The Muon (g — 2), B" — BY Mixing and
Rare B;, Decays in SUSY Models

Pyungwon Kb
(KAIST) L (U.of M)

S. Baek, and W.Y Song, hep-ph 0205259, 0208112

e SUSY Flavor Problem

(Constraints on (%,) 45 from B? — B9 mixing and B — X,7)
e a, (basic review, what in the decoupling scenario)
e B Xy, B— X,"l" and By, — '
e SUSY breaking mediation mechanisms

e Summary

( Talk at the ANL Theory Institute 2002, Sep. 9-13, 2002 )



SUSY Flavor Problem

e In the interaction basis, sfermion mass matrix is not diagonal in general

— Generically Large FCNC,

_ A2 5m3 ?
K° — KO mixing : —; =~ | <5x107° GeV~?
Mo \ ™

*x UNLESS Sfermions with the same eIectMc charges are almost degenerate
(i.e., 5m% =0 ), OR

+ U = U (for which A2=0), OR

* Decoupling of the first two generations of Sfermions (10-100 TeV)

with the third generation sferion mass below ~ 1 TeV
e Possible Solutions to SUSY FCNC :

— Universality : mSUGRA, No scale scenario, Gauge mediation, etc. *
True only at some messenger scale, RG running induce some flavor

violations

— Alignment : Flavor symmetry for Yukawa (SUSY) and sfermion masses
(SUSY breaking) — SUSY FCNC proMem is medigated, but generically

larger FCNC than universality assumption

— Decoupling : 1st/2nd generation sferﬁﬁons are very heavy and almost
degenerate, only the third sfermion and gauginos are light (below ~ 1

TeV)
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Figure 6: Penguin diagrams for AS transitions, with A, L, R}
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(From NPB paper by Gabbiani et al.)

_s.h_,_ _______ Y SRS _,._.Li k
gh ak
g g
d Y
_(__.__S‘_“.‘.x.__-l-d_(__
dn |

i
0ol
aﬁ-
7

l

21
(oW
3 __

e+
ol
i
©

»-—--——-X-—

dy § S| dy 8y
b)

Figure 1: Feynman diagrams for AS = 2 tranéfiqions, with h, k,l,m = {L, R}.
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Constraints on (6%) 4p from BY — BY mixing and B — X,y

( work with G. Kramer and J.H. Park, to appear in EPJC )
— B — BY mixing

The most general effective Hamiltonian for B® — BY mixing (AB = 2) can be

written in the following form:

) 3

Hé?fB=2 = Z CiQi + Z éi@iv

1=1 i=1

where the operators ());'s are defined as

7 7 3
Qv = dpvby d§7ub/1;
Q2 = dib dyh]
Q _ _abﬁ Jﬁba
3 = ARV GRvL
Qu = djby d;bj
Qs = dib] ;b
and the operators @z are obtained from ();'s by the exchange of L <> R. o, 3
are color indices, and g, r = (1 F 75)¢/2. The Wilson coefficients C;'s receive
contributions from both the SM and the SUSY loops: C; = CPM 4 CPUSY

In the SM, the t — W box diagram generates only contribution to the operator

(1, and the corresponding Wilson coefficient CPM at the m; scale is given by

7‘ 2 T
CM(my) = E’Tfjiwﬁv(\/t;;vtb)zso(xt),



where
(1) = doy — 1lai + 2} 3zilnz,
SO 4(1 — x4)? 2(1 — x4)¥

with z; = m?/m%,.
The Wilson coefficients C;'s are obtained by calculating the ¢t — W in the SM

and § — ¢ box diagrams in the mass insertion approximations in general SUSY

models :

2 2

(&' r cd
CFUSY = B (Uafo(e) +66f(x)) ()7,
SUSY o d \?
C3Y = 204z fo(x) (013) 5,

SUSY o7 2
Cj 162 362 fo(z) (013) xy
2

O =~ | (504afole) — T2fo(a) () 1, (5%) o

—132f¢(x) (0%5) 1 (5?3)31; ]
2

CEBY = —212;712 [ (24:cf6(-’13)+120f6(55)> (5f3)LL (5113)1212

—180fs(x) (0%s) , (0%3) oy ]

