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ASSIGNMENT #3

Due at 3:30 PM, October 16th

(Two pages and three problems.)

Reading Assignments:
(a) Read Section 15.4 of Peskin and Schroder on Lie algebras.
(b) Read Chapter 2 of Peskin and Schroeder.

Problem 1
(a) Write down the generator of SU(2) in the adjoint representation.
(b) Do Problem 15.1 in Peskin and Schroeder.

Problem 2
Consider a free spinless boson φ(x) with the following plane-wave expansion:

φ(x) =

∫
d3k

(2π)32ωk
(ak e

−ik·x + a†k e
ik·x).

(a) Suppose we treat φ(x) as a quantum field and canonically quantize it using the commu-
tation relations:

[φ(~x, t), φ(~y, t)] = [∂tφ(~x, t), ∂tφ(~y, t)] = 0, [φ(~x, t), ∂tφ(~y, t)] = iδ(3)(x− y).

Express ak and a†k in terms of φ(~x, 0) and ∂tφ(~x, 0) and show they satisfy the commutation

relations for creation and annihilation operators: [ak, ak′ ] = [a†k, a
†
k′ ] = 0 and [ak, a

†
k′ ] =

δ(3)(k − k′).
(b) Alternatively, treat φ(x) as the simplest quantum field constructed out of the creation

and annihilation operators ak and a†k and show that φ(x) and ∂tφ(x) satisfy the correct
commutation relations as required by the canonical quantization.
(c) In canonical quantization the Hamiltonian of a free spinless boson can be written as

H =

∫
d3x

1

2

[
(∂tφ)2 + (∇φ)2 +m2φ2

]
.

Verify explicitly that

H =

∫
d3x ωk

(
aka

†
k +

1

2
δ(3)(0)

)
.

Problem 3
The infinite constant in the Hamiltionian in Problem 2 (c),

HCC =

∫
d3x ωk

1

2
δ(3)(0),
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actually contains two types of infinities:
(a) The infinity in δ(3)(0) comes about because the space in which our QFT lives is infinite
in volume. To see this explicitly, recall that δ(3)(0) arises from the commutator

[ak, a
†
k′ ] = δ(3)(k − k′) =

∫
d3x e−i(

~k−~k′)·~x

Use the above equation to show that if we had placed the QFT in a box with sides of length
L, then [ak, a

†
k] = L3 which is the volume of the box. Now take the length L→∞ and show

that

HCC =

∫
d3x

1

2
ωk V

where V is the volume of the infinite space. An infinity associated with an infinite volume
is called the infrared divergence.
(b) The infrared divergence comes about because we are computing the total energy of the
system. We could instead compute the energy density HCC ≡ HCC/V to get around the
infrared divergence. Show that there is still a divergence inHCC because we assume the QFT
is valid up to arbitrarily high energy and therefore integrate over arbitrarily high momentum

|~k|. Such a divergence is called the ultraviolate divergence.
(c) Since no one knows how to write down a consistent QFT for gravity, it is reasonable to
assume that our QFT is valid only up to the Planck energy Mpl when the effect of gravity

becomes important. Therefore we should cut off the |~k| integral at Mpl. Calculate the zero-
point energy density HCC in terms of Mpl.
(d) One way to remove the zero-point energy is to add a so-called cosmological constant
term to the Klein-Gordon Lagrangian

L =
1

2

(
∂µφ∂

µφ−m2φ2
)

+ ΛCC .

Show that the total zero-point energy density now becomes

Etotal = HCC − ΛCC

(e) Over the last decade our colleagues in cosmology worked very hard and measured Etotal ≈
(10−3 eV)4 in our universe. Assuming that QFT is indeed only valid up to Mpl, what is
the amount of cancellation needed between HCC and ΛCC in order to result in the observed
value? One measure of the fine-tuning necessary is to estimate the order of magnitude of

HCC − ΛCC

HCC + ΛCC

.

This is the famous cosmological constant problem!
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