Simplifying DAQ

To go with Shift Register Readout of Prototype RPC DHCAL

David Underwood

Jan 17, 2005 version

ROUGH DRAFT # 2

ABSTRACT

We describe a plan for simple and inexpensive DAQ, primarily for the shift register method of reading in RPC pixel hits for a digital calorimeter. The sometimes conflicting goals of cheap and simple prototyping for small systems vs optimal solution for a larger system do not appear to be in conflict in this case for a system of up to a few hundred thousand signal pads with the shift register readin. The basic approach is to use a large number of microcontrollers in a tree structure feeding a PCI card in the DAQ computer. We consider some variations on this theme for use in somewhat different systems.

Topics Included:

1) Description of the calorimeter and low level data acquisition

2) Description of a proposed DAQ and discussion

 a) Systems which use direct read to PCI bus

 b) Why not VME or Eurocrate in this project

 c) Functions provided by microcontrollers, and signals

 d) Physical bus requirements

 e) Location of FIFO buffers vs cost and complexity

Detailed Topics:

 References for hardware FIFO and code for software fifo

 Why edge triggering is needed in the handshake

 SCSI bus references

 References for SCSI bus chips (9 channel RS-485 and other)

 General bus reference

 Comparison of Sequencer vs switch, and are they really different with RS-485

 Use of token sequencer vs using decoded N lines vs internal address

 FERA latch reference for event building

 Reset line to FIFO’s

 Reference for Scenix microcontrollers

 Reference for PCI-7200 data input card

 Need for particular geometry in connecting boards

 Reference for using Flex circuits to connect boards inside and outside calorimeter

 Reference for soldering method for Flex circuits

 CCS C compiler for Scenix

 How could we expand this scheme for use with RPC ASIC or STAR GEM Tracker test?

 Handshake on each transfer with copper vs Busy feedback with DDL

 ??

 Money

INTRODUCTION

A new kind of hadronic calorimetry is being proposed in order to get much better energy resolution. It involves several aspects. In large detectors such as those proposed for the Linear Collider, the central magnetic field and tracking allow a better measurement of the momentum (~energy) of charged particles than does a calorimeter. One can use this, and then remove the showers in the calorimeter from charged particles and measure the energy from neutrals such as neutrons and K0. This requires detailed tracking of the particles in each hadronic shower inside the calorimeter, and also some level of tracking and measurement of electromagnetic showers.

We are interested in this project not only for the Linear Collider, but because the development of hadronic showers in material is not well understood. Various simulations can give a factor of 2 difference in some basic observables. [2]

The structure of a sampling calorimeter based on Resistive Plate Chambers would involve roughly 70K to 100K pads per square meter, and 40 to 50 planes of these chambers in depth.. Each pad has an amplifier, discriminator, and some kind of digital storage located near the pad. A system we have developed for use in a test beam uses parallel vertical shift registers, much like CCD digital cameras or pixel detectors in high energy experiments. In a test beam there is enough time between external triggers to shift out each event to the front end of a DAQ system with small dead time.

 In the system with shift registers inside the calorimeter on the pad boards[1], microcontrollers are used to shift out the data and buffer it and send it along. These microcontrollers are very simple and cheap and very little external logic is needed. We have used a PIC1684 for which there is a C compiler available. For a more complete system we may use a faster unit with more pins such as the SCENIX SX28. .

The objective in considering these issues is to get the data from the shifter-register method of RPC readout into a computer cheaply. It appears that many of the techniques could be used for the ASIC readout as well, but with some specifics such as buffer size changed. I will try to draw parallels as I describe the features.

Conceptually an original plan [1] and the present plan are somewhat different because of considerations of cost and complexity. The performance in terms of small dead time should be better than the original because of new kinds of hardware. The first plan was:

a) 1 event storage in the shift register on the pad boards. (1 bit per pad, each register holds 8 bits, 6 to 10 registers in a row)

b) 1 event storage in the microcontrollers which read each row of shift registers.

c) Buffer at least 10 events at the intermediate collector level for de-randomization.

d) Send data at the top level into a PC by means of a regular clock, either with or without one more level of buffer. The link could be through VME, USB, or various other methods.