The loop functions fg(z) and fg(z), evaluated in terms of x = m2/m?, are
given by
6(1 + 3z)Inz + 27 + 9% — 9z 4 17
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These Wilson coefficients for SUSY and SM are calculated at po ~ my ~ m and
respectively, and the RG running between these two scales will be ignored.
D. Becirevic et al., hep-ph/0112303 for details )
There are also contributions from (6%;)"4  which is the induced LR mixing due

to the double mass insertion :

my( Ay — ptan 5)

d \ind d
(513)11?}2 - (513)LL X 2

We numerically checked that this contribution of (6%)"4 to M, is smaller than
the SUSY contribution we showed above, and we do not show the explicit form
here.

1

My(B%) =
' 2mp

(B|Hg"~*| BY)

Ade = 2|M12(Bg)|
The phase of the B® — B mixing amplitude M;5(B°) = exp(2i') Mis(BY)|

appears in the time dependent asymmetry
wix(BY 5 J/YK,) =sin28 sin Amp,t. (7)

cf. B = (3 in the SM



Dilepton charge asymmetry : Ay
Finally, the dilepton charge asymmetry A is also determined by M;,(BY)

albeit a possible long distance contribution to I's)/(B"). Define

\Bi2) = m [BU> + 77@—0>

with n= \/(Ml*2 /(M12 — ’iFlg). ThEh

I'7y)
N(BB) - N BB) It =1 (/M)
N(BB)+ N(BB) ~ [j'+1 1% I”lz/Mlzl /4

u= ~ Im(['12/My,).

In the SM, the quantity I'$} is given by (Buras, 1997)

G% m? Mg, Bg, f? 1 1
F%\’I = (—1) Lo LB [vf+€vc'vt Zc+"'Z2——Z3>+

8
2 4
%ng — 522 — 1}] ,

2
4.84+6.2)° and fp, = (200 £ 30)

where v; = Vj, V. and z. = mz/mb For

8
3
(5
MeV, the SM prediction becomes

—1.54 x 1073 < AAM < —0.16 x 1073,
The current world average of the data is

AP~ (0.2 +1.4) x 1072

In the presence of SUSY, M, could be affected strongly by SUSY particles,

whereas "5 is not:

MFULL _ ]\ISM + A/]is‘zbb\



whereas

FULL ._ S

[FULL lj‘

S} ,

Ay =1Im 12 ,). 10
= (i o

The possible ranges of Ay in a class of general SUSY models (with alignment

mechanisms and decoupling scenarios) can be studied. (Randall and Su, Ko

and Park,...)



Relevant operators for B — X v -

; Cil ) Qi)
27,8

(]L ﬁ}’w(‘[ TL‘A}"N[—')L y

4G

/]_{(;ﬁ'(b — d“/‘/) - \/_

—=ViaVio

1

with

€ 3 w
Tk dro" F,,bg,
Ogg = 169;2 Lot G bp. (11)

B(B— Xpy) _ ViVal* 6o
B(B — X.ev)  Vy, mf(z)

f(z) is the phase space factor for the b — ¢ semilepton decays

Neglecting the RG running between heavy SUSY particles and top quark mass

scale, we get the following relations :

Cr(my) ~ —0.31 +0.67 Cnew (mw) + 0.09 3" (mw)

Cg(my) = —0.1540.70 C¢* (mw) (12)

The new physics contributions to C5 are negligible so that we use

Co(my) = Cf;]\’](mb) ~ 1.11.



