when applied to a system in a single eigenstate. This might be interpreted,



reverting partly to the point of view expressed in your book, as indicating that simultaneous probability
distributions for p and g have no precise meaning for a system in a single eigenstate, or again, that a
classical particle picture is not valid for a system in a pure state, and that the hypothesis of pure state
is incompatible with the simultaneous measurement of p and q. The classical particle amongst a
number of states in such a manner is to make F(p,q) positive.

This would limit the possibility of giving the probabilities of simultaneous values for p and q. However,
as M.S. Bartlett points out in his paper, it does not necessarily upset the mathematical structure of the
theory or its equivalence to classical wave mechanics. If, as | think, this equivalence is correct, then
the theory should lead to correct results for the various quantities obtained by wave mechanics, such
as frequencies and transition probabilities, even when dealing with negative functions F(p,q). The
appearance of the latter should then be taken to mean that the situation is such that simultaneous
prediction of the values of p and g is impossible, but would not impair the calculation of other
experimentally determinable quantities.

It would be possible to use the formalism of this theory to supplement in certain cases, the
perturbation method in the calculation of transition coefficients. This can be done as follows: if the
system is originally in the unperturbed eigenstate k, with the phase space eigenfunction
f (P, g,)corresponding to the g-space eigenfunction u,(p,,q,)

(1) fap )= }I. w, (g, = 20w, e, + )T

the phase space distribution F(p,q,t) at time t would be obtained by substituting in f,,(p,.q,) the
classical solution p(t), q(t), in terms of the initial values p, , q,, for the system under the action of the

perturbing forces (when it is possible to find such solutions). In other words, one would apply to
fu(Po:q,) the contact transformation in time of classical mechanics to obtain F(p,q,t) at time t; one

could then expand the latter in terms of unperturbed phase space eigenfunction /.(r-4)

Fip.g.a= E"’~ )
2 :

and obtain thus directly the transition coefficients a*, (t)a,,(t)=A,, from state k to state n.

Applied, for example, to the schematic case of an oscillator of change e, following the application of a
perturbing electric force of large wavelength, this method leads for the transition coefficient from the
ground state to the k-th state to the exact expression

(3) Au = Al e K

(calling AE the increase in mean energy). The first term of the expansion of A,in power of AE
coincides then with the first approximation by the perturbation method

A, =+AFr fork =1

(4) =0 B 3N

| have been considering the application of this method to radiation oscillators, in view of the possibility
that some of the divergences may be due to a mathematical breakdown of the perturbation method.

Best regards,
[J.E. Moyal]



P.S. | have just received your letter but must defer answering for a few days, as | am moving to
London. My new address will be 18. Ambrose Ave. N.W. 11.

11-5-45
Dear Moyal,

Thanks for your letter and your references to Whittaker and others. These papers are very interesting,
though not directly connected with the subject under discussion.

| still do not agree that your d.f. gives correctly the average values of all Hermitian operators
considered in classical mechanics. It is true that it works alright for * (4r+ /), but it goes wrong as soon
as one applies it to more complicated examples. For example your d.f. would give the same average
for the two Hermitian operators QP°Qand PQ?P, whereas they ought to differ by 2h2. You may
answer that these two Hermitian operators do not correspond to classical quantities. To anticipate this
answer | have worked out another example, which certainly is of practical importance. Take a
harmonic oscillator of energy “(¢" + ), Its average energy when it is at a temperature T is the average
value of the Hermitian operator« =" *" *. | have checked that this average value is not given correctly
by your d.f. Your d.f. gives the correct average for quantities of the form - “**" and for quantities

expressible linearly in terms of such quantities, e.g. J /@t " dadb gor any fra b) or ¢ but is not
more general than this. Do you not agree?

| have enclosed a copy of my paper. | should be glad if you would send it back in two or three weeks
time, as | do not have another copy.