Several factors have led to modifications of this.

a) At the intermediate buffer, the cost of static ram or a FIFO chip for a fraction of a kilo-byte to many kilo-bytes is more than the cost of a microcontroller. There would be around 500 of these intermediate buffers in the system. Furthermore, the cost, complexity, and board space for the supporting circuitry around a static ram or hardware FIFO [2] look prohibitive for what was supposed to be a simple system. It looks like the Scenix SX28 microcontroller [3] probably has enough internal static ram for both one event from a square foot of detector, (around 90 bytes) and the internal program variables. It is also a factor of 4 faster than the PIC with the same clock speed. The SX52 has roughly twice the internal ram.

There is still a small amount of support circuitry, a couple of tri-state buffer chips, some ORs and ANDs to control busy signals, handshaking , etc. (schematic #x,#y, etc below)

b) There is hardware being developed for many experiments to run data directly into PCs via the PCI bus without VME, etc cost overhead. These include ALICE, ATLAS, STAR, etc. There is a cheap commercial card to do the same thing at 12 MB/sec instead of 120 MB/sec. One difference is that handshaking is needed on each word with the commercial card for reliable data transfer. The cards for large experiments (CERN RORC) use fibers with a different handshake which is basically a busy. [4 RORC page]

c) At the very front end stage, there is enough ram in the variable space of the Scenix controller to do a FIFO buffer for about 7 events (of 7 bytes each). De-randomization could be done here instead of at the intermediate stage.

d) The use of microcontrollers incurs some dead time. At a given time, only input or output can be in progress. The input is dead during the reading of any FIFO at the front end, and for simplification, during the sequential reading of all the front end FIFOs that go to a particular intermediate controller (about 13) The buffering of one event at intermediate level allows the transfer to PCI without incuring more dead time at the front end. The dead time at 100 HZ is calculated to be around 1%.

There are many more very specific design issues.

a) For a small test system, one can simply tri-state each of the intermediate controllers onto an 8-bit wide bus, one at a time. There are 4 of the 8-wide busses available. One could probably cover a calorimeter area of 40 layers and about 2 square feet with this simple approach. This assumes no more than 20 devices on a bus. There is a way to do handshaking with the PCI card, sequence each intermediate controller onto the bus, etc with the help of one more master microcontroller used as a sequencer / switch controller.

b) For a larger system, something different is needed because one can’t just tie 400 devices on the same bus. .

As an example, one could use tri-state buffers to gate local busses onto a top level bus. One would then have to also gate the handshaking with the PCI card. Also, some way to sequentially select which local bus goes onto the top one is needed. This could be a decoded address from a top level controller which works in conjunction with the PCI card. Etc.

 There is a better way to handle this. Say one local 8-bit bus (of a kind to be described) can handle 20 to 25 devices (intermediate controllers) Say we need 12 to 18 of these busses to cover the whole calorimeter. Each PCI card has 4 of the 8-bit busses. Then we could do it with 3 to 5 of the PCI cards. There are studies from ATLAS of using multiple PCI cards on a bus that show performance with an order of magnitude more bandwidth than we will ever need. The engineering is already done for the PCI bus arbitration, etc.

c) Another issue is the length and type of the bus in terms of loading(capacitance and resistance) and propagation time. There is a chart of the functionality of various kinds of busses with our multiple node functionality. [Fig bbb] For distances like the circumference of a calorimeter or distance from test beam to counting house, it is clear that something similar to differential SCSI using RS-485 or similar (lvds ?) for each differential pair is what we need. Also, differential SCSI has a wire-or feature which is what is needed here for the data available.

d) To avoid having to output addresses of intermediate controllers from a high level sequencer in order to gate them onto a bus, the done from one can be anded with the ACK from the PCI card to make a start for the next. (schematic #x7 below)

[image: image1.png]ScEn(X T re T {75& 5 0%
M O gl

FoA PATRAvaic '
= — 7 fort ok (AT T e

Y e 1 gwe ’

ST 7 STHAT
§ —¢ A %

LATCH PorE
S0 STHAT = Ack Tghd MHES
/
‘(”ﬁﬁfﬂﬁtlﬁm{mp/v{aﬂ// \
TOSTIT ARG T ane (fAE7

(AT, COAT,
/ Fhce Aok |

S TAAT Fop A TK’MM?.
Do WE MELD D Kiapf oF [Compns Aok §/MY‘ Tl ks 7
BUSY FAim AT, CoaT ! [/yaw To TEc |F FAST ong] 7

AURT WakF FAm T T BEKERA T2 oy
To PEGUGE "

W) Covtd CounT TRMIFAS ar mhs TEA

60T W gave-10 REMD (T

LEY om QoM Fysy- i -
G EXTRE (T core o AT 1F o TRES To (BT mokE!
® Twmg oot (v e B
O TeT W(ﬁ(CEQUEAT VL | MTE ¢UAS SToREQ (4 (A1

