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1. Introduction

| [Belavin et al. '75]:

— Tunnelling transitions in YM theories, connecting degenerate vacua of
different topology;

— induce processes forbidden in perturbation theory, yet bound to exist
due to Adler-Bell-Jackiw anomalies of certain fermionic quantum
numbers ['t Hooft ‘76]:

B + L in QFD; Chirality (Qs) in (massless) QCD.

— suppressed at low energies, ~ exp{—4n/a},

& may become unsuppressed, i. e. observable at high energies via
production of additional gauge bosons Ai ~1/g
[Ringwald '90; Espinosa ‘90]

& An experimental discovery of such a novel, non-perturbative
manifestation of non-abelian gauge theories would clearly be of basic
significance.



e QCD-instantons less suppressed than QFD-instantons ( as>>aw).

e Unique window to detect QCD-instanton induced processes through
their characteristic multi-particle final-state signature
[Ringwald & F. Sch. ‘94 ‘96; Gibbs, Ringwald & F. Sch. 95; Gibbs, Greenshaw,
Milstead, Ringwald & F. Sch. ‘96].

A. Ringwald  (phenomenology)

e c.f. instanton talks in WG ll| { T.Carli (H1)  (exp. searches at HERA)

e Possible to make contact with experiment! [Balitsky & Braun '93; Ringwald
& F. Sch '94 '96; Moch, Ringwald & F. Sch. '96 and in prog ]

e Absence of generic IR divergencies from integration over I-size p,
since hard scale Q provides dynamical cutoff, p SO(1/Q), .

e Instanton-induced amplitudes well-defined and calculable for small
a,(Q) and fixed scattering angles.

e Inclusive framework to systematically calculate properties of |-induced
multi-parton final state; accounts for exponentiation of produced
gluons including final-state tree-graph corrections



2. Instanton-Induced Processes in
Leading Semi-Classical Approximation

Consider Instanton-induced amplitude for AQs = 2 n s process,
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Expand (Euclidean) path integral for relevant Green’s functions about
classical instanton solution.

Fourier-transform (F.T.) with respect to external lines.

LSZ amputate external legs.
Analytically continue to Minkowski space.

— Classical instanton gauge field (singular gauge) [Belavin et al. ‘75]:
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collective coordinates: p = I-size, (U)* = I-color orientation

(color: k = 1,2,3 and spinor: o = 1,2 indices).



—- Quark zero modes in the instanton background
(Weyl basis)® ['t Hooft ‘76]:
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— (Non-zero mode) quark propagators in the instanton background
[Brown et al. '78]: )
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e Leading-order amplitude (n; = 1) in Euclidean space after F. T. with
respect to external lines [Moch, Ringwald & F. Sch. ‘96] :

lgtandard notations: in Euclidean space, op = (—id,1), Ty = (i5,1), and in Minkowski space,
op =(1,3), Ty = (1, —F), where G are the Pauli matrices. Furthermore, for any four-vector vy, we use
the shothand v =v -0, v=v 0.
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e Instanton-density with renormalization scale pu, ['t Hooft ‘76; Bernard '79],
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— is 1-loop RG-invariant; in practice:=> 2-loop RG-invariance
[Morris, Ross, Sachrajda '85] .

— strongly IR-divergent if integrated over p

e F.T. and LSZ-amputation of instanton gauge field ALI,) and quark zero
modes k and ¢ is straightforward [SVZ ‘80; Ringwald ‘90; Espinosa ‘90] ,



e LSZ-amputation of current quark in F.T’ed photon-fermion vertices,

vﬂ(q’ —kl)) ‘;(q’ ""k2)' e.g.

quite non-trivial and has important physical consequences.

e After a long and tedious calculation .
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e The integration over the instanton size p in 7;(1) is finite due to the
exponential decrease of the form factors in V' (g, k; p),

QpK1(Qp) onzee \fg Vv Qp exp [—Qp] .

e After continuation to DIS-regime of Minkowski space: Hard scale,

o=min {@= - V=-a— k) V- k)2} 20,




provides a dynamical IR cutoff for the instanton size,
pSO(1/Q).