Do you want me to send you back your work now? | would be willing to help you publish it if you
would change it so that it does not contain any general statements which | think to be wrong. | would
suggest it would be better to publish the quantum theory part separately from the rest, because it is on
rather a different footing (according to my view).

Yours sincerely,
P.A.M. Dirac

18-5-45
Dear Moyal,

Your theory gives correctly the average energy when the system is in a given state, (i.e. represented
by a given wave function) but not when the system is at a given temperature. Take a harmonic
oscillator with energy “(4 +r). The probability of its being in the n-th state is proportional to the
average value A, of «****"""_ According to your theory

A, ‘J-J-L' TTETYR (pa)dpdy = h»'. + Yo T L ghdpde
with
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When the A, ’'s have been calculated, we can get the average energy by

E"  __ T E:.!
2| ¥ A

It is not very easy to calculate A, but is quite easy to calculate 2.4, from the known property of wave
functions

E=

Y v, (py=hTe!
Thus

Y Lpa=h

and

3 A, =i [  py =7 x}:
We now get

F ki
which is the classical result and not the quantum one.

In Bartlett’'s paper which you just sent me, the quantum values for the energy of the harmonic
oscillator are assumed and the correct value for i- was obtained because of this assumption. You can
always get the right answer by borrowing sufficient results from the ordinary quantum theory. The true
test of a theory is whether it always gives consistent results whichever way it is applied, and my way
of evaluating given above shows that your theory does not always given consistent results. The
discrepancy in this case arises because | use your d.f. for calculating the average of « ="', and this
quantity is not expressible linearly in terms of &=

You say your theory gives a different value for %" =), and this can only mean that your theory is not
consistent with the usual quantum values for the energy, otherwise there is no room for any
uncertainty in the value of £° ~(E), ‘Your theory gives a value for /" (%) greater than the usual one by
an amount /> (with L :—[P +q7) = ‘“) Thus for a harmonic oscillator in its state of lowest energy

your theory will give fluctuations in energy corresponding to B (EY =40 , instead of a constant energy.
Surely you must agree that your theory is wrong in this case, and that therefore it has limitations.

The general statement in your work that | disagree with is the one (given in your last letter) that
dynamical variables must be of the form [JP(@)¢"“ ™ dtdo The square of the energy of a harmonic

oscillator, namely Lir'+a'1-21] is not of this form, and if you replace it by something that is of this form
you get energy fluctuations in the state of lowest energy, which | this is a self-contradiction.

Yours sincerely,
P.A.M. Dirac

18 Ambrose Avenue
London N.W.11.
May 15th, 1945.



Dear Professor Dirac,

Many thanks for your letter and enclosed paper. | have not yet had time to read the latter, but | shall
do so as soon as possible.

| am not quite clear as to how you worked out the average energy for an oscillator at temperature T.
The theory in my paper gives correctly the average energy for a Maxwell-Boltzmann assembly of N
oscillators. | enclose the draft of an unfinished paper by M.S. Bartlett and myself which gives the
relevant calculations in §4 (you may also find §2 & §3 of some interest). A difference with the orthodox
method is found not in the expression for the average energy i, but in the standard deviation, which
comes outas ¢ (£)=F (L) =(£) /N instead of (£1 /N -N(*)" (not neglecting the ground state energy). |
have always found so far that my treatment leads to the same average values as the usual methods,
but shows difference in the fluctuations: this may lead to an experimental test of the theory.

| agree that my d.f. yields correct averages for quantities expressible linearly in terms of expressions
exp it +8J) such as

(1) f-'iI'.[.'r.—”_ x(r, @) T ol

but this includes quite a wide class of functions. In fact, it can be shown (c.f. McCoy, Proc. Mat. Acad.
Sc., 18 (1932) 634) that (1) is equivalent to the form for Hermitian operators mentioned in my last
letter.

