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SOLUTONS FOR ASSIGNMENT #5

Reading Assignments:
Sections 3.3 to 3.5 of Peskin and Schroeder.

Problem 1

Do Problem 3.6 in Peskin and Schroeder.
Solution:

(a) Let T4 = {1,5*,6" (1 < v), iv°3*, 7%}, where

="'y, o ={io%, 0V},
then it is easy to see that there are sixteen of them and Tr(I'AT'B) = 4§45,
(b) Since any 4 x 4 matrix M can be written as a linear combination of ['4: M =3, c4T'4,

the orthogonality condition in (a) implies ¢4 = Tr(MT'4)/4 and M = Y, Tr(MT)T4 /4,
which, in component form becomes

1
My =7 > M (D)%),
A
Therefore we arrive at the following closure relation
1
4 D (T4 = 6150
A

Multiply the closure relation by (I'Z),,;(I'),; to get

AN

()i T = 7 > (TPT) (DT,

1 1 1
= 12 g TCPTATP) () L Tr(TOTATE)(ITF), (1)
A

where we have used the orthogonality condition to expand the product I'MTV =
Tr(TMTNTP)IF. Then use the closure relation again to compute the product of the trace

1 1 1
> ZTr(FBFAFD) ZTr(FCFAFE) - ZTlr(FBPEPCPD).
A

In the end we obtain

(0P} (0 = 7 TH(PPTP TP (TP, (7).
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(c) For '8 =T¢ = 1, Tr(T'P1IE1) = 46PF. Thus
1
(yuz) (31ua) = - D (T uy) (@57 ).
A
For I'B = 4#* and I'¢ = Yu, it is straightforward to verify the following identities
YU%=4 VAN =2, VT =0, (V) =27, VY = —4

from which we get

(WY ug) (asy,us) = — [A(aug)(Usug) — 2(a vy uq) (as7y,us2)

N

—2(u17 7 ua) (g7 ypuz) — 401y ua) (37 us)] (2)

where we have used the fact that (5" uy)(usV ug) = (wy us)(Usgy,us).

Problem 2
In non-relativistic quantum mechanics, the Schrodinger equation implies a continuity equa-
tion of the form
dp
ot
where p = [|? is interpreted as the probability dentiy.
(a) Derive a similar continuity equation for the Klein-Gordon equation

(9,0" +m*)h = 0.

+V-j=0

Write down p and j explicitly. Explain what would go wrong if you were to interpret p as
the probability density.
(b) Dirac realized in 1928 while staring at a fireplace in St. John’s College, Cambridge,
that the sickness in (a) is the result of an equation of motion that is second order in time
derivative. He thus proposed instead

o

— =H 3

ey pY (3)
Explain why the Hamiltonian Hp here must be first order in spatial derivatives and contain
only terms linear in the mass m.
(c) Dirac then guessed a general form of Hp

Hp = —ia;— + asm.
ox?

Hp must be such that when applying Eq. twice one recovers the Klein-Gordon equation.
(After all, E? — |p]*> = m?!) Firsts show that the set {a;,i = 1,2,3,4} cannot be pure
numbers, then derive the conditions a; must satisfy to produce Klein-Gordon equation. Re-
write 7° = a4 and 7 = a4a; and re-express your coditions in terms of y~.
(d) What is the continuity equation following from the Dirac equation? Give p and ]
explicitly. Can you interpret p as the probability density?
(e) As we showed in class the Dirac equation has solutions of the plane-wave form

w o e:tik~m

2



Explain why this is a problem when trying to consider the Dirac equation as quantum
mechanical. Then explain why this is not a problem when promoting the Dirac equation to
a quantum field theory.

Solution:

(a) For the Klein-Gordon equation p = 1*9x) — (9,0* )¢ and j* = ¥*0;1p — (9;3*)p. They
satisfy 0 p—i—V-j = (. Since p is not positive-definte, one cannot interpret p as the probability
density.

