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1. Introduction

Motivation

P B307 (43) 16| NPRyT¢ (16) 1S
e Since it has been conjectured (Collins, Frankfurt, Strikman and

Berera, Collins) that factorization of hard processes in diffrac-
tive scattering is not expected to hold: yeneg,

e It is important to test it experimentally

Procedure

¢ Assume a particular QCD-based Model - that of Ingelman and
Schlein PL Bisz (s5) 256

e Make fits to the ZEUS diffractive DIS data (Full NLO QCD)
¢ Extract quark and gluon densities in the pomeron

o Calculate diffractive cross sections for W/Z bosons and dijet
production at the Tevatron - WITH THE ASSUMPTION OF
HARD SCATTERING FACTORIZATION

o Calculate diffractive photoproduction at HERA 7w PleqRess

and Charm produc n 566 TERRON'S TALK)
e Compare with data i ( ’
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2. QCD Model

We assume I-S and Hard Scattering Factg_rizat_i_on(eg for pp:)

o = fopp(em 1) @ fajplen ) ® for(as, 1) © Gup (1)

e The function fp;, is the “flux of pomerons in the (anti)proton™:

gjﬁ) F_Lm; - _}8t ' L ; "ﬂ : [—=2ryid) 19
5 ; 3 | e 00 P . (1...)
417t 4mp' ~t N -0

o 0
(:DL) phirp) = j_x dt
where m, is the proton mass, 3 ~ 1.8 G¢V ™' is the pomeron-quark coupling
and «(#) = 1.085  {1.25¢ is the pomeron trajectory.
o f.i1,) isthe distributions of partons in the proton - we have used CTEQ3M

o fi w(xp)is the distribution function of parton » in the pomeron (trom a tit to
the DIS diffractive data)

¢ G, is the (LO) partonic hard scattering coefficient and p is the factorization
scale.



3. Partons in the pomeron

Diffractive structure functions are related to the differential cross section for the
processe +p —e+p+ X:

Ao sy . 27’
A3dQ e pdt — IQ

where 3 = z,;/z p, with z;; being the usual Bjorken scaling variable of DIS.

{1 - ;j'?.lj F._,D" o ygF!."_r)' ) } _ (13

The diffractive structure function F’ (4)(_ 8,02 zp,t) is assumed to obey Regge
factorization, so that it is written as a pomeron flux factor times a pomeron
structure function:

¥

FPO3.Q% ep t) = fpiee HEF 3.Q7). - L4

Generally, £ is not measured so we integrate over &

FPOB,Qep)= [ _dtFP P (8,Q% ). (15)

The actual fits are to F:2(3,Q?), which is obtained by integrating FP(8,Q2 1)
over the measured range of zp, 6.3 - 10~* < «p < 107%, using the fitted =
dependence.

Hard scattering factorization gives FY in terms of parton densities and hard
scattering coefficients in the usual fashion:

FP(3.Q% =S ¢*3f, »(3) + NLO corrections. (1.6)

No correction here for (15+10)% contribution from 'double-dissociation’.



3. Partons in the pomeron

¢ We made 5 fits to the ZEUS data on FP(3,Q?) with the following initial
parton distributions at Q} = 4 GeV? with (g = u,5,d,d):

A 3fAp(3.Q5) = 0385 51 - A,
Bfhp(3.Q5 = 0. (1.7)
B Bfhp(8,Q8) = 0316501 - B),
Bfyp(8:Q) = 12:2858(1 - B). " (1.8)
c 3fCp(3.Q0 = 0AT0 5L = 31 +0.080(1 - 3)°.
FFEp(3.05) = 0. (1.9)
2 Bfhp(8,Q8) = 0.512 3(1 — 8) + 0.005 (1 — 3)%,
op(B, Q) = 11.658(1 - B). (1.10)
s 3F5H(3.Q8) = 0.334 31 - 4.
(3,90 = T0.736 71— 50 (11D

¢ We did not impose a momentum sum rule constraint on the parton distri-
butions.

o All fits were made with full NLO QCD with evolution (ny = 3).
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Figure 1.1: The J dependence of the diffractive
structure function 7;° measured by ZEUS, together
with our fits. Fit A is represented by the dashed line,
fit B by the thin solid line, fit C by the dot-dashed
line, fit D by the dotted line, and fit SG by the thick
SO|Id line. Note that fits B and D are essentially
indistinguishable.