(2) PO =™ GLP

For a polynomial term p?q? the corresponding operator (P>QS), obtained by (1) or (2) can be cast in a
more symmetrical form

PO, =) E[“ (PO

(3)
In particular, for the term (P?Q?), mentioned in your letter, (2) and (3) lead to

(P07, = 7P + (L) 40P+ L(L) -4

:.[{.II.II' + 200 O P 1-.{)1" =2
(4) 3 OP*Q+ PO = 0F°C

(by the way, surely QP?Q-PQ?P=01).

The hypothesis on which | base my derivation of the d.f. (and therefore the rest of the theory) is
equivalent to the assumption in the standard (matrix) theory that dynamical observables must be of the
form (1) (non-dynamical operators might be construed in the statistical theory as symmetry, etc.
conditions on the d.f.). Relation (1) is obviously more restrictive than Heisenberg’s exchange relations
alone: it might be considered as the basic postulate of a well-defined form of quantum kinematics. In
this form, it has been given by H. Weyl, who bases his arguments in its favour on group-theoretical
considerations: iP, iQ generate a unitary Abelian group in 'ray'-space; the hypothesis is then that
dynamical observables are the matrices of the representation of this group’s algebra, which are given
by (1) if the group is supposed irreducible. My argument is, that it leads to a theory that is consistent
both with the Schrodinger equation and the usual statistical interpretation. | think it should be possible
to prove that it is the only form of quantum kinematics that does so, and that a different form would



necessitate revising either the statistical interpretation, or the wave-equation — but this is only a
conjecture so far.

Summarizing, | think it would be fair to say that my paper gives a derivation of classical quantum
mechanics on a purely statistical basis, (plus Newtonian mechanics) which is equivalent to the
standard matrix theory with the addition of Weyl's postulate for a quantum kinetics and furthermore
that it shows the consequences such a theory entails with regards to the problems of determinism,
probability distributions, fluctuations, quantum statistics, etc. Would you agree to this character; and
the controversial issue it raises? | am not clear, however, as to exactly what general statements you
think are wrong.

I shall not need my typescript until there is a need of revising it for publication, so that you can return it
whenever you have finished with the problems of determinism, fluctuations, quantum statistics, etc.
Would you agree to this statement of the position?

| thank you for your (conditional) offer to help me publish my papers. | have no objection to publishing
the quantum theory part separately; | agree, it is on a different footing from the rest, because of its
more tentative character; and the controversial issue it raises. | am not clear, however, as to exactly
what general statements you think are wrong.

I shall not need my typescript until there is a need of revising it for publication, so that you can return it
whenever you have finished with it.

[J.E. Moyal]
18 Ambrose Avenue

London N.W.11.
May 26th, 1945.

Dear Professor Dirac,

| thank you for your letter of the 18th. With regards to your derivation of the average energy for an
oscillator at fixed temperature, | don’t know how this method works out in the standard theory, but the
reason for the result you obtained on the basis of my theory is fairly obvious. You start with a Maxwell
d.f. for p and q

(1) Flpy=e ™"
You then work out the coefficient
(2) A :”u T O LU e b lep

Since the f._(p,q)

(3) Joul gl =e T T (e hp {ppe™ L

form an orthogonal set in phase-space, the coefficient A, is merely the Fourier coefficient a,, in the
expansion



(4).-"" i .:z..l f )

(It is possible to show that in (4) a,,=0 for n#m). You then proceed to show through the A, that for (1)

(5) k= ﬁ +q )=M

but this is of course obvious by a direct calculation
(6) [ _JJ (p" +q")e ¥ dp el in T dpedy

The correct method for evaluating i for an assembly of oscillators in my theory is the one given in my
joint paper with Bartlett, and it leads to the usual result

hv frv

(7) a8 LI.. i --I ’ :

| don’t think your remark on getting the right answer 'by borrowing sufficient results from the ordinary
quantum theory' quite fair: in so far as my theory is equivalent to the ordinary theory, it leads to the
same eigenvalues for the mean of the energy, as | have shown in my paper. In order to prove an
inherent inconsistency in my theory one would have to show that the method you use follows
necessarily from my basic postulates, but this is not the case. My method on the other hand is based
on a theory for statistical assemblies resulting from these postulates (c.f. my paper, §10). As such, it is
quite consistent with the rest of the theory, and also appears to lead to correct results.

