Summing KK modes

A scattering process for a particular external KK mode with mass m
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However, need to sum over large multiplicity of KK modes. Picture a
n-dimensional m-space lattice, with a particle at each point

(MR noR7L -, nnR_l).

Number of states between m and m + dm is
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where M2 = (RMp)" M3, is used
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Therefore,
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Another approximation to summing up modes is
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Jet signal and background at Hadron colliders

Study the signal associated with graviton plus jet final states:
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The main background is from pp, pp — jet Z, where Z — .
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Dimension-eight operators

Dimension-eight operators are induced b# tree-level exchange of a virtual

graviton.
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We can calculate S(s) in the continuous lihit Am < AFE)
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Ar ~ Mp is reasonable for all n, but thd ﬂnagmtude is not calculable.
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What happens at /s > Mp?

One thing that happens is black hole can form (Giddings, Thomas, Di-
mopoulos, ...) -

Naive view: Mass/energy clustered below corresponding Schwarzschild
radius Rg gravitationally collapses with probability 1. Colliding partons
with c.m. energy v/§ and impact parameter b < Rg form black hole.
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we should expect large cross-sections o 2 1/M3, for § > M3,

This simple argument is more correct as § > M3,

Interested in a more calculable observabiﬁe.‘ Look to forward scattering.
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Quantum Mechanical Scattering

Integral equation for outgoing Wave—funﬁt on () scattering in presence

—

of finite potential V()
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At large |Z| — r it becomes
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where

Differential scattering cross-section into solid angle is
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Born Approximation: Weak scattering potential. Solve integral equa-
tion iteratively in expansion about small|V. First term (Born term) is
replacing (&) with plane wave solution in A(k, k’).
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Eikonal Approximation

Change in V over de Broglie wavelength should be small compared to
energy. £ > V| works. (WKB applied to scattering.)

Forward scattering amplitude exactly calculable in approximation. (Equiv-
alent to resumming perturbative expansion to all orders at small angle
scattering.)

Identify ¢ ~ @) as wavefunction with VQS as semi-classical trajectory

Schrodinger equation: (V¢)? + 2mV (F) = k?
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At impact parameter b the phase is
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Forward scattering at /s > Mp

The leading behavior of the forward scatie,l;ring amplitude is summable to
all orders. \ \

Technique of resummation is the “eikonal approximation”, where ladder
diagrams are summed in the limit of small momentum transfer.
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This Born amplitude is divergent from the sum over infinite momentum
in the transverse (extra-dimensional) space.
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Eikonal Resummation
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Following the combinatorics, one can resMn all terms to get
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Eikonal scattering phase is just the 2-d
form of the Born amplitude.

era,ct parameter Fourier trans-

Direct computation of x yields
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where b, =

The divergence in Apqy, does not survive in y, except the limit of & — 0
(point-like interactions) smoothly integrated over in the amplitude.



Eikonal Amplitude

The finite eikonal amplitude for scattering  the limit of ¢* <
and M3, sKs

Acik — 4mwsb F. (b.q)

where F,(y) = — _ﬁlx drx Jy(xy)
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Two important scale lengths

In addition to Mp (or equivalently Gp
important scales we have encountered.

»f 1/MZt™) there are two other

be is a new scale with no 4d analog. As h — 0 (classical limit), b, — oo.
We will see interesting quantum effects arise for b 2 b..

Example numbers:

Vs =10TeV, Mp =2TeV, n = 2: Rg' =1.3TeV, b-! = 0.6 TeV
Vs =10TeV, Mp =2TeV, n=6: R5' = 0.7TeV, b=! = 0.5TeV



Corrections to the Eikonal Amplﬂtﬁlde

Following Amati et al., estimate corrections by improving eikonal resum-
mation with inclusion of two-loop “H diagrams”, leading to
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This translates to the following corrections in the amplitude
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Small angle scattering and transplanckian

ﬂlity keep corrections under con-
trol.
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Cross-section -

Cross-section for scattering is

d i (‘ 2
sz = bt | Fy (bo/ =)

We are interested in small angle jet-jet scattering at LHC. An observ-
able that signals small angle, which is also z-boost invariant, is rapidity
separation AN = Miet.1 — Miet 2-
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Large rapidity separation implies small t} konsistent with the approxima-
tion. »

The differential cross-section in An is

do nbtseln | 2
= An)2 | n(y)| ’
dAn  (1+efn)” " "

where y = b.v/§/V/1 + €A,




An distribution of jet-jet cross—se%clpion
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Plot made for n = 6, M;; > 9TeV, pr > 100GeV, and |n| < 5. Back-
ground from Pythia.
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An drops off rapidly at ~ 9 because
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Closer look at wiggles in the distribution
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Extrema in the distribution are located at values of An that satisfy the
equation }

toe Fuy)| dy

First peak at

2(n + 2) k, M
ot o, 2042 (R
An o n . Mp

where k2,3’4,5’6 08, 0.9, 1.0, 1.2, 1.3.

Wiggles from quantum effects when q ~ #)il



Definining a good observable

In practice, experiment will measure distributions of jet-jet cross-section
in two variables: |An| and Mj;. e

For An we have found ux
signal > background for lower values of An
but, signal becomes less calculable at lower An.

Choose minimum value of A to be 3, which is equivalent to ¢*/s < 1/20.
Choose maximum value of An to be 4 for illustration.

Integrating over this range of An, we can how show dependence on M;.



Minimum jet-jet invariant mass
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The larger the value of

M

17 7

the better the signal to background ratio.

Gravity signals always rise faster with en fgy than SM signals.

Good news: Calculability and signal-to-background both like high M;;.