ACK Flom Pt RAsichley AurS EE(FTHVE
AFTER S TART

[image: image2.png]F oA PATA AvgiL

2
‘ s 7 7 fori oA (AT !
728 bosy - EWE -

£9
£

 [image: image3.png]ok AL FRWT Mo

A 5@%}
e
| \ e
-_Z”*. . OK %ﬁ%ﬁf };o/;}yf) y g}%&
GArE | L
P S _ e
aser AcassT (TS =M) 2 b LwES
THA | | 5& PATA Ve p (& 27

L& ovpey 6(/;:*@

Figure 2. Connections at the 3 different levels of the DAQ beyond what is on the RPC. The master controller /sequencer is not shown . This appears to satisfy all requirements for handshaking, busy signals, etc. The number of pins required at each microcontroller is less than the 20 available on the fast and cheap Scenix chips. The connections to the PCI card are those shown by the manufacturer

 The essential features of the DAQ are:

 1) The use of a PCI card to access PC memory, so that no VME, no external memory, etc are needed, and

2) The use of fast microcontrollers in a tree structure to transfer the data out of the shift registers to the PCI card.

As described in the accompanying paper, many experiments such as Alice, Compass, etc have come to the conclusion that using the memory in the PC is the most economical approach. While they use bandwidths of over 200 MB/sec, we need less than 10, which is available for around $300.

Limitations as presently understood:

1) There is some dead time with this system. With overly simple DAQ there could be 6%, and with reasonable buffers in microntrollers the best estimate is less than 1% for a system at 100 Hz beam rate.

2) Glass from US companies is only available up to 36 inches (91 cm)

3) PC boards from inexpensive companies are only available up to 12 by 14 inch or 12 by 18 inch. From more expensive companies boards up to a maximum of 20 x 23 inch can be obtained. (50 x 58 cm)

4) The present shift register readout system could only be built with 1.2 cm pads. With 1.1 cm pads there was too much cross talk due to the high density of components and traces.

5) The present PC board design would be best with about 6 mm dead area at the edges to allow room for debugging electronics. The present DELRIN gas seals at the edges of the chambers make a dead area of about 6 mm on each edge. This dead area may be in addition to the PCB dead area, or conjoined with it, depending on the PCB design.

Remaining technical issues:

1) Incorporating the test beam data for each event into the data. The solution suggested to Fermilab is to use an event number in our data and in the beam data, and merge them offline. This is conceptually not so different from using a trigger-clock distribution in a large experiment. We could implement this with a 24 or 32 bit event counter which is latched in both one of our shift registers and in a FERA register [Lecroy xxxx] in CAMAC in the beam electronics. This will allow matching the two parts of events even when there are missing pieces due to dead time.

2) Software – switch from programming in C for PIC chips to programming in C and maybe a little assembler for Scenix chips. Do C programming in Linux for the PCI readout board. (No VX works , no Freebit, etc) The PCI card comes with example functions which can be incorporated.

3) Debug the handshaking, busy signals, etc in the system

4) Location of DAQ PC if bus length is limited. We want the PC to be outside the radiation shield for easy access.

Cost estimates:

A large fraction of the cost estimate is for things which we need in either the ASIC or shift-register case. For example, the RPC,s Gas system, and HV system are probably 10K to 20K even for a small test.

1) Gas system, either continuous flow or mixing bottles We are calculating flow rates and discussing options. At present it looks like a continuous mixing system with a buffer tank would be needed. Also, replace plastic tubing with copper to avoid water vapor diffusion.

2) HV systems. Probably about $2000 for 12 CCW boards and filters. Maybe double this with a simple control system.

3) Glass

4) Silkscreening equipment and labor

5) Electronics

A) (Shift Register System, At $0.75 per channel for PC boards on chambers with all components soldered. $18k for 40 layers of 1 ft^2. Another factor of 9 for approaching a cubic meter.

B) $56 for microcontrollers for each 1 ft^2 RPC. $2.3k for 40 layers of 1 ft^2.

C) $300 for each PCI card in PC to handle 40 boards of 1ft^2. Probably 5 of these for approaching a cubic meter.

D) PC boards to go at edges of chambers ? maybe $50 each or $2k for 40 layers (prototypes cost more) (this is bare, no parts, assembly testing, etc)

E) Programming systems to be purchased $400

F) PC board layout labor at least $10K. We need one large complex board, one board with many connections but which may not be complex, and two or three smaller and simpler boards.