The difficulty regarding the dispersion =/ for the energy of the oscillator in a single eigenstate is more
serious. | think it is connected with the fact that f(p,q) can be negative: if the conclusion is (in
accordance with your views) that a joint d.f. for p and q is impossible in a single eigenstate, then the
probability distribution for “(»"+¢’), and consequently the %/ dispersion, have no direct physical
meaning. This could be interpreted through the fact that it is impossible to measure the energy in a
single eigenstate in a finite time. Only a d.f. giving the band-width and intensity distribution of the
spectrum lines would have a physical meaning, and could be compared with experiment. This would
involve, however, extending the theory to include radiation.

| am prepared to mention your objections concerning the operator forms J[P(.@1¢" " dzda i the pody
of my paper (do you agree that with the imposition of this restriction on operators for dynamical
variables in the usual matrix theory, the latter becomes equivalent with my theory?)

| do not think there are any inherent inconsistencies in my theory, but | agree that this restriction leads
to results that do not tally with certain hitherto accepted features of the usual theory, and may possibly
clash with experimental results. Should the latter prove to be the case, then in my view the conclusion
to be drawn from my work would be, that the usual statistical interpretation of classical quantum
mechanics must be revised. Comparison with the experiment of such differences with the usual theory
might perhaps be sought for in the fluctuations for statistical assemblies, the intensity distributions of
spectral lines, or the calculation of transition probabilities.

If you agree to the above, then | should be glad to know if you are still prepared to help me in
publishing my work and what form of publication you would suggest. | think | could condense the
mathematical part into a paper in two parts of 15-20 pages each, and the quantum mechanics part
into 20-25 pages.



| return your typescript, which | read with great interest, especially as | have treated the same subjects
in my paper and arrived at different conclusions. For example, the operator form | use constitutes a
general method for forming functions of observables which (as compared with yours) is unambiguous
when the latter are non-commuting, and does not depend on their order. We have already discussed
the d.f. for p and g at one instant of time, but | have also given an expression for their distribution at
two instants of time, in terms of the phase-space eigenfunctions in my main paper (§14), and in terms
of the transformation function (4 [4.) in §2 of the paper on the oscillator | sent you, which it is interesting
to compare with your results on the same subject. My conclusion regarding trajectories in my theory is
that for a conservative and unperturbed system they reduce to those of classical mechanics, |
discussed the resulting implications with regards to the principle of uncertainty and the problem of
determinism in §15, and showed in the succeeding paragraphs, that it leads to correct results in
examples on the free and uniformly accelerated particle, and the oscillator. | have also worked out in
collaboration with Bartlett an alternative method of calculating (4. 4.} from Hamilton’s principal function
in classical mechanics based on Whittaker's work.

[J.E. Moyall

6-6-45
Dear Moyal,

| expect to be going abroad in a few days time and not to be back till the end of July, so | am returning
your papers herewith in case you should need them in the meantime. Thanks for returning my paper.

It now appears that the dispersion of the energy in a stationary state is the simplest example which
shows the limitations of your theory. This dispersion will be pretty general on your theory, and will
probably occur with all stationary states and all dynamical systems. This is not a difficulty that can be
got around in any way, because it contradicts the whole idea of sharp energy levels — it would imply a
lack of sharpness in the energy levels much too great to be reconciled with experimental evidence. It
shows therefore that the joint d.f. does not work in the case of E2. Also it does not work for higher
powers of E.