The direct CP asymmetry can be written as

b—>d7(m%) = P [10.57 Im (C5C7) — 9.40 Im ((1 4 €4)CoC5)
9.51 Im (C3C7) 4+ 0.12 Im ((1 + €4)CoCy)] (13)
where
_ VudVUb (p T ”7)
€d =

ViVie — (1—p+in)

In our model, the Wilson coefficients C7, and Cs, are modified in the double

mass insertion approximation as follows:

87TQ5(}“§

CSUSY — : S5 5({( | AN[ .
7y (Mmw) 3V2G r?V, Vi [(8%3) L. Ma(z)
m ind [ M
~(0tun (P2 a8u(o) - 68k (L) ante)
myp myp
C5%Y (mw) = ki {(ﬂ/»])/‘/, <§M3($) — 1-7\/[4(5’7)>
g \/iGFﬁ%QVtZ}th ’ 2 6
m~y/xr\ 1 B
N NANE 1
—(8%5)1R <_m_b_) (E]Wl(x) — 6]\42(1))]
e Constraints :
— Amp, = (0.472 £ 0.017) ps~ = 2|My»(BY)]

X = 0.79 £ 0.10 = sin(2/3 ), where 23 is the argument of My,(B")

Br(B — Xgv) < 0.5 x 1071 from B(B — py) < 2.3 x 107°
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SUSY in the Loop
(1) Why do we consider SUSY in the loop ?

e Flavor Conserving sector : Usually hiddeﬂn \under the SM contributions

(which are often tree level effects)
— SUSY effects are usually small and decouples quickly

N.B. : Exception : the muon (g — 2),, because of the very accurate

measurement is possible
e Flavor Changing Neutral Current Processes

— SM Contributions : already loop suppressed due to GIM mechanism

— SUSY Contributions : also loop suppressed, but can compete with SM

contributions, if SUSY particles are not too heavy

B — Xy : QCD part is under control due to HQET and Heavy Quark

Expansion

— Small theoretical uncertainties

(Also, B — BY mixing, B — X,{"l" and B, — pu'tp etc.)
e Never can be a clear evidence for SUSY.

Only a Smoking Gun for New Physics

e Can be complementary for direct search at colliders, especially if SUSY

particles are too heavy to be produced directly at colliders



(2) Muon Anomalous Magnetic Moment (g — 2),

Magnetic Moment in QFT

e Fundamental Properties of a particle

— Mass M
— Spin s : Bosons and Fermions with Dﬁff. Statistics
— Charge () : integral multiples of ¢,

— Magnetic Dipole Moment (MDM) u

e MDM vs. Spin

e Pointlike Dirac particle : g = 2 (e.g., electron, muon, quark etc.)
cf. g =279 (—1.86) for proton (neutron)

— Indicate p and n are composite particles

e Quantum Corrections modifies ¢ at loop levels.

_ (97
a, = 9
H

— Anomalous Magnetic Dipole Moment



Theoretically well understood
(except for the hadronic contibutions)
Measured with high precisions

Indirect Probe of New Physics Beyond the SM



SM P edictions
(A Czarnecki and W Marciano hep-ph/0102122)

- {LEM ﬂﬁ':;?E:D +u_]_‘.'-‘lr"'r' +'uhmimni['.

aFP  calculated upto five loops

qQED (2& ) +0 765 857 376(27) ;) + 24.050 508 98(44) ( )

7 » ]
+ 126 07(41 ( ) +930(170) (“’
L ™
(a.) 137 035 999 58(52) from a..
of  (¢gH = 37036003 00(270)

a®ED 16 584 705 7(2.9) x 10

1)
e a," upto loops 95 x 10 43(4) x 10 52(4) x 10
aﬂ“d == uﬂ‘”i (vac. pol. +a" (light by light)

< Most Uncertain Theoretically

Adding these altogether

at® eyt (339% 2)x10  (from «  — hadrons)
at® a3 (16 £107) x10  (from hadronic 7 decays)

(Davier Eidelman, Hocker and Zhang, hep-ph/0208177)

