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Abstract

Two-loop four-point N=4 susy amplitudes are
evaluated via cutting techniques as a testing ground
for QCD. A conjecture to all loop orders is
presented.
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Outline

. Status of multi-loop computations.

Unsolved problems.

. N = 4 susy as a testing ground for QCD.

. Analytic construction of two-loop

four-point amplitudes.

. Conjecture for all loops.

. Prospects for future.



Two and Higher-Loop Situation

Some of the higher loop computations that have been
performed:

e g — 2, 4 loops, Kinoshita, etc.
e R =oc(ete™ — hadrons)/a(ete™ — ptp™), O(ad)
Gorishny, Kataev and Larin, etc

e Four-Loop QCD g function, Ritbergen, Vermaseren, Larin.
e Two-loop form factors, van Neerven, etc
e etc.

No two- or higher-loop amplitudes have been
computed which involves more than 1 kinematic

variable.
24 examople:

D1s
Example: e NNLO DGLAFP
et Z, ¥ >r I 'H"""J fncs.

Important for improved measurements of o, at LEP.

Provides motivation for investigating new calculational
methods.



Obstacles

e Feynman diagrams a pain.

65 ~ 50,000 terms at start. Many hundreds of diagrams.

Tensor integral reduction methods not so clear.

e Many integrals not known: e.g. for all massless legs

Substantial progress has however been made, especially by
Ussykina and Davidychev.

Promising, but much work remains.

e Phase space integration to obtain jet cross-sections
non-trivial. Infrared divergences! Must extend NLO work of
Kunszt, Ellis and Soper and Giele, Glover and Kosower.

In this talk we focus on first obstacle.
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Possible Approaches for Two-Loops

1. Brute force — very unsatisfying even if it can be done.

. String-based techniques. Intriguing reorganization of
amplitudes. (See L. Magnea's talk.)

. First quantized approach being pushed by Schmidt and
Schubert. Elegant evaluation of 2-loop QED J-function and
Euler-Heisenberg effective action.

. Recursive approach. (Berends & Giele; Kosower; Mahlon).
Nair and Lee have developed multi-loop formalism.

3. Analytic constructions. Unitarity and cutting rules.

Here we discuss the last approach.



One-Loop Methods

Methods we wish to apply to two-loops:

e Analytic construction based on unitarity and factorization
e Helicity
e Color decomposition

e Supersymmetry decompositions

See, eg., Z.B., D.A. Kosower and L. Dixon, Ann. Rev. Nucl.

Part. Sci. 46:109 (1996) [hep-ph/9602280] for refs. and
details.



Spinor Helicity

Xu. Zhang and Chang & many others
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Adjust the reference momentum ¢ to make terms vanish.
Equivalent to gauge transformation.



Celos Decomposition

One-loop gluon amplitudes
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The A4,; are partial amplitudes.

String theory suggests:

Can also prove this in field theory using color ordered

Feynman rules. Leading color amplitudes give everything.

Two-Loop decomposition:

v

v

Leading color does not give everything because non-planar
contributions.



Susy and QCD Amplitudes

We view susy as a tool to aid in computations.

e Supersymmetry identities (applied to QCD by Parke and
Taylor)
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Relates fermionic susy amplitudes to bosonic ones.

e One-loop decomposition of n-gluon amplitudes
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Each piece much easier to compute than sum.

This suggests susy will also be useful for 2 loops.



N=4 Susy Amplitudes

What is .V = 4 super-Yang-Mills? It is ordinary Yang-Mills
coupled to 4 adjoint Majorana fermions and 6 real scalars. 4

supersymmetry generators.

Amazing Properties:

1. UV finiteness (proven by Mandelstam) when

N1

Loops < 2 — .
-4

(Loops > 1

At two-loops N = 4 amplitudes are UV finite for D < 7.

2. Strong Susy Ward Identities (applied to QCD by Parke and
Taylor).
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3. Simple one-loop amplitudes
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For max. helicity violation arbitrary number of
external legs.
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Can we obtain similar results at two and
higher loops?



Two-Loop Cut Construction

Two-particle cuts:
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This equation is valid only for those contributions which have

explicit 1 and /o propagators.

Three-particle cuts:
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Reconstruct amplitude by combining all cuts into a single

function with correct cuts in all channels.



Note: By computing to all orders in the dimensional

regularization parameter all terms in the amplitude must have
a .

cuts: in massless theory every terma has prefactor (—s,;) ™"

Every term in a massless amplitude is detectable in
the cuts.

However, for reasons of technical simplicity we want to use
helicity and four-dimensional cuts. Return to this point later.



Two-Loop N=4 Amphitudes

The s = (k, + k2)3 channel:
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Now simplify numerator:
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Cancels bad propagators!

Thus the cut is:
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Second s channel two-particle cut identical.

Two-particle ¢t channel cuts similar except fermion and scalar
loops contribute. After combining the contributions same as
above, but with s <> ¢



Subleading Color

Must perform color decomposition on all contributions. Also

non-planar contributions, but very similar to planar.

All subleading color contributions:
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Validity of Cut Construction

We used D = 4 cuts instead of D = 4 — 2¢ cuts. Is this valid?

Potential error terms:
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where 11, and p4 are the e dimensional parts of loop momenta.

IR or UV divergence in first loop can interfere with O(e) in
second loop leaving finite result.

Observation:
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exact to all orders in €.

One-loop algebra recycles to all orders in e.

Two-particle cuts are exact to all orders in €.



Three-Particle Cuts

There are 16 intermediate helicity and particle configurations
each given by product of tree amplitudes. N = 4 susy ensures
that various terms combine neatly.
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Consistency check: Becomes UV divergent in D =7, in
agreement with superspace arguments.



Only potential errors are in functions which have three-particle
QG

Mandelstam’s NV = 4 power counting requirements rule out

cuts but no two-particle cuts.

the possibility of such error functions

Our two-loop cut construction is exact

Note:

e Analytic expressions do not as yet exist for these scalar
integrals.
e For QCD O(e) pieces are important.



All loop conjecture for leading color
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Pattern is to add extra line with given factor. No triangle or
bubble sub-diagrams allowed.

Have verified pattern consistent with two-particle cuts to all
loop orders and with D = 4 three-particle cuts up to five
loops.

For subleading color, similar, except there are more diagrams

with no two particle cuts, so conjecture less firm.



Higher Loops Conjectuwes

Apply same cut construction to three-loops:
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Have verified 2 and 3 particle cuts..

The cut construction works just as well for subleading color
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Each diagram associated with its own color factors. Easy to
work out.

Gives conjecture for all terms in three-loop amplitude.



5-point 2-loop Conjecture
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Not yet proven.



Summary

1. Experiments require two-loop computations:
Z — 3 jets.

2. N = 4 susy amplitudes are useful testing ground
for new techniques.

3. Cutting techniques are useful at two-loops.

4. Explicit construction of N=4 two-loop amplitude
in terms of scalar integral functions.

5. N=4 conjecture to all loop orders.

Cutting techniques are a promising method
for obtaining 2-loop QCD amplitudes.



