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SOLUTIONS FOR ASSIGNMENT #6

Reading Assignments:
Sections 3.6 of Peskin and Schroeder.

Problem 1
Do Problem 3.2 in Peskin and Schroeder.
Solution:
The spinors satisfy the Dirac equation u(p) = /pu(p)/m and ū(p′) = ū(p′)/p′/m, from which
we have

ū(p′)γµu(p) =
1

2m
[ū(p′)γµ/pu(p) + ū(p′)/p′γµu(p)].

Then use the identity γµγν = (1/2){γµ, γν}+(1/2)[γµ, γν ] one can show the above equation
leads to

ū(p′)

[
p′µ + pµ

2m
+
iσµν(p′µ − pµ)

2m

]
u(p).

Problem 2
We are going to consider the Lorentz transformation property of the Dirac bilinear Ψµν =
ψ̄σµνψ. Because Ψµν is anti-symmetric, there are six independent components in it. On
the other hand, an irreducible representation (j1, j2) of SO(1, 3) has (2j1 + 1) × (2j2 + 1)
independent components. (This is called the dimension of the representation.)
(a) Write down all the irreducible representations of SO(1, 3) that are six-dimensional. Show
that Ψµν can be none of them. (Hint: What is the parity of Ψµν?)
(b) Next we need to consider reducible representations of the form (j1, j2) ⊕ (j′1, j

′
2). By

counting the dimensionality show that there is a unique reducible representation in which
Ψµν could possibly fit.
(c) Recall in classical electromagnetism we define the dual of the field strength as F̃µν =
(1/2)εµνδρFδρ. Let’s define

Ψµν
± =

1

2
(Ψµν ± iΨ̃µν).

Then we can decompose Ψµν = Ψµν
+ +Ψµν

− . Show that Ψµν
± are self-dual tensors which satisfy

Ψ̃µν
± = ∓iΨµν

± .

Again use the dimensionality counting to show that Ψµν
± would each fits into a unique irre-

ducible representation of the Lorentz group.
(d) Now prove your answers in (b) and (c) by explicitly working out the transformation
property of Ψµν under the Lorentz group. (Hint: as always, to see how an object O trans-
forms under the Lorentz group, you compute the commutator of O with the generators of
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SO(1, 3).)
Solution:
(a) The dimensionality of (j1, j2) is (2j1+1)×(2j2+1), so the irreducible six-dimensional rep-
resentations are (0, 5/2), (5/2, 0), (1/2, 1), and (1, 1/2). None of them are parity-invariant,
so Ψµν cannot sit in any of them.
(b) Parity invariance requires the reducible representation to be of the form (j1, j2)⊕(j2, j1),
whose dimensionality is 2× (2j1 + 1)× (2j2 + 1). Thus there is only one reducible represen-
tation that is both six-dimensional and parity-invariant, which is (1, 0)⊕ (0, 1).
(c) A general rank-two anti-symmetric tensor has six independent components:

F µν =


0 F 01 F 02 F 03

0 F 12 F 13

0 F 23

0

 , F̃ µν =


0 F 23 −F 13 F 12

0 −F 03 F 02

0 −F 01

0

 .

Self-duality reduces the number down to three:

F µν
± =

1

2
(F µν ± iF̃ µν) =

1

2


0 F 01 ± iF 23 F 02 ∓ iF 13 F 03 ± iF 12

0 ∓i(F 03 ± iF 12) ±i(F 02 ∓ iF 13)
0 ∓i(F 01 ± iF 23)

0

 .

So Ψµν
± must be fit into either (1,0) or (0,1).

(d) The crucial observation here is that the generator of the Lorentz group Sµν = (i/4)[γµ, γν ]
is related to σµν = 2Sµν . So if we define

Li =
1

2
εijkSjk, Ki = S0i, J i

± =
1

2
(L± iKi),

Li
Ψ =

1

2
εijkσjk, Ki

Ψ = σ0i, (JΨ)i
± =

1

2
(Li

Ψ ± iKi
Ψ)

then from Problem 3.1 of Peskin and Schroeder we know immediately that

[J i
±, (JΨ)j

±] = iεijk(JΨ)k
±.

In other words, (JΨ)+ transform like (1, 0) (i.e. a three-vector under SU(2)+) and (JΨ)− like
(0,1). Therefore Ψµν transform like (1, 0)⊕(0.1). Furthermore, from the explicit expressions
for F µν

± in (c) it is easy to see that (JΨ)i
± = ±iΨ0i

∓ .

Problem 3
(a) Show that the Dirac Lagrangian is invariant under space-time translations: xµ → xµ+aµ.
(b) Derive the energy-momentum tensor of the Dirac field – the Noether current correspond-
ing to translations.
(c) Construct the expression for the conserved physical momentum P in the quantum theory
(that is, express it in terms of raising and lowering operators, bsp, c

s
p, etc.). Make sure you

discard infinite irrelevant additive constants and argue why you are doing it.
(d) Consider a one particle state,

|p, s〉 =
√

2Ep b
s†
p |0〉,
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and show that this is indeed a state of definite momentum.
Solution:
(a) Under translation δψ = aµ∂µψ, then it is easy to show that, for LD = ψ̄(i/∂ − m)ψ,
δLD = aν(δµ

νLD).
(b) Applying Eq. (2.17) in Peskin and Schroeder gives

T µν = iψ̄γµ∂νψ − gµνLD.

However, since we used the equation of motion in deriving the Noether current, and LD = 0
when the Dirac equation is satisfied, we could just write T µν = iψ̄γµ∂νψ.
(c) The momentum operator P i = T 0i = iψ†∂iψ = −ψ†∂iψ, from which we derive

P =

∫
d3xψ†(−i∇)ψ =

∑
r

∫
d3k

(2π)3
k

(
br†k b

r
k + cr†k c

r
k

)
.

(d) Using (c) and the anticommutation relations for the creation and annihilation operators
it is easy to show that P|p, s〉 = p|p, s〉.

Problem 4
(a) Derive Eqs. (3.114) and (3.115) in Peskin and Schroeder. Use them to show that ψa(x)
and ψ̄b(y) anti-commute at space-like separations. That is, show that {ψa(x), ψ̄b(y)} = 0 for
(x− y)2 < 0.
(b) Consider two operators, O1(x) = ψ̄a(x)Aabψb(x) and O2(x) = ψ̄a(x)Babψb(x), where A
and B are some matrices. (All operators corresponding to physically observable quantities of
a fermion field have this generic form – consider for example the energy-momentum tensor
and the Noether current encountered earlier in this homework.) Prove that O1 and O2

commute at space-like separations:

[O1(x),O2(y)] = 0 at (x− y)2 < 0,

as required by causality.
Solution:
(a) Using the completeness relations for the spinors it is straightforward to prove Eqs. (3.114)
and (3.115), which then imply {ψa(x), ψ̄b(y)} = (i/∂x+m)ab(D(x−y)−D(y−x)). We proved
in the case of a scalar field that [φ(x), φ(y)] = D(x− y)−D(y − x) = 0 for (x− y)2 < 0.
(b) Using the identity for commutators [AC,B] = A{C,B}− {A,B}C, as well as the result
in (a), one can prove the assertion easily.
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