Flt A FitB I Flt C FitD FitSG
\ ;dot 3.7/ 10 1"/9' 3/9 1.7/8  1.2/9 (1.1
Statistical v~ /d o.f" | 18/10 3. ‘3/9 | 6.0/9 3.8/8 3.1/9
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Figure 1.2: The Q° dependence of the diffractive
structure function F;° measured by ZEUS.

The momentum sums ¥, Jul d33f,.pl 3) are as follows:

i FitA FitB FitC FitD FitSG
Quarks [0.39 [0.3¢ "0.42 1035 024
Gluons | 0 205 0 | 194 3.57

Total | 039 239 042 1229 381



(ﬁ.oz,xpom)

(3
2

F

10

10

PRELININARY 2EV5 - LPS  (WwAksAW )

T lIIIIIII T Illlllil T 1 ITTTT0

T IIII‘II

IIIII[

| \1IHI!

Q=
8 =0.01

1| IIIIIIJ

12 GeV’

FEB,Q% Xpom)

P 1"

10"

193

10°°

><Pu:»tn

T lllt]lll T 1 TEITH

T ]IIIIIIi

T T IHIIII

llIlIII

L I|lIH!1

Lo )

(ﬁ-Qz’xPom)

D{3)
2

F

it 1l

107"

10>

1072

xp

XPom

107

102

10

107

10

T T TTTIH

1 IIIIIlli

LI llllll]

LI ||II[II

LIIIIFl

11 IlIIIll

Ll liillil

1 |
10" 10°° 1077
xPom
Q= 12 CeV?
- g =0.375
B ®
- L
= ' N
-\IIIIII L L !l||!|! b 1 |||\|I‘ L |
10°° 1077 T
xPam

Xp



0.1

( Prehmmary@

A=0.01

\ﬂ\_/

0
o1 L @=25GeV? Q*=3.5Gevf |
' B=0.2 5:02
0 .J\D_ﬁ
ol _unev‘ B
X F)O)
Y| RFY
0
0.1
0

| Q*=25GeV? |

el

21 Q=5 Gev’

B=0.01

Aksaw,

[3—02

Q%=8.5 GeV
p=0.4

Q’=8.5 GeV]
B=0.65

IR I

Q=20 GeV?
B=0.65

Covend 4 gened 1 evm

( Q'=8.5Gev |

| [Q*=20GeV?

B=0.9




—~ 1
$0.09
©0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

o18.}]
2

¥pomb

J]II|lIII|IIIIIIIIIIIIII{]IIIIII[IIIIllllllllllli

IIIII!I | lllllll

11 Illllll

I

10°*

g

1072

10

X Pom

Jlllill”llllllllHIIIIII”III]IIIIHIIIIIII!I]I

1 !lllll

1] llli]ll

L l!!lllll

1 1 itiLl

107

10>

1072

1

0.1

$0.09
©0.08
50.07
06
0.05
0.04
0.03
0.02
0.0

Om)

3

C(3)
2

D&F

Xp

-1
10

xPom

,_IIHIIII\]IHllillll]liIiIIIIIIIIIIIII!IIIII| TTT

0% = 5 GeV?
g8 =02

llli_III 1} l]_lI.lIl

11 }llIIII

107"

-3
He

1072

TIIIIIIIIII[IIIIIII]I*IITIII[I]]II]IIII[1IIIII

Q" = 5 GeV*

8 =065

l]_ll!ll 1 lll\lll‘

[ 1Il|l||

A

—4
10

1077

10 °

10

X proem



Hi PRELIMINARY

_IliiillllilllliITII{ililIIIlIilllllllllillll]ll‘l‘l

4

e

L1 lll]lll

+T84 T

1 li!ll!ll 1oL 1 1LIt

10

4

10

3 1 O—Z

X Pom

JIIIEIIJIIIIHIIIII[IIIIl lllfllliflll[]llll’”ll

el

12 GeV’

Q* =
= 0.65

g

10

i 2 taninl

1t b 111

-4

10

10

3 10—2

Xbom

(whesaw)