— Just o effect and no strong demands for New Physics



SUSY Models -

f“‘

7 X; (XY Iz

e Feynman Diagram at one loop order

o Results in general MSSM

— Schematic Expressions for a,, :

2
aSUSY — 14 1071 (HOO ~GeV> tan 8

H m
— Relatively light SUSY particles and Relatively large tan (3

e Minimal SUGRA, String Inspired Models (Dilaton and/or Moduli), Gauge

Mediation, Anomaly Mediation, No-scale scenario etc.

e Higgs and light stau mass bounds and B — X,y put very strong

additional constraints on the parameter space

e LSP — Nucleus Scattering relevant to Neutralino Dark Matter Search

Experiments such as DAMA (DArk MAtter) KIMS (Korea Invisible Matter

Search), etc.

e BNL data can be easily accommodated i SUSY models



Effective SUSY Models
(with S. Baek and J.H. Park, EJPC(2002) ; see also G.Cho, Haba and Hisano)
o Naive expectation : a, ~ 0, since m; ~ O(10) TeV
e R parity violation will surely save the effective SUSY model
e Still some contribution from flavor changing neutralino-stau loop

e The Slepton mass matrix in the super-CKM basis:

Y VEMMVT 4 m? + S (M2 — 2M2,)1 —my(ptan B1 + A;
i . 1 o
—my(p* tan 51 + A;) VI’;‘AIEIV}?T —i—m? — cos 28N,

e Assuming m, = 0 and m; = 0,

cos 23

M2 = VMV + M21,

777%3 = 13 + cos 28 M3,

° VLEV]j/T = VMns with large mixing angles
— flavor changing interactions involving neutralinos

o 7 — x" loop : enhanced by m./m, relative to other contribution — can
compensate the small mixing angle

Nothing but the origin of SUSY flavor problem in the lepton sector

cf. Similar effects in b — s reansition in SUSY due to gluino mediations

(Kaplan, Nelson et al; Y.G.Kim, P.Ko and J.S.Lee)



— B = X, X7 etc.

e Important constraint:

B(t — puy) < 1.0 x 107°

® 2 loop Barr-Zee type contribution can be significant for large tan 3 (free

from 7 — uy)
(A. Ahrib and S.Baek)
cf. Analogous to the 2 loop EDM's of e/n (Chang-Keung -Pilaftsis)
® Our study shows that the a;;">" can be as large as ~ 20 x 1077 in the

effective SUSY models for all tan 3 if there is a large mixing between the

2nd and third generation sfermions.
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(4) B — X,y and B — X,I*I°

e SM : the leading contribution is the t — W loop, due to the hierarchical

structures in the CKM matrix elements.

j#
Ny
U\c. /\/\% ke

<o

b n >
\ 4G *1 7
1=2,7,8

spyer eryubr

e

Tl 5L0" Fu (14 v5)bg

s —= W ya Ya
167r2mb spott GW(I + 75)bR

B(B—= X))  ViVl® 6a 2
- ! S C §
B(B — Xcev) Vi | nf(2) |Cr7 ()|

e CLEO data : B(B — X,v) = (3.21 £ 0.43 £ 0.277018) x 10~

vs. SM prediction : (3.57 £ 0.30) x 10~ (for £, > 1.6 GeV) to NNLO
(Buras, Misiak, et al.)

— Only a little room for New Physics Contributions to B — X



e SUSY = (t — W) loop + (t — H™ loop) + (t — x~ loop)

— (t — H™ loop) : alsways additive to the SM contribution
— (t — x~ loop) ox Ayp ox Msp
Either constructive (1 < 0) or destructive (i > 0) w.r.t. the SM and

charged Higgs contributions

— aiUSY is consistent with B — Xy

e Br(B — Xv) only determines |C7 .|, but not its sign
— C7% =~ +CN
e Sign of C7 ., can be probed in B — X [*[™ in principle

— B(B—X.0t@
* Rog = Gt for 2mg < mgg < (), — 100 MeV)

e As of 1999, KEK group analysis shows that both signs of (7, are
compatible with the experimental observations for large tan 3 and light

stop and charginos

— Ry could be as large as ~ 1.8

e As of 2002, this is no longer true due to #trong constraints from Higgs and

SUSY particle search limits

0. [.]
— a?g Rgy < && in SUSY breakiggm

diation scenrios we consider

e The FB asymmetry is also sensitive to neM physics effects (A. Ali et al.)



