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SOLUTIONS FOR ASSIGNMENT #6

Reading Assignments:
Sections 3.6 of Peskin and Schroeder.

Problem 1

Do Problem 3.2 in Peskin and Schroeder.

Solution:

The spinors satisfy the Dirac equation u(p) = pu