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SOLUTONS FOR ASSIGNMENT #5

Reading Assignments:
Sections 3.3 to 3.5 of Peskin and Schroeder.

Problem 1
Do Problem 3.6 in Peskin and Schroeder.
Solution:
(a) Let ΓA = {1, γ̃µ, σ̃µν(µ < ν), iγ5γ̃µ, γ5}, where

γ̃µ = {γ0, iγj}, σ̃µν = {iσ0j, σij},

then it is easy to see that there are sixteen of them and Tr(ΓAΓB) = 4δAB.
(b) Since any 4× 4 matrix M can be written as a linear combination of ΓA: M =

∑
A cAΓA,

the orthogonality condition in (a) implies cA = Tr(MΓA)/4 and M =
∑

A Tr(MΓA)ΓA/4,
which, in component form becomes

Mij =
1

4

∑
A

Mkl(Γ
A)lk(Γ

A)ij.

Therefore we arrive at the following closure relation

1

4

∑
A

(ΓA)lk(Γ
A)ij = δljδki.

Multiply the closure relation by (ΓB)ml(Γ
C)ni to get

(ΓB)mj(Γ
C)nk =

1

4

∑
A

(ΓBΓA)mk(Γ
CΓA)nj

=
1

4

∑
A

1

4
Tr(ΓBΓAΓD)(ΓD)mk

1

4
Tr(ΓCΓAΓE)(ΓE)nj, (1)

where we have used the orthogonality condition to expand the product ΓMΓN =
Tr(ΓMΓNΓP )ΓP . Then use the closure relation again to compute the product of the trace∑

A

1

4
Tr(ΓBΓAΓD)

1

4
Tr(ΓCΓAΓE) =

1

4
Tr(ΓBΓEΓCΓD).

In the end we obtain

(ΓB)mj(Γ
C)nk =

1

16
Tr(ΓDΓBΓEΓC)(ΓD)mk(Γ

E)nj.
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(c) For ΓB = ΓC = 11, Tr(ΓD11ΓE11) = 4δDE. Thus

(ū1u2)(ū3u4) =
1

4

∑
A

(ū1Γ
Au4)(ū3Γ

Au2).

For ΓB = γµ and ΓC = γµ, it is straightforward to verify the following identities

γµγµ = 4, γµγ̃νγµ = −2γ̃ν , γµσ̃ρτγµ = 0, γµ(iγ5γ̃ν)γµ = 2(iγ5γ̃ν), γµγ5γµ = −4γ5,

from which we get

(ū1γ
µu2)(ū3γµu4) =

1

4
[4(ū1u4)(ū3u2)− 2(ū1γ

µu4)(ū3γµu2)

−2(ū1γ
5γµu4)(ū3γ

5γµu2)− 4(ū1γ
5u4)(ū3γ

5u2)
]
, (2)

where we have used the fact that (ū1γ̃
µu4)(ū3γ̃

µu2) = (ū1γ
µu4)(ū3γµu2).

Problem 2
In non-relativistic quantum mechanics, the Schrodinger equation implies a continuity equa-
tion of the form

∂ρ

∂t
+∇ ·~j = 0

where ρ = |ψ|2 is interpreted as the probability dentiy.
(a) Derive a similar continuity equation for the Klein-Gordon equation

(∂µ∂
µ +m2)ψ = 0.

Write down ρ and ~j explicitly. Explain what would go wrong if you were to interpret ρ as
the probability density.
(b) Dirac realized in 1928 while staring at a fireplace in St. John’s College, Cambridge,
that the sickness in (a) is the result of an equation of motion that is second order in time
derivative. He thus proposed instead

i
∂ψ

∂t
= HDψ (3)

Explain why the Hamiltonian HD here must be first order in spatial derivatives and contain
only terms linear in the mass m.
(c) Dirac then guessed a general form of HD

HD = −iai
∂

∂xi
+ a4m.

HD must be such that when applying Eq. (3) twice one recovers the Klein-Gordon equation.
(After all, E2 − |~p|2 = m2!) Firsts show that the set {ai, i = 1, 2, 3, 4} cannot be pure
numbers, then derive the conditions ai must satisfy to produce Klein-Gordon equation. Re-
write γ0 = a4 and γi = a4ai and re-express your coditions in terms of γµ.
(d) What is the continuity equation following from the Dirac equation? Give ρ and ~j
explicitly. Can you interpret ρ as the probability density?
(e) As we showed in class the Dirac equation has solutions of the plane-wave form

ψ ∝ e±ik·x.
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Explain why this is a problem when trying to consider the Dirac equation as quantum
mechanical. Then explain why this is not a problem when promoting the Dirac equation to
a quantum field theory.
Solution:
(a) For the Klein-Gordon equation ρ = ψ∗∂tψ − (∂tψ