If the limitations in the applicability of the joint d.f. are clear[ly] stated, which would mean partly
rewriting it, | would be glad to help you publish your work. The quantum theory part of your work could
form a paper which | could communicate to a scientific journal. With regard to the remainder, | do not
know how much of it represents new research work and how much is an exposition of known results.
Do you have any suggestion about where it should be published? What did Fowler say about it?

Yours sincerely,

P.A.M. Dirac

18 Ambrose Avenue,
LONDON N.W. 11,
17th June, 1945

Dear Professor Dirac,

| was sorry to see in the press that your visit to the U.S.S.R. was cancelled at the last moment: |



expect you must be very annoyed at the whole incident.

Your letter and my papers reached me only on Tuesday: the delay was apparently due to the fact that
the envelope had broken open during transit; fortunately nothing seems to be missing.

| agree that the occurrence of non-zero dispersions in eigenstates is the main difficulty or limitation in
my theory. | did point it out and discuss it at some length in the paper | sent you, and will of course do
S0 again as clearly as | can when | redraft it for publication (which | intend to do in any case in order to
produce a condensed version.)

My work on Random Functions is new. Professor Fowler's original suggestion was to present the
whole work for publication in the Proc. Roy. Soc. (including the part on Quantum Mechanics) as three
separate papers. My intention was then to rewrite it in a more condensed form, cutting out
appendices, some of the examples, etc., so as to have three papers of 15 to 20 pages each. Would
you consider this now as a suitable arrangement?

Bartlett has told me that you are holding colloquiums on Quantum Mechanics in Cambridge. Would it
be possible for me to attend some of these? | shall be visiting Cambridge fairly regularly in connexion
with my present duties, and it may prove possible to arrange for these visits to coincide with the date
of your colloquium.

[J.E. Moyal]

7 Cavendish Avenue,
CAMBRIDGE
26.6.45

Dear Moyal,

The quantum theory part of your work could be written up as one paper, and the remainder as two
more, provided it divides naturally into two parts. If it does not divide it might be better to keep it as
one long paper. Probably the Proc. Roy. Soc. is the best journal for them.

We have been having Colloquiums, usually on Friday afternoons but sometimes on Monday
afternoons. They will probably be resumed in October and we would be glad if you could come to any
of them.

Yours sincerely,
P.A.M. Dirac

18 Ambrose Avenue,
London N.W. 11
10th July, 1945.

Dear Professor Dirac,

Many thanks for your letter of the 26th. As you suggest, | am now rewriting the part of my work on
quantum mechanics as a separate paper. As regards the rest, | am rewriting it as a paper in two parts,
which could then appear either separately or together, whichever is more convenient.



Thank you for your invitation to the colloquiums; | am looking forward to attending them.

| enclose some notes in which | have tried to develop a method which would overcome the difficulty
about non-zero-dispersions for eigenvalues in my theory and also extend it to generalized canonical
coordinates. This is still tentative in character, and there are several things | still want to clear up, but |
should be glad in the meantime to have your opinion on this development. | also enclose some notes
comparing the results in your paper with mine.*

Yours sincerely
[J.E. Moyal]

18 Ambrose Avenue,
London N.W. 11,
21st August [1945]

Dear Professor Dirac,

You may be interested in a paper by Wigner, Phys. Rev. 40 (1932), 749, which anticipates my
derivation of the p—q distribution. | believe Bartlett has told you about this.

| understand from Bartlett, that you are leaving for the U.S. on the 30th. Would it be possible for me to
send you the m.s. of my papers to you there, if and when | complete them?

With my best wishes for a pleasant journey.