(b) Since the equation of motion is first-order in time derivative, by special relativity Hp
must also be first-order in spatial derivatives and mass.

© ¢ ¢ O¢
_ g2 _ ;

~5z = H}, = —a;a, D0, —im{a;, a4}3xi

In order to reproduce the Klein-Gordon equation, the cross term 9,0;1 as well as 9;¢ must

be zero, which implies {a;,a;} = 0 for ¢,j7 = 1,2,3,4. Therefore the a;s cannot be pure

numbers. The conditions for the above equation to turn into Klein-Gordon equation is

+ m2ai¢

{(IZ',CL]‘} = 2(51‘]', {ai, CL4} = O, Cl,i =1.

In terms of 4% = ay, 7" = aqa;, the above condition becomes {v*, 7"} = g*”.

(d) For the Dirac equation p = ¥ and j' = ¥Ta;1) which satisfies d,p + V - j = 0. Since p
is positive-definite, it is possible to interpret p as the probability density.

(e) This is a problem quantum mechanically because one of the plane wave solutions can
only be interpreted as a negative energy solution and the energy is unbounded from below.
As a field theory the plane wave solutions are interpreted as creating and annihilating a
particle, and as such is not a pathology.

Problem 3
In class we defined a Dirac spinor 4 in the chiral basis:

o= ()

where v, and ®¥g are Weyl spinors transforming under the Lorentz group according to
Eq. (3.37) in Peskin and Schroeder. The Dirac Lagrangian is then written as

L =i oy + i - v — mytpy

where @ and (3 are 4 x 4 matices.

(a) Write out @ and 3 explicitly and show they satisfy the same conditions for {a;,i =
1,2,3,4} you work out in Problem 2(c) if you identify o = a',7 = 1,2,3 and 3 = a4. Then
go to a different basis, the Dirac basis, for a Dirac spinor

¢ — L ( 1/}R + ¢L )
V2 \ Yr — YL
and write out @ and (3 in this basis. Show that in this basis @ and [ still satisfy the same

conditions as in the chiral basis.
(b) Stay in the chiral basis, work out how a Dirac spinor transform under rotation and boost,



respectively. Write out the generators for the rotation and the boost explicitly, from which
deduce the generators S*” for the Lorentz group. Moreover, show that

1

7% wo v
S 4[7 ]

where the Dirac gamma matrices are defined in Problem 2(c).
(c) Show that +* transform like a vector under the infinitesimal Lorentz transformation
D(A) =1 —iw,, S* /2. In other words, show

D(A) 'Y D(A) = A ¥

(Hint: you can prove the statement by computing a certain commutator.)
(d) Explain why all the results in (b) and (c¢) would still hold in a different basis such as the

Dirac basis.
i o 0 o 0 Tagyo
= (5 %)= )

Solution:
(a) In the Weyl basis

They satisfy the commutation relations {a’, o/} = 26% {a’,8} = 0, and 3*> = 1. In the
Dirac basis,
“ _(ai o)’ﬂ_( 0 —nm)'

Since this is an orthogonal rotation of basis, the commutation relation is unchanged.
(b) From the transformation laws of Weyl spinors in Eqgs. (3.37) in Peskin and Schroeder,

one can see that -
_ ¢L e_ig'%_ : 0
vp = (@Z’R - 0 —if-+0.2 Yp.

The generators of rotation L and boost M are

- 130 - 1 (a0
L‘E(o&)’ M__§(05>'
In terms of the generators of the Lorentz group S = M? and S¥ = ¥ L*. With the Dirac

matrices defined in Problem 2(c), it is straightforward to show that S* = (i/4)[y*,~v"].
(c) All we need to show is

NN

87T = (TP )"

where (TH"),5 = i(0405 — 0504).-
(d) A change of basis is just an orthogonal rotation, which will not change all the results in
(b) and (c).



