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1. Inclusive Cross Section for pp — tIX
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= top quark mass
distance from parton threshold|n = 4—7%2 -1
t,J label parton types: ¢q, gg

Parton flux

1.7(77) = / fz/p (17) fJ/p (xmm/:c)
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Tmin = ——(1 + 77)

fi/p: parton densities

Partonic hard cross sections 6% are computed from
QCD perturbation theory; power series in a,.
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50 is O( )a.nda(l) is O( )

[&,(1’-'22) have not been computed for QQ production.]

Diagrams



Ratio of the partonic cross sections 6{%+1) /(%) is large

in some kinematic regions, notably the near-threshold
region of small
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e Shading shows enhancement of next-to-leading
order & over lowest order 4.
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7. m=173 Gev

e K factor at parton level: K®(n) — a™n?*(n)



e Near-threshold region is significant for ¢ quark
production at /s = 1.8 TeV; 2m;/{/s ~ 0.2

e After integral over 7, ratio of the physical cross

sections
ONTLO A~

=1.25
0BORN :
at m = 175 GeV and /s = 1.8 TeV

¢ To obtain more reliable estimates in perturbative
QCD, it is important

— to identify/isolate the terms that provide the
large next-to-leading order contributions and

— to try to resum their effects to all orders in
perturbation theory.



2. Gluon Radiation and Resummation

e Origin of large threshold contributions in O (a3).

After cancellation of soft singularities and factoriza-
tion of collinear singularities, there are left-over loga-
rithms associated with initial-state bremsstrahlung:

n(l — 2)

oY DISTR( BUTeAS

| (l—z)s?%;ﬁ

z — 1: zero gluon momentum

[initial-state brem much larger than final-state brem
— massless vs. massive propagator.]

- |
e Work in the MS factorization scheme



Near threshold,
1
6ij(n) = / dz{1 + 2aC;; in®(1 —2)

+ 20}t (1 = 2) = 50y bafn* (1~ )

d (0
X a‘;aij (n,2).

a, ,

O = Zmin = 1-4(1+7n)+4v1+1n
The aCj;€n?(1 — z) term is known explicitly from
O (a3) results for ij — QQX. The O (a?) terms
are taken over from O (a?) calculations of massive
lepton pair production (Drell-Yan process). Univer-

sality assumption for leading log terms.

Goal of gluon resummation for o(tt) is to sum the

series in a™{#n?" (1 — z) to all orders. Procedure
studied extensively for Drell-Yan.

Sterman(1987)

Catani and Trentadue(1989)

Appell, Mackenzie, and Sterman (1988)
Contopanagos and Sterman (1993)
Alvero and Contopanagos (1995)
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Effect of the successive addition of O (a") leading -6

logarithms on the physical cross section
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3. Perturbative Resummation

e Factorization and evolution lead to exponentiation in
mOment Space (n). Sterman (1987), Catani & Trentadue (1989)

e In moment space, the exponent that resums
the £n?/(1 — z) terms is (principal value prescription)

Contopanagos & Sterman (1993)

et e
Epv(n,m’) = -1{ dCCT——C_l(l-/l()z By [a (Am’)]

g (@) is calculable perturbatively

— Epy is finite: Landau pole singularities in a (Am?)
are by-passed by Cauchy principal-value
prescription

— All large threshold corrections are included by
2-loop running of o

e To retain only the perturbative content, we use a
perturbative truncation of Epy



Our perturbative truncation of the full exponent,
restricted to leading logarithms only, is (z = In n)

N(t)+1
E(:B, a,N) = ZC,'J' p§1 apsp:cP"f'l
Sp=b7"2°/p(p+ 1)
Coi=CF, Coe=Ca
a,(m) 1 bs In(In(m?2/A2))
T b ln(m?/A) b In’(mZ/A?)
by = (11C4 — 2n;)/12
1

> Tt is valid in the moment-space interval

(8]

l<z=lnn<t.

¥ N(2) is a function of m, only, in the perturbative
domain.
omalt N=6€ ok w = \15 GV

This expression contains no factorially growing
(renormalon) terms. The perturbative region is far
removed from the part of phase space in which
renormalons could be influential.
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Inversion of the Mellin transform to go from moment
(n) to momentum space:

1
55V(77,m2) = / dz [1 + Hij(z> a)] %A(O)('m z)

tn(15;)

Hij(z,a) = ({ dzefi(®:) EO Qj(z, ).

Eij(z,a): polynomial in z

@;: functions produced by analytical
inversion of Mellin transform, expressed
in terms of derivatives of F, Pi(z, @)

Pi: 0*E(z,a)/k'0*z

Qj: starts from order a; Q; contributes j
more powers of a than of ¢n(1 — 2)

O



e Domain of applicability of perturbative resum-
mation in z and 7

— In moment space (n): perturbative truncation
is valid for 1 < lInn <t = 1/(2aby); this
interval agrees with the intuitive definition of
the perturbative region, where inverse power
terms are unimportant: ﬁ < 1

= 2 alnn<]l1. :

— In moment space, we also keep only the leading
logarithmic terms, a® In®*'n, — those known to
be universal.

— In momentum space, after the Mellin trans-
form, a descending series of subleading loga-
rithms is generated, Q; ~ o/+* In*(1 — 2).

— To be consistent with leading log resumma-
tion, all @;,7 > 1 must be negligible compared
to Q,. = restriction on z.