Yours sincerely,
[J.E. Moyal]

17 Cavendish Avenue,
CAMBRIDGE,
31-10-45

Dear Moyal,

Your new version is more in accordance with the standard quantum mechanics, but it is considerably
more complicated as you need a different joint prob. distr. for each system of coordinates. You are
definitely departing from classical statistics when you make the joint prob. distr. depend on the system
of coordinates, and if you depart so much from the usual classical ideas is there any point in trying to
fit things into a classical framework? What advantages does your system have over the usual
statistical interpretation of quantum mechanics? Any results that you get from your system must either
conform to the usual quantum mechanics or else be incorrect. | think your kind of work would be
valuable only if you can put it in a very neat form.

| am returning your paper herewith,

Yours sincerely,
P.A.M. Dirac
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03,060 et 0%,040" . Lne poussée leucocytaire avec polynucléose s'est développee et fut
d’autant plus marquée que I'évolution fut plus rapide.

(Certaines modifications de la moelle osseuse meéritent d'élre soulignées.
Inconstantes, nous les avons observées dans les tout derniers jours de I'évolution
de I'insuffisance parathyroidienne, d'une part chez un chien mort de tétanie
le 11° jour, d’autre part, surtoul, chez deux chiens dont la survie prolongée par

* I’absorption jourmliére de 2% de lactate de calcium, a atteint 23, 28 jours.
Chez ces animaux, atleints de cet état de cachexie progressive, décrite par
E. Gley, s'est développée tardivement dans la moelle, une réaction réliculo-
endothéliale intense, faite de noyaux nus, du type histiocytaire, baignant dans
les mailles du collagene. Cette réaction tend i étouffer le tissu myéloide normal
qui persiste cependant. On constate 3 a 4 % de cellules indifférenciées,

Cel aspect n’est donc pas celui de la leucémie aigué. 1l s'oppose, jusqu’a un
certain point, a laspect fibreux que prend la moelle osseuse dans I'hyperpara-
thyroidie. -Mais si I'on se rappelle que le systéme réticulo-endothélial de la
moelle est le plasmode dont les éléments -donneront naissance, en sc libérant,
aux lignées myéloide et peut éire monocytaire du sang, il n’est pas illogique
de penser que, dans certains cas, sous linfluence d’une insuffisance para-
thyroidienne, la prolifération de ce tissu puissc aller jusqu'a la libération de
formes jeunes indifférenciées, leucoblastiques. Cest 14, pour I'instant du moins,
une hypothése de travail qui peut éclairer notre observation.

CORRESPONDANCE.

M. Dawio Acevepo adresse des remerciments pour la distinclion accordée a
ses lravaux en 14fo.

M. Secréraire PERPETUEL signale parmi les piéces 1mpr1mees de la
Correxpoudanus :

Bulletin de I'Ecole polyvtechnique de Jassv. Tome 1, fascicule I, janvier a
Juin 1y 46,

~ MECANIQUE ONDULATOIRE. — Sur les rapports entre li théorie
des mélanges ct la statistique classique. Note (') de M. Jacoues Yvox.

Se limitant a des problémes sans spin, Wigner (*) a montré la possibilité de
caleuler,. en mécanique quantique, notamment & propos de questions de
thermodynamique, les moyennes 4 ’aide d’un formalisme identique & celui de
la statistique classique. Wigner remarque toutefois que la densité de proba-

'y Séance du 1 juillet 1956.
(%) Phys. Rev., B0, 1932, p. =ig. .

o~
-
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bilité qu'il utilise, fonction des coordonnées et des impulsions, ne mérite pas ce
nom & proprement parler parce qu’elle n’est pas nécessairement positive. Il lui
semble de plus que cetie densité n’est pas déterminée d’une maniére univoque
et qu’elle ne permet & coup sir le calcul correct des moyennes que dans le cas
assez limité o Popérateur quantique correspondant dépend seulement soit des
coordonnées, soit des impulsions, et jamais des deux a la fois.

Récemment, J. Bass (*), puis E. Arnous (*), ont repris cette question et,
somme toute, tombent d’accord avec Wigner sur I'ensemble de ces conclusions.