G) Labor for testing , debugging, etc.

H) Supervision and management.

More Details of Cheap and Fast DAQ

To go with Shift Register RPC Readout

 All the features of this system are in common use. The PCI card is available for less than $300. The general method of reading detector data to the PC memory via PCI is used by many CERN experiments: ALICE, COMPASS, etc. [2] The PCI card of interest to us can do 12 MB/sec transfers while the ones in ALICE can do over 200 MB/sec. For the microcontrollers, code examples for the various techniques used have been found on the web or developed for our prototype. [3,4] Examples are code to shift in bits, code for a circular buffer, code for handshaking during transfers. The SCENIX controllers can do one instruction per 20 ns. We have previously used PIC controllers with one instruction per 200 ns. The codes, compilers etc for Scenix are compatible with those of a particular older line of PIC controllers.

[image: image4.png]FcC

)20 ComecTIONS
L ¢

L_/st

B

%_,

I D
g

NN
N\

PeT crap

e

N
e t] =/ | ’
%0 aul o ;“ /
Seoak 1

~
Qnbn A \L“/K
A FRoA7P - Fap ¥ /|

Py /,; ,;g/{ émTEMEP/ATE ‘f\ p
< oM fAAATE R ArD LZ; A P
ReeISTE .
BoARDS oM

Apc

Figure 1. A very schematic 3D view of the DAQ system. Master controller not shown. Also not shown are electronics for trigger, event number entry, analog threshold control and perhaps beam synchronization Each register board on an RPC would have at least 360 ICs. There would be 40 to 400 of these boards. Each intermediate board would have at least 14 microcontrollers plus ancillary logic. The readin is grouped with 10 to 20 planes for each 8 bit wide path into the PCI card.

We estimate readin time scales based on what was achieved in the microcontrollers in the prototype, and scaling to higher speed for a different microcontroller. There is still some uncertainty about the overhead times for setting up transfers in a larger system. We start with time scales for readin of a 24x24 (576) pad RPC of about 29 x 29 cm. For a cubic meter or any fraction thereof, everything would be in parallel for any number of these, and so would not incur additional time. For the case of more pads per printed circuit board, the readin time would be proportional the number of pads (area of the board).

A) Gate open time to capture signal over comparator threshold = 20 u sec. This is for every pad in the system simultaneously.

B) Shift-in time to get data from the 74HC165 latches on the face of the RPC to the SX28AC microcontrollers at the edge of the RPC.

13 bytes * 8 bits * 6 instructions * 20 ns = 13 u sec, plus overhead for interrupt. This is for all the microcontrollers working simultaneously.

C) Reading bytes from front end microcontrollers to intermediate microcontroller per plane. (13 data bytes +1 ID byte) * 13 rows of microcontrollers *6 instructions * 20 ns =22 u sec. There is additional overhead for switching the readin from one micrcontroller to another, for handshaking after each transfer of 14 bytes, calculations for ring buffers in front end after each 14 bytes, etc. This deadtime is incured by the front end because the front end microcontrollers cannot read and write simultaneously. However, the time to read out the intermediate microcontrollers to the PCI card is not incured at the front end unless the ring buffer of 8 events in the front end overflows. This should not happen very often with the front end busy only 0.6% of the time. And the PCI card transfering data

D) For transfer from intermediate microcontrollers to PCI card, we assume 4 parallel busses of 8 bits wide each. Each of these is to readout 10 RPC planes. The time is 14bytes *13 rows *10 RPC planes *6 instructions *20 ns =202 u sec, plus overhead. This is 6 % busy for 40 planes of 1 square foot (29 x 29 cm) at a beam rate of 100 HZ. This does not become dead time because of the ring buffers in the front end. The transfers out of the front end are short, 22 u sec. For 60% PCI transfer busy we would cover 9 times the area, almost a square meter, with the same dead time at the front end. Actually the PCI card can handle much higher data rates, 12 MB/sec, but the limit is the speed of the intermediate microcontroller, most likely 50 MHz clock and 6 instructions.