— Another way to motivate this restriction: the
integral over z should not extend into the re-
gion in which unknown subleading terms could
be important quantitatively.

— Upshot: calculable threshold cutoffs on the 2
and 7 integrals.

A



Cutoffs restrict perturbative resummation to
zszmaz<land7727]pert
determined by (0F (z,a)/0z) < 1.

— Perturbative domain is smaller in gg than ¢g
case because C,y > Cyz

@m = 175 GeV
ni.,~0007; 7%, ~0.05
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4. Calculations at /s = 1.8 TeV and 2.0 TeV

Phussical

a. Parteric cross sections: qg, gg vs. 7

b. Physical cross sections for two channels vs. m
and vs. QCD renormalization/factorization scale

7

c. Calculated cross section at m = 175 GeV with
range of theoretical uncertainty
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Factorization/renormalization scale dependence,

after addition of ¢¢ and gg contributions;
Vs =18 TeV

----- NTLO

Resummed
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3 pp—> ti+X, vs=1.8TeV
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Take variation of o in range 0.5 < £ < 2.0 as
measure of perturbative uncertainty.
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Comparison with 1996 data.
Curves for 3 values of

——p=m
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Prediction at /s = 2.0 TeV
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— Extend calculation to very large m at
Vs =18 TeV:

m(GeV) o.re:/o.NLO

500 1.21

600  1.26 hep-ph/9606421
700 1.34

The numbers reflect the increasing importance of the
near-threshold region as m increases. |

=~ 25% of “excess” jet cross section at large pr
seen by CDF may be explained

— Growth of the top cross section with /s at
m = 175 GeV (pp collisions):

Vs (TeV) o(pb)
1.8 5.52
2.0 7.56
3.0 22.40

4.0 46.0
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Numerical comparison with other calculations

ott(m = 175 GeV)Q/s = 1.8 TeV
BC [1] 5.52+3-97 pb
LSvN [2] 4.957079 pb

CMNT (3] 4.7573:8 pb

— All agree within their estimated uncertainties,
but

— Resummation methods differ, methods for
estimating uncertainties differ, and parton sets

differ

(1] Berger & Contopanagos, Phys. Rev. D54, 3085 (1996).
[2] Laenen, Smith & vanNeerven, Phys. Lett. B321, 254 (1994).
(3] Catani, Mangano, Nason, & Trentadue, Phys. Lett. B378, 329 (1996).
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BC vs. CMNT Similarities and Differences

e Both use the same universal leading log expression in
moment space

e Differences occur in the transformation to momentum
space

e The Mellin transform to momentum space generates
subleading logs — CMNT keep all of these. BC keep
only the universal leading logs and restrict phase space
to the region where they would not be numerically
significant regardless.

— The subleading terms are negative and numerically
significant in the CMNT approach = explains smaller
effects of resummation in their case.

BC: Berger & Contopanagos, Phys. Rev. D54, 3085 (1996).
CMNT: Catani, Mangano, Nason, & Trentadue, Phys. Lett. B378, 329 (1996).
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e Examine the expansion in o, in momentum space, after
transformation:

1+a(g T’ + 275 ¢ ) + O(a?)

r=1{n(l-2); g =2C;
— BC retain only the leading log, g, z?

— The subleading term, 2yg ¢; z, is not universal. It
is not the same as the exact O(a,) answer. It can be
changed, arbitrarily, if one keeps non-leading terms
in moment space. CMNT keep the 2vg g1 z term.

— The subleading term is negative and numerically
significant (2vg ¢; z kills > half of g; z?).

— The influence of subleading logs is amplified at
O(a?).

— Numerically significant subleading log contributions

mean that non-universal structures are not under
control.

e Further justification for retaining only the ag; z2 term

is that it approximates the exact NLO result very well.
The CMNT choice does not (~ 1/3).

BC: Berger & Contopanagos, Phys. Rev. D54, 3085 (1996).
CMNT: Catani, Mangano, Nason, & Trentadue, Phys. Lett. B378, 329 (1996).



— Threshold resummation is applicable to other pro-
cesses in which the mass or pr produced is large
relative to /s. Examples: hadronic jets at very
large pr at collider energies; squark and gluino
production

— All are “two-scale” problems

e large perturbative scale: m or pr

e ratio of two large scales: m,+/s

8 1
n:m—1:§(1—z)-»o

e large logarithm: ¢n(1 — z)

— Complementary region, L}; or f/T; small, is impor-

tant for, e.g., b quark production at the Tevatron.
Fixed-order QCD is not adequate for the gg sub-
process at large 7. (Collins & Ellis)



5. Summary

_ Calculation of top quark production in p QCD
including resummation of initial-state gluon
radiation to all orders in a,. Should be more
reliable than a fixed-order calculation.

_ Advantages of the perturbative resummation
method are that there are no arbitrary infra-
red cutoffs, and there is a well- defined pertur-
bative region of applicability where nonuniver-
sal subleading logs are numerically suppressed

— For m ~ 175 GeV, cross section at /s =
1.8 TeV is increased by ~10% with respect to
NTLO QCD calculation; greater increase for
larger masses.

—ott(m =175 GeV) = 5521207 pb @ 1.8 TeV

— Agreement with data within experimental
uncertainties

_ ~37% increase @ 2.0 TeV

.26