Je me propose de montrer ici que les réserves faites sur I'étendue du
domaine d’application de la densité de Wigner sont entiérement injustifiées, et
d’indiquer de maniére précise comment les calculs doivent étre conduits.
Je me servirai a cet effet des résultats acquis dans une Note antérieure (*) dont
je conserverai les notations.

Vinsiste sur le fait que pour donner a la question tout son intérét, il ne faut
pas se limiter, comme le font J. Bass et E. Arnous, 4 des cas purs, mais qu’il
faut envisager le probléme dans le cadre de la théorie des mélanges. La situation
est représentée alors par un noyau 9U(z, y) self-adjoint auquel la théorie
quantique impose d’étre normé et d’avoir des valeurs propres positives. Dans
la Note précédente, j'ai e}ssocié a toul opérateur différentiel self-adjoint G
opérant sur les fonctions de 2z une fonction de ’espace et de 'impulsion g(a, p)
el & tout noyau self-adjoint 9T une fonction n(.z, p) qui permettent de calculer
la moyenne relative a G suivant la relation :

(1) G :j] &z, pyn(x, p)daidp.

Ce formalisme est déja le formalisme de la statistique classique, mais utilise
des quantités complexes. Mais, formons maintenant

(2) y(&, p)=exp Ké[}‘i()) &, p), -
(3) Dy p)= ‘:‘l—hﬂ‘exp[zim——a—q—)—/f—ﬁ———}—)Jn()‘,f])d)'dq.

A I'aide de ces fonctions, 'hermiticilé de G et de 9t s’exprime plus simplement
qu'a laide de get de n [ formules (2) et (9) de la précédente Note]. Pour que G
et 9T soient self-adjoints, il faut et il suffit en effet que, respectivement, y et D
soient réels. g et n s’expriment en fonction de y et D par les formules inverses

de (2) et (3), » R
(%) sz, py=exp(— Lin0) iz, p), |
(5) n(x, p)= T%ﬁﬁ‘exp[zi@—:——qlff—);_———f—)-]l)(y, q)dydq.

(*) Comptes rendus, 218, 1944, p- 141.
(*) Comptes rendus, 221, 1945, p. 159.
(%) Comptes rendus, 223, 1946, p. 311.
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Introduisons y et D dans (1) a la place de g et . L’équation de la moyenne
devient, aprés quelques transformations,

(6) G:ﬂ"{(z, p)D(x, p)dxdp.

Maintenant le formalisme est beaucoup plus prés du formalisme classique.
La densité de probabilité D permet donc de calculer une moyenne quelconque.
Ce progrés a été acquis en introduisant la fonction y qui peut se déduire
directement de I'opérateur G en effectuant le calcul suivant :

(=) v(r, p) :exp(;iliﬂ) [exp(—- i[%>Gexp(t'1%r>] .
A
. .

La différence fondamentale entre la théorie des mélanges et la statistique
classique est que, en slatislique classique, D est essentiellement positif,
cependant qu’en statistique quantique D, essentiellement, correspond & un
noyau 9t dont les valeurs propres sont positives, ce qui est évidemment
beaucoup moins simple. Cette derniére condition est I'expression du principe
d'incertitude : elle empéche que D puisse présenter un maximum infiniment
aigu &la fois par rapport aux deux variables @ et p. Je rappellerai la formule
de Wigner qui permel de calculer directement D a partir de 9L. C'est :

%) D(l‘.1!):‘/‘8)&1’)(1%})31(([‘——*55-Z‘-F%)fl.\.

Ces nouveaux résultats me paraissent entrainer que, contrairemenl a ce que
pouvait penser Wigner, il n'existe pas d’autre fonction analogue qui soit
suscepttble de jouir des mémes propriétés. D est défini d’'une maniére unique.