(5) B; = pu*p

e SM prediction : (3.7 +1.2) x 107*
e Current upper bound from CDF : < 2.6 x 107° (90 % CL)
e CDF aims at sensitivity down to 10™® at during Run Il with 15 fb~!

e SUSY contribution : Neutral Higgs exchange amp. can grow like tan? /3

(Babu and Kolda, C.S. Huang et al., Bobeth et al., Arnowitt et al., Isidori

HA A
> \\
’ -
N 2

— Br(Bs, — pt ) o< tan® 3 for large tan 3 (upto ~ 3 x 1077)

G ro | tan’ 3 mymyme\ sin 26; 5o
Cg ~ Vi V.o e — = Yfim2 . m2 ).
S V2 s (4 Sin” Hw) ( My, M+ 2 /1 i My b )

— Need a large LR mixing in the stop sector, light stop and // A for

larger C's (Talks by Nierste, Kolda)

and Retico, ....)

e Remember a,, ox ptan 3

— Strong correlation between the large a, and Br(B; — p'p ) o< tan® 3

in MSUGRA (Dedes, Nierste et al.)



e Can cover mSUGRA parameter space with heavy SUSY particles



* How SUSY breaking is communicated to Our World ?

(1) Importance of this question

e MSSM itself cannot be the Ultimate The&y of Nature, either
e 124 parameters of MSSM are arbitrary in principle. BUT!!

e Generic parameter space is already incompatible with various low energy
data on FCNC and CP violations
AMyg, AMpg, €k, ¢/n EDM's, etc.

e The sparticle spectrum is crucially dependent on how SUSY breaking is
communicated to our world

— Phenomenologically very important

e We need some nice mechanisms which can!solve the so-called
SUSY Flavor (FCNC) and SUSY CP problems

+ Two of the most serious problems of SUSY models compared to te SM
e Many Scenarios

Gravity Mediation
— GaugeMediation

Anomaly Mediation
— Gaugino Mediation

Kaluza-Klein Mode of Bulk Matters,.



e Basic Picture

Hidden Sector SUSY Breaking
(Fy £0,

!
Messengers (Flavor Blind)

!

Visible Sector (Our World : MSSM)




Gravity Mediation (nSUGRA)

o Gravity is already there

e Matter fields in our world

Fields in the hidden sector

e We need to know
* Kahler potential K
* guage kinetic function f,

* superpotential W

e The soft terms are given by

/]\

Msofs ~ \[/

* Msope ~ 10° GeV, if V(F) ~ 101 GeV (Intermediate Scale)

e With some assumptions, we end up with Me following parameters:

mo, My, Ag, tanf, sign(u)

(with Seungwon Baek and Wan Young Song, hep-ph /0205259, 0208112)
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Gauge Mediation (GMSB)
In the GMSB models, the SUSY braking scale{ J(\ is around 10 — 100 TeV, and

the soft terms are (to lowest order)

e New Ingredients :

— W, W7 : Messenger Fields (i = 1,2, ..., Nyes) in the vectorlike

representation of the MSSM gauge group

— X : Gauge singlet superfield with norM'anishing VEV's in both Scalar
and Auxiliary Components ((X') and (Fx))