—~ 0.1
§

10"

RN LR A N R A N AR AN AR AN AR
RRRRRARES RALLY RRAEN RARLN LR LARR) LAY

I!II[Il

) IIlIll}l ] IIIIIIII | I R

IIIIllll!lllll'lllllllll]l]IIilIIIIIYITl!I]IIIIII

1wt 1w 1?10
Xpom
Q? = 12 GeV*
g =09

i IlIlll

107"



.IIIIIII'I'IIHIIIIIIIIIIII]'TT”II]H"I"HIl]illl]llil

LI llllll

b1 lllIIll

Lol

L 1 L1301l O

T

10>

1072

10

Xpom

JHIiHH[HIIIIIIiI]IHIiIlIE”]IIi]llllllll]lll

IIlHl]

1 | lllllll

Q' =656
g = 0.65

eV’

1 1111 O

10"

10° 102

107"

xPorﬂ

JIIIEIIIIIIIIIIIIIIIIII [IlIIITTTTIIIIIIITI1‘11III

IIl!III

11 ]llllIL

Q? = 65 GeV?
4

| !Illllll 11 1111

- - - —1
0t 100 10?% 10
X porm
E Q2 = 65 GeV?
3 3 =079
2 |
f— ﬁ‘-‘*—‘—‘--.-.__‘,____g ______
;11111_111 [T R SN ARl B W uEt T
w1 w0t !
Xpom



4. Hard Diffractive Cross Sections at Tevatron

o Ditfractive jet production
The lowest order hard-scattering process is 2 — 2 at the parton level:

el jet
do’ d ab

dy = E[ m,,, dPTQFT ]y'm’:‘:’ d /mm d:ﬂp fIP/p(-TJP; “) fa/p(-’ras ﬂ«) fﬁ/fp(xb-r H)xaxb dt

(1.14)

(u = B

o Diffractive W and Z production

The cross section for the diffractive production of weak vector bosons is
given by:

> / B dep [ b ) fy (o) frplzn) G —[VE G M)

(1.15)

where My 5 = My or Mz is the vector boson mass, and G is the Fermi con-
stant. For W bosons, C¥ = V,,, the relevant Cabibbo-Kobayashi-Maskawa
matrix element, while for the Z boson,

SIHI p

1
C‘ab = ba [5 — 2|es] sin® By + 4lep)* sin® HW}, (1.16)

where ¢; is the fractional charge of parton b and 6y is the Weinberg or
weak-mixing angle and g = My .

o Define R = Z5r

e We use the SAME (D-L) flux factor as in the fits to DIS data

¢ o is calculated in an analogous way without the diffractive requirement
(ie using f,,,, and no pomeron flux factot).



Comparison with Bruni and Ingelman

e Use the [ngelman-Schiein tlux factor:

fop(zp) = fdt

6.38¢% + 0.424¢% ).
( )

2.311‘;,0
¢ Use unevolved hard quark pdf:
6
Bfyw(8) = ;801-8),
Bfyw(B) = 0.
¢ Results
' LO
INCLVSIVE FHI.Q1 | EHLO1 | CTEQ3M
(ROSS W++W- | 14000 | 14332 | 18150 b
SECTION zZ 4400 | 4407 383 ||
a:.
54ev* pgev?
Pomeron: Bl Our Bl BI1 Fit A FitD
unevolved | unevolved | evolved | evolved evolved
Proton EHLQ1 EHLQ1 EHLQ1 | CTEQ3M | CTEQ3M
W+ L Ww- 2800 2768 2025 518 844
/ Z 760 738 520 133 204
DIFFRACING
CRo%
SEcol$S - .
Pomeron: | Bl {(evolved) | Fit A {evolved) | Fit D (evolved)
\b Proton: EFHLQ1 CTEQ3IM CTEQ3M
W+ +W- 52.3 12.8 13.9
6.6 1.6 1.6 Pb

Ph

(1.17}

(1.18)

XR ;0.'

X4 1.0]



Comparison with Bruni and Ingelman

o Why are the fractions smaller than from BI?