Quant a la formule (7), elle fait correspondre univoquement et sans ambi-
guité des expressions de forme classique aux grandeurs quantiques

Une application immédiate des remarques précédentes est I'énoncé sui-
vant (il n’est actuellement justifié naturellement que dans le domaine quantique
trés restreint ou je me suis placé) :

Lorsque, dans la théorie des mélanges, on fait tendre la constante de Planck
vers zéro, cette théorie se confond, & la limite, avec la mécanique slatistique
classique. ‘

Le raisonnement relatif & ce passage a la limite fait naturellement intervenir
I'équation évolutive de D, qui est une conséquence de l'équation de Schro-
dinger, que Wigner a formulée et qui tend & la limite vers I'équation de
Liouville.



2198 I. E.
case for each and every %, the Ath component u;
vanishes in the sense just described. Our requirement is
then that if # is such a state vector, then Su shall
likewise be such a state vector.

Mathematically this may be expressed as follows:
Let M, and M, denote the manifolds in Hy and H,
consisting of those wave functions vanishing on the
given backward ray. The .S operator must then be such
as to leave invariant the submanifold of K of the form
0OM:OMQ'M®---)QVOMOM Q.M ;® - - +),
where ®, denotes the antisymmetric tensor product.
Equivalently, if P denotes the operation of projection
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of K onto this subspace, SP=PSP. Each backward
light ray gives a projection P for which this equation
must hold, but for a covariant interaction it suffices to
take any one such ray.

In the present paper we are concerned not with the
entire .S operator, but only with its restriction to the
subspace of K in which exactly one boson and one
fermion are present, i.e., with the operator 4154, where
A, denotes the projection of K onto the subspace
H,®Hjy, or with the corresponding operator in the
case of an arbitrary scatterer. The methods, however,
apply in principle to the complete S operator.
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Formulation of Quantum Mechanics Based on the Quasi-Probability
Distribution Induced on Phase Space*

GEORGE A.

BAKER, JR.f

Unaiversity of California, Berkeley, California
(Received March 25, 1957)

We postulate a formulation of quantum mechanics which is based solely on a quasi-probability function
on the classical phase space. We then show that this formulation is equivalent to the standard formulation,
and that the quasi-probability function is exactly analogous to the density matrix of Diracand von Neumann.
We investigate the theory of measurement in this formulation and derive the following remarkable results.
As is well known, the correspondence between classical functions of both the position and conjugate mo-
mentum and quantum mechanical operators is ambiguous because of noncommutativity. We show that
the solution of this correspondence problem is completely equivalent to the solution of the eigenvalue
problem. This result enables us to give a constructive method to compute eigenvalues and eigenfunctions.

1. INTRODUCTION AND SUMMARY

T is well known that, as a general rule, for macro-
scopic phenomena, classical mechanics furnishes
quite a good description of nature. If we have a me-
chanical system, it is described classically by a Hamil-
tonian function H (¢k,px,t). Classical mechanics asserts
that if we measure the system, we will find it with
unit probability at a point, (¢x(¢),px(#)), in phase space
which moves in accordance with Hamilton’s canonical
equations,
Qk= {Qk,H}, pk: {Pk)H})
where {A4,B} is the classical Poisson bracket.!

We find experimentally, however, that it is not
possible to make the measurements necessary to
establish the classical trajectory. The fundamental
limitation is expressed by Heisenberg’s uncertainty
principle which states that it is impossible to ascertain
the position of a system in phase space more accurately
than to say that it is in a volume of the order of %~
where # is the number of degrees of freedom and 7% is
Planck’s constant. The uncertainty principle shows us

* Submitted in partial fulfillment of the requirement for the
Ph.D. degree, University of California, Berkeley, California.

MT Now at Los Alamos Scientific Laboratory, Los Alamos, New
€X1COo.

1 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Cambridge, 1953).

the need for a different representation than the classical,
moving phase-point. ‘

For the case of quantum-mechanical systems in
which all observables may be expressed as functions of
the coordinates and their canonical momenta (gx,ps),
we may represent the system by a quasi-probability
(not everywhere necessarily non-negative) distribution
in phase space, instead of the mor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>