— Superpotential includes

W =\ XU, ¥¢
— SUSY breaking scale : A ~ (Fy)/(X)

e Soft Parameters at M eq

NpessA g ( ) g,

A[IIIGSS
A o\ 2
2 —a C
2Nmess A f ( M) Z ( 4W) ;
0

e C, : the quadratic Casimir invariant of the MSSM matter fields



® JTig A ‘/ALI['), S O keV
Thus the LSP is very ght Gravitno

NL' P the ightest neutra nos or even sleptons deca' nto (7 plus M

particles such as photon or the lepton
Y'Y 2>~++G AND o 1@
These provide characteristic sign Is 1t colliders

Remember pp — e™e vy + missingE'y even was interpreted as

selectron pair production and thei decays nto +x' = e+ v+ G

e Model Parameters

M Nmess A tan g sign p

n practive trade A for Bino mass parameter M/ and scan over
0P GeV < A< x 0° GV
ﬂ'{mmx — () ”5 A
e Higher M. — Larger A, and lighter stop mass via RG running

e Larger N — Lighter sfermion mass)?  the messenger scale



FIG. 3: The contour plots for a5"SY in unit of 107 (in the short das]
in the (M1, tan ) plane in the GMSB model with Niess = 1 and
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FIG. 4: The correlations of the Br(B — X,v) with (a) Ry,

Mmess = 10° GeV. The legends are the same as Fig. 2.
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hed curves) and the Br (B, = ptu7) (in the solid curves)
GeV. The light gray region is excluded by the

ﬁd’(b) aSUSY in the GMSB scenario with Niess = 1 and
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FIG. 5: The contour plots for a5"Y in unit of 10~'° (in the sh:t‘t
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FIG. 6: The correlations of the Br(B — X,7v) with (a) Ry, and (b) a3SY in the GMSB scenario with Nmess = 1 and
Mimess = 10"® GeV. The legends are the same as Fig. 2.
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FIG. T: ‘The contour plots for a3"SY in wnit of 107!° (in the short dashed curves) and the Br (B, — utp™) (in the solid
curves) in the (M1, tan §) plane for the GMSB model with Nmess = 5 and Mmess = 10'° GeV. The gray region is excluded by
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FIG. 8: The contour plots for a5"SY in unit of 10~'° (in the short df curves) and the Br (B, — p*u™) (in the solid curves)
in the (mo, tan 8) plane for the minimal AMSB scenarios with Mauyx = 50 TeV and p > 0




Anomaly Mediation (AMSB)

e No Tree Level SUSY breaking

e SUSY breaking due to conformal anomal)y (one loop level)

— (the scale dependence of coupling) o< 3 function

n.y
(_Z + mé) 5@'
1
E (A/"/‘ + VY5t A.'"“At) M. aux
v, =—dIlnZ;/dlnu : the anomalous dinﬁnsion of the field ®;
e the “dot” denotes the differentiaton w.r.tL ‘ln,u,
e This is generically present in any SUSY nﬁdels

e Two main differences from gravity mediation

* inverted relation between gaugino masses at high energy scale
My :My: Ms=10by:by:b3=33/5:1:-3

* m? < 0 (tachyonic) for mg§ = 0 (pure AMASB) — serious problem — Add
universal scalar mass parameters m;, anstsume that the above relation

holds at high energy scale around Mgyt



e Neutralino LSP (almost Wino like)

* Almost degenerate with NLSP and Harkﬂ to Observe NLSP decays
e iy LSP: x* — ot — charged Iepﬁn and missing energy signal

e Model Parameters
M,ux, tanf, myp| sign(p)

Scan over the following range :

20 TeV

IA

Maux < 100 TeV

N

mo < 2 TeV,

tan 8 < 60,

1.5

IA

sign(p)
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FIG. 9: The correlations of the Br(B — X,7) with (a) R,,, and (b{‘ Ti"SY in the minimal AMSB scenario for Maux = 50 TeV.
The legends are the same as Fig. 2.
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FIG. 10: The contour plots for aSUSY in unit of 107'° (in the short dashed curves) and the Br (B, — utu™) (in the solid

curves) in the (mo, tan 3) plane for the minimal AMSB scenarios with Maux = 50 TeV and p < 0.