1. A factor 0.8 because of the larger inclusive cross sections when one uses
CTEQ3M instead of the obsolete EHLQ1 distributions in the proton.

2. A factor 0.7 for the effect of the evolution of the parton densities in the
pomeron.

3. A factor 0.7 for the use of the Donnachie-Landshoff flux factor instead
of the Ingelman-Schlein flux factor, when the momentum sum is kept
fixed.

4. A factor 0.5 because the data indicate that the quarks give a contribution
to the momentum sum of 0.5 (with the DL normalization), instead of
unity as assumed by Bruni and Ingelman.

¢ The net effect is a factor of 5 smaller than B-I

-



Results

e Diffractive 1" and Z production at the Tevatron

BI (unevolved) FitA FitD Fit A FitD
=01 =01 |25 =01 [ 23** = 0.01 | 23*° = 0.01

W+ + W~ 19% NM%|| 29% 4.7% 0.07% 0.08%

Z 17% 1% 2.5% 3.8% 0.03% 0.03%

o Diffractive Jets at the Tevatron

d q'MFF
iy
g™
by

Table 1.1: Diffractive fractions

5.9, 50 E¥* 52060 (y) o1y
oo~ R
f7u
¥ JJ&.

X:‘f 0.0f

Figure 1.3: Diffractive Jet Production Rates.
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Comparison with CDF and D0 data

® CDF Diffractive W production thep-ex/9703010)
pp collisions at /s = 1.8 TeV and a rapidity gap 2.4 < 5| < 4.2

(R = [115 £ 0.51(stat) +0.23(syst)|%. ) -

DIEFRACTVE
Nok - BIFFRACTIVE
They are computed with the diffracted hadron being allowed to be either

the proton or the antiproton.

| FitA | FitB | FitC | FitD
| w++W- 1056% | 0.67% | 0.50% | 0.66%
Tw++w-]58% | 95% | 59% | 94%

p

o.-o17
0|

“From MC simulations, we estimate that the diffractive events are concen-

trated at (-values in the range 0.01-0.05".

Xp



Comparison with CDF and D0 data

® CDF Diffractive Dijet Data
1. A rapidity gap (Fermilab-Pub-97/076-E):

2.4 < |y < 4.2, B > 20 GeV and 1.8 < || < 3.5, and m7s >0.
(Ryy = [0.75£0.05 + 0.09]%.) Our calculation assumes that either the

x"m
FitA | FitB | FitC | FitD || 5&
“ 7 [057% | 55% | 058% | 5.2% 0- 0t
lr | 15% [164% | 1.8% | 156% | n-§% 0.

antiproton or the proton is diffracted.  yy
“The events are concentrated at 0.005 < ( < 0.015."

2. Roman pot triggered sample

(Ryy = (0109 & 0.003 + 0.016]%)
For zp in the range 0.05 < zpp < 0.1, with £* > 10 GeV. -

FitA | FitB| FitC | FitD
T 041% | 4.2% | 0.45% | 4.0%

Need to correct these down by (15 + 10)% for unidentified proton disso-
ciation. Our calculation assumes that only the antiproton is diffracted.

o DO diffractive dijet production
Er > 12GeV and || > 1.6.

(Frs = [0.67 % 0.05]%)

~ Our calculation assumes that either the antiproton or the proton is diffracted.

vy
. - - : Xp
FitA | FitB | FitC| FitD ||
0.96% | 10.3% [ 11% | 98% | 0.1

v]l',“!!

gieianel




5. Conclusions

o Diffractive DIS HERA data prefer fits with
large initial gluon distribution in the pomeron

o It is difficult to directly compare the calcu-
lated diffractive contributions with the Te-
vatron data owing to the uncertainty in the
rp range from the rapidity gap data.

e Compared to diffractive 1" and dijet data
from CDF and DO, the predictions with large
gluon content are factors of 10 above the
data.

e The fits with small gluon content are tens of
% greater than the data.

This suggests a breakdown of hard scattering factorization

o The more recent H1 and ZEUS diffractive DIS data soon to be published as
well as the direct photon contribution to the diffractive hard photoproduc-
tion data from ZEUS can be expected to further address the issue of hard
scattering factorization in diffractive processes.