CHIPS etc NEEDED:

(re-organize by location, eg int. collector, bus interface, master/sequencer, etc)

(do costs for two system sizes)

(for intermediate, multiply by number of planes)

FLEX circuit boards

Intermediate collector PC boards

Trigger input board

Master controller/sequencer board

74LS245
two
intermediate bus multiplex

74LS154

one
intermediate
decode Nbar lines

74LS30

two
intermediate
OR of evt busy and OR of read busy

74LS32

one
intermediate
combine Ors and or buffer synch (hard,soft)

74LHC74

one
master

gate and interrupt

74LS32

one
master

OR of hardware and software Busy

NIM>TTL

?
master MECL 1016x ? and transistors.

74HC165

7?
Master or int.
Event # into data stream

74HC244 or 245
two
int

Fanout of gate and interrupt

74HC08

one
PCI or int
strobe buffer synch

74HC04 or 240
one
int

invert for second tri-state bus mult

DAC

one
intermediate
set threshold from PC

SX28AC

13+
intermediate
read front end

SX28AC

one
intermediate
intermediate buffer and control

PCI 7200

one
Top

readin and control

Low Power LEDs

REFERENCES

2) ALICE TDR 010
https://edms.cern.ch/file/456354/1/DAQ_Chapters7-10.pdf
3) CERN RORC data fiber spec

 http://alice-proj-ddl.web.cern.ch/alice-proj-ddl/index.html
4) FIFO code in microcontrollers references TI SN74ACT2235 asynch fifo, Dallas Maxim Application Note 603 (for 8051 uC), CCS C compiler FAQ ring buffer in C for PIC, Data Communication and Networks lecture2 Joseph Conron at cs.nyu.edu,Sept 16, 2994, Circular Queue example (diagram)

5) Conference on Linear Colliders (LCWS 04), Paris, France, Apr. 19 – 24, 2004. G. Mavromanolakis & D. Ward, “Comparisons of Hadronic Shower Pacakges,” e-Print Archive: physics/0409040, To appear in the proceedings of Internationa
6) Proposal for a Shift Register Approach to RPC Calorimeter Readout for Test Beam, Cosmics, and Sources. D. Underwood, ANL-HEP-TR-04-35. http://www.ipd.anl.gov/anlpubs/2004/09/51059.pdf
7) Proposal for a Shift Register Approach to RPC Calorimeter Readout for Test Beam, Cosmics, and Sources. D. Underwood, ANL-HEP-TR-04-35. http://gate.hep.anl.gov/dgu/RPC_ShiftRegisterReadout.pdf
8) FIFO Hardware SN74ACT2235 www.ti.com
9) TI-appl-SLLA067A.pdf Comparing Bus Solutions

[image: image5.png]ok AL FRWT Mo

A 5@%}
e
| \ e
-_Z”*. . OK %ﬁ%ﬁf };o/;}yf) y g}%&
GArE | L
P S _ e
aser AcassT (TS =M) 2 b LwES
THA | | 5& PATA Ve p (& 27

L& ovpey 6(/;:*@

Figure 2. Connections at the 3 different levels of the DAQ beyond what is on the RPC. This appears to satisfy all requirements for handshaking, busy signals, etc. The number of pins required at each microcontroller is less than the 20 available on the fast and cheap Scenix chips. The connections to the PCI card are those shown by the manufacturer.

[image: image6.png]corpteT oK

— : [e’
= =l ‘ GLUE oVERTLIR

pund VIAS

y LAV

ﬁh(t—zﬁ
T

Bouh
1”2 gl(‘a"'ﬂ

Giris To VIAS

> LAVER Bop 49

F— CommicToR

Figure 3. Two different approaches to constructing the printed circuit boards which carry both the RPC sense pads and the first stages of readout electronics. The top figure shows the use of two 2-layer boards jouned through a perforated insulator with conductive glue. This has geometrical and cost advantages. This was used in the 32 channel prototype. The second figure shows the use of a 4-layer board with blind vias. This is a much more standard approach and probably has better reliability. The disadvantages are the cost of layout and prototyping, and the lack of board over top of the gas seals for use for connections and debugging chips.

[image: image7.png]e
zjﬁ{’w |)
%%574—«@‘1}:‘_—;:—’;
Cot 1 |

D FARA, BHAD VIAS

@7 ponpys o FIBED
& 3 voppgs - fUEQ 4 F THIV

Figure 4. Detail of vias in boards. This shows the general structure for either conventional boards with blind vias, or boards made by using 2-layer boards and con

[image: image8.jpg]Signaling Rate — Mbps

- CMLIECL\\
LVDS CMLECL
1000 N
M-LVDS \
\| LVDS
LVDS
100 [GJII'LP \ tine s
[GTUBTL
CMOS/TTL
10 AN
1 b €
485/422
0.1
0.1 ; 10 100 1000 10000

Distance - Meters

Figure 1. Signaling Rate Versus Cable Length

APPENDIX I notes on functionality in front end and daq

RPC DAQ copies from legal pads

Nov 29, 2004

dgu

These are guesses which were to be evaluated for errors before making the

diagram in the "Two_docuemnts" paper.