∗)ψ and ji = ψ∗∂iψ − (∂iψ
∗)ψ. They

satisfy ∂tρ+∇·~j = 0. Since ρ is not positive-definte, one cannot interpret ρ as the probability
density.
(b) Since the equation of motion is first-order in time derivative, by special relativity HD

must also be first-order in spatial derivatives and mass.
(c)

−∂
2φ

∂t2
= H2

D = −aiaj
∂2φ

∂xi∂xj

− im{ai, a4}
∂φ

∂xi

+m2a2
4ψ

In order to reproduce the Klein-Gordon equation, the cross term ∂i∂jψ as well as ∂iψ must
be zero, which implies {ai, aj} = 0 for i, j = 1, 2, 3, 4. Therefore the ais cannot be pure
numbers. The conditions for the above equation to turn into Klein-Gordon equation is

{ai, aj} = 2δij, {ai, a4} = 0, a2
4 = 1.

In terms of γ0 = a4, γ
i = a4ai, the above condition becomes {γµ, γν} = gµν .

(d) For the Dirac equation ρ = ψ†ψ and ji = ψ†aiψ which satisfies ∂tρ+∇ ·~j = 0. Since ρ
is positive-definite, it is possible to interpret ρ as the probability density.
(e) This is a problem quantum mechanically because one of the plane wave solutions can
only be interpreted as a negative energy solution and the energy is unbounded from below.
As a field theory the plane wave solutions are interpreted as creating and annihilating a
particle, and as such is not a pathology.

Problem 3
In class we defined a Dirac spinor ψ in the chiral basis:

ψ =

(
ψL

ψR

)
where ψL and ψR are Weyl spinors transforming under the Lorentz group according to
Eq. (3.37) in Peskin and Schroeder. The Dirac Lagrangian is then written as

L = iψ†∂0ψ + iψ†~α · ∇ψ −mψ†βψ

where ~α and β are 4× 4 matices.
(a) Write out ~α and β explicitly and show they satisfy the same conditions for {ai, i =
1, 2, 3, 4} you work out in Problem 2(c) if you identify αi = ai, i = 1, 2, 3 and β = a4. Then
go to a different basis, the Dirac basis, for a Dirac spinor

ψ =
1√
2

(
ψR + ψL

ψR − ψL

)
and write out ~α and β in this basis. Show that in this basis ~α and β still satisfy the same
conditions as in the chiral basis.
(b) Stay in the chiral basis, work out how a Dirac spinor transform under rotation and boost,
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respectively. Write out the generators for the rotation and the boost explicitly, from which
deduce the generators Sµν for the Lorentz group. Moreover, show that

Sµν =
i

4
[γµ, γν ]

where the Dirac gamma matrices are defined in Problem 2(c).
(c) Show that γµ transform like a vector under the infinitesimal Lorentz transformation
D(Λ) = 1− iωµνS

µν/2. In other words, show

D(Λ)−1γµD(Λ) = Λµ
νγ

ν

(Hint: you can prove the statement by computing a certain commutator.)
(d) Explain why all the results in (b) and (c) would still hold in a different basis such as the
Dirac basis.
Solution:
(a) In the Weyl basis

αi =

(
σi 0
0 −σi

)
, β =

(
0 112×2

112×2 0

)
.

They satisfy the commutation relations {αi, αj} = 2δij, {αi, β} = 0, and β2 = 1. In the
Dirac basis,

αi =

(
0 σi

σi 0

)
, β =

(
112×2 0

0 −112×2

)
.

Since this is an orthogonal rotation of basis, the commutation relation is unchanged.
(b) From the transformation laws of Weyl spinors in Eqs. (3.37) in Peskin and Schroeder,
one can see that

ψD =

(
ψL

ψR

)
→

(
e−i~θ·~σ

2
−~β·~σ

2 0

0 e−i~θ·~σ
2
+~β·~σ

2

)
ψD.

The generators of rotation ~L and boost ~M are

~L =
1

2

(
~σ 0
0 ~σ

)
, ~M = − i

2

(
~σ 0
0 ~σ

)
.

In terms of the generators of the Lorentz group Si0 = M i and Sij = εijkLk. With the Dirac
matrices defined in Problem 2(c), it is straightforward to show that Sµν = (i/4)[γµ, γν ].
(c) All we need to show is

[γµ, Sρτ ] = (T ρτ )µ
νγ

ν

where (T µν)αβ = i(δµ
αδ

ν
β − δµ

βδ
ν
α).

(d) A change of basis is just an orthogonal rotation, which will not change all the results in
(b) and (c).
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