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SOLUTIONS FOR ASSIGNMENT #2

Reading Assignments:
(a) Read the handout by Professor Michael Dine at UC Santa Cruz on relativity at http:
//scipp.ucsc.edu/~dine/ph217/217relativity.pdf
(b) Section 3.1 of Peskin and Schroeder.

Problem 1
Do exercises a, e, and h in the reading assignment (a).
Solution:
(a)

Λ =


coshω 0 0 − sinhω

0 1 0 0
0 0 1 0

− sinhω 0 0 coshω


(e) In the Lab frame the proton is at rest so kp = (mp,~0) and ke = (ωe, ~ke). Then s =

(ke + kp)
2 = (mp + ωe)

2 − |~ke|2.
(h) The tensor transforms as

F µν ′ = Λµ
αΛν

β F
αβ,

where Λµ
α is given in (a). The electric field is Ei = F i0 and the magnetic field is Bi =

(1/2)εi0µνFµν . Therefore we have

Ei ′ = Λi
αΛ0

β F
αβ

Bi ′ = (1/2)εi0µνF ′
µν = (1/2)εi0µν Λα

µΛβ
ν Fαβ

Plug in Λ to get the explicit expression.

Problem 2
Do Problem 3.1 in Peskin and Schroeder. (We haven’t introduced a Dirac spinor yet. How-
ever, you have all learned a two-component Pauli spinor in Quantum Mechanics. For the
purpose of this problem, think of the two-component Weyl spinor as the Pauli spinor, which
should enable you to do the problem.)
Solution:
(a)

[Li, Lj] = iεijkLk, [Li, Kj] = iεijkKk, [Ki, Kj] = −iεijkLk.

From the above it is simple to show that

[J i
±, J

j
±] = iεijkJk

±, [J i
+, J

j
−] = 0
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(b) Using the relation
Lj = (J j

+ + J j
−), Kj = −i(J j

+ − J j
−)

we see that an infinitesimal Lorentz transformation can now be written as

Φ →
(

1− 1

2
J i

+(iθi + βi)− 1

2
J i
−(iθi − βi)

)
Φ.

For the (1
2
, 0) representation, set J i

+ = σi/2 and J i
− = 0, whereas for the (0, 1

2
) representation

set J i
− = σi/2 and J i

+ = 0. Then we see that these are exactly the transformation law of ψL

and ψR given in (3.37) of Peskin and Schroeder.
(c) Define σ̄µ = (1, ~σ) and write(

V 0 + V 3 V 1 − iV 2

V 1 + iV 2 V 0 − V 3

)
= V µσ̄µ,

which now transforms as

V µσ̄µ →
(

1− σi

2
(iθi − βi)

)
V µσ̄µ

(
1 +

σi

2
(iθi + βi)

)
→ V µσ̄µ −

σi

2
(iθi − βi)V µσ̄µ + V µσ̄µ

σi

2
(iθi + βi) +O(β2, θ2)

= V µσ̄µ +
1

2
V µβi{σi, σ̄µ} −

i

2
V µθi[σi, σ̄µ]

Now use the following identities

{σi, σj} = 2δij, [σi, σj] = 2iεijkσk

one can compute

V µσ̄µ → V µσ̄µ + V 0βiσi + V iβi + V jθiεijkσk

= (δµ
ν + ωµ

ν)V
ν σ̄µ

where ωi
0 = ω0

i = βi and ωj
i = −ωi

j = εijkθk. Using ωµν = gµαω
α
ν it is clear that ωµν is

anti-symmetric. Therefore V µ transforms like a Lorentz vector as in Eq. (3.19) in Peskin
and Schroeder.

Problem 3
We would like to consider a two-dimensional quantum harmonic oscillator with the following
Hamiltonian in Cartesian coordinate:

H =
1

2
(p2

1 + p2
2) +

1

2
(x2

1 + x2
2)

where I have set m = ω = 1 for simplicity. The operators satisfy [xi, pj] = −iδij
(a) Write down the Hamiltonian in terms of creation and annihilation operators

{a†1, a
†
2, a1, a2}, which satisfy the commutation relation [ai, a

†
j] = δij. (All other commu-

tators are zero.)
(b) The Hamiltonian obviously has rotational invariance in the two-dimensional space:
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U(R)xiU(R)† = D(R)ijxj, where D(R) is a 2 × 2 orthogonal matrix. A less obvious in-
variance is a complex rotation S in (a1, a2),

U(S) ai U(S)† = D(S)ijaj,

where D(S) is a complex 2 × 2 matrix. Work out the condition on D(S) in order for the
Hamiltonian to be invariant under S : U(S)H U(S)† = H. Show that different states related
by an S transformation |a〉 = U(S)|b〉 are degenerate in energy.

(c) Define the one-particle states {|i〉 = a†i |0〉, i = 1, 2}. We discussed in class that any
operator can be expressed in terms of creation and annihilation operators. Consider a set
of operators {T a, a = 1, 2, 3} whose effects on the one-particle states are

T a|0〉 = 0, T a|i〉 =
1

2
|j〉[σa]ij

where σa’s are the Pauli matrices and [σa]ij are the matrix elements of Pauli matrices. Find
the representation of T a in terms of the creation and annihilation operators.
(d) Use your result in (c) to compute the commutators [T a, a†i ].
Solution:
(a)

H = (a†1 a
†
2)

(
1 0
0 1

)
.

(b) From (a) we see that the matrix D(S) must satisfy D(S)†D(S) = 1. Since [H,U(S)] = 0,
H(U(S)|b〉) = U(S)(H|b〉) = Eb(U(S)|b〉) so U(S)|b〉 and |b〉 have the same energy.
(c) T a maps a one-particle state into another one-particle state, so it must be the prod-
uct of one creation and one annihilation operator. Use the notation α = (a1 a2)

T , it is
straightforward to work out that

T a =
1

2
α†σaα

where σa are the Pauli matrices.
(d)

[T a, a†i ] =
1

2
a†j[σ

a]ji

where [σa]ij is the matrix element of σa.
A physical system corresponding to such a Hamiltonian is that of a proton and a neutron.
The extra symmetry exhibited here is called the “isospin symmetry.”
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