FIRST yellow-white stripe pad:

Front end uC

in

tell uC when to start shift in evt

tell uC when to start push out evt (N line plus strobe ?)

tell uC when to synch ring buffer

out

tell trig when uC is busy

tell higher level DAQ when uC is busy

 Is a done signal for input needed? yes?

 Is a done signal afor output needed? (use end of busy ?)

All front uC read in at same time, approx in synch

Front uC read out one at a time

 "OR" the busy of them all?

 to send to both trigger and high level?

Consider signals into next higher level

 what comes from front end?

Maybe two kinds of busy

 busy 1) reading in

 trans 2) reading out

ring buffer in each front end uC instead of buffer in each but outside

indicies.

Mid-Level uC + Ajcillary Logic

out

encoded N to front end

strobe front end

start readin

in

readin ongoing = front busy (just for PCI, not uC ?)

 why PCI here ?

data available at fron end (front buffer not empty)

out

synch front end buffer

what happens when front buffer is hing ?

in trg to PCI

in Int to PCI

in ACK from PCI

output to DAC threshold

out ack

out req = strobe

DIAGRAM:

front end uC

out evt busy bar

 read busy bar

 read request (= N bar)

 data valid

 8 wide data out

 also clodk to 74hc

in synch buf

 event interrupt

 shift data

Intermediate uC

out trg

 req

 strobe N bar

 direction of two 74ls25

 4 encoded N lines

 8 wide data (same lines as 8 wide in)

in data valid from front

 ack from PCI

 8 wide data in (same lines as out)

MASTER:

 is a master needed to give Nprime to select plane (int uC)?

 or a token from each int uC passed to next when it is done?

PCI / master

in trig (can be req line)

 req

 8 wide data

out ? 4 lines to DAC

 strobe to DAC

 2 lines to synch ?(one is strobe)

BLACK SPIRAL BOOK:

Front Code

 int- disable int, set evt busy

 check readout not in progress (hardware failed)

 shift in 6*8 = 48 bits

 add 1 byte local

 release evt busy

 set data available

 enable int

 (int on synch ?)

 (int on read-demand ?)

Main loop

 loook for synch

 look for read demand

 upon synch

 erase?

 set pointers

 (do this with as much of readout code as possible)

upon read demand

 set read busy

 is strobe from this chip or from int uC ?

 cycle byte, strobe

 release read-busy

INTERMEDIATE COLL

 should do in or out, can't do both

 loop to scan data available line

 if data stored - start PCI loop

 - no input allowed

 state diagram

 big circle, 3 decision tirangles, 3 inner circles

 (read, write, synch)

 synch could be from hardware, not originating in uC

question?

 how to switch one int uC to another for PCI readin?

 a) input 4 bit address from a master scenix controller

 b) pass a 4 bit token

code for master or intermediate

if((data int avail) and(not front busy))

 set int busy: to front uC and logic

 set counter to 0: set tri state dir to bus

 send req to PCI

need done from each int uC

in order t increment N int (can't have 10 pins for this)

what starts each int uC ?

what starts front output?

 a) N plus having data

 b) a start signal

 c) a counter of bytes

each int uC shuld do its own req-ack handshake

when one finishes - could send "next" token (bit) to next uC

 but still use N line ?

transfer in program FF

 pulse set from master or int uC

 pulse done from or of int uC

OR

 total top down-

 assert N and count # bytes (need count into uC)

 eg strobes fron int to front end good

 strobes from master to int bad

need to keep 4 busses in phase (4 chan of PCI)

 diagram here with master, flip-flop, N decoder, or from all int

 all int have data and ack and req in parallel to PCI card

diagnostice

 LED on FF

 copy some kind of status bits into data

 read master 4 times ?

after PCI (one int or all 10 ?) set tri state to in (for individ. front)

 but only enable 1 tri state out at a time (since all on same bus)

REQ-ACK occurs for every byte

 but seq goes for N bytes where N programmed to PCI card

(issue is making PCI card / PC always compatibel with data size

 when changes in size of system are made)

PAGE
13