Therefore, deep-inelastic scattering very well suited for studying
manifestations of QCD-instantons.

o Next steps:

— Insert all LSZ-amputated F.T.s. into T,

— Continue to Minkowski space. |
~ I

e Highly non-trivial check: Electromagnetic current conservation,

— Perform integration I8
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e Like in perturbative QCD:

Leading-order I-induced amplitudes well-behaved as long as we avoid
the collinear singularities, arising when the internal quark virtualities
vanish, t = —(q — k1)” and/or u = —(q — k2)? — 0.
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Fixed-angle scattering processes at high Q? and moderate multiplicity
are reliably calculable in (instanton) perturbation theory.



[Moch, Ringwald & F. Sch. "96]

v +goa+ar; (AQs=2)

May be considered as lower bound on total instanton-induced contribution.
Contains all essential features of dominant multi-gluon process.
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e Dependence on renormalization scale p, very weak!



e Validity of approximation:
Average instanton size (p) contributing for a given virtuality Q,
oo
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Should be small, in order that higher-order corrections of I-pert. theory
can be neglected;
[Callan et.al '78, Andrei & Gross '78, Appelquist & Shankar '78, SVZ '80]
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e Compare with the appropriate leading-order perturbative QCD, chirality-
conserving process,

Y+g—oar+ar; (AQs=0).




e Compare fixed-angle differential cross-sections,

do
——(Q, x,cosf), with scattering angle 6 in v*g c.m.s.
d cos 6 €

Parameters: e, = 2/3, A = 234 MeV, pu, = Q.
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e Fixed-angle scattering at large enough Q> well under control (left and
middle Fig.).

e Collinear singularity (cos @ — 1) for instanton case much stronger than
perturbative one (right Fig.).

[Moch, Ringwald & F. Sch., in prog.]

tudy hard hooprduction Iimi, with large v* virtuality Q? substituted
by large k1 of produced g-jet,

Q2

Q%> >0,z -0, - — s (large), k = %—gsine large
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- 3. Inclusive Approach to
Multi-Particle Final State

° Best theoretical framework for making contact with

Experiment (H ERA) without upsetting validity of I-P.T.?

hunting for I-“footprints” in multi-particle

final state [Ringwald & F. Sch. "94 '96).
e Momentum space picture = Control over I-approximations also at
small {r5,. Q} through kinematical cuts on (reconstructed) final-state

momentum variables!

a) Exclusive, “brute-force” method: Multi-parton  cross-sections by

- * n  eam— -
squaring ¥ + & = Zﬁivours [ar + qr] + ¢ g amplitudes from
Sect.2 and summing over unobserved partons.

Based on [Ringwald & F. Sch. '94 '96,
Moch, Ringwald & F. Sch. in prog.]

o

in terms of agz and 1,2,...

parton inclusive cross sections.

e Elegant, implicit summation over exponentiating leading order gluon
emission and gluonic final-state tree-graph corrections.
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e Reduction to I-induced subprocess via

* current quark jet 2

incl. (1)
yeg—{n+l } +X

Instanton-induced subproces
Bjorken variables: x’, Q’2 = -q" 2

forward

°
— 1-parton inclusive (n = 1):
0 inc k 2 * . X
dG Incl. !
do. Mueller 06

M opt. theorem
G (1)1
yd !

1T valley method
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Product of amp’ed, FT'ed fields
in bg. of IIvalley configuration
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— 2-parton inclusive (n = 2):
x (n?) — (n)?> = limg2_, . o,
* momentum correlations, ...

(I) excl.

= Poisson

e Highly
[De Tar, Freedman & Veneziano '71; L. Brown '71]

e.g.
da(I) —
Zq,G fd¢k Ky 0(11) dér (p + ‘1’)#

tot
— ~ o.k. in Bjorken limit (Q"* — oo, z' fixed)
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4. Conclusions

e Distinguished role of e P scattering involving hard momentum scale Q.

°
HERA offers unique window in DIS (and hard photoproduction?)
to detect I-induced events through their characteristic multi-particle
final-state signature.

@

— Absence of IR divergencies associated with integration over I-size p.

— Chirality-violating Amplitudes well-defined and calculable for small
as(Q) and fixed scattering angles.

— Inclusive framework to systematically calculate properties of I-induced
multi-parton final state;

accounts for exponentiation of produced gluons including final-state
tree-graph corrections:

* Optical theorem and Mueller-optical theorems, to express various

I-induced inclusive cross sections as discontinuities of elastic n —

~ (1)

n forward amplitudes T,

* Uniform evaluation by means of IT valley method and saddle-point
integration over collective coordinates.

* Stable results, consistent with stringent energy-momentum sum
rules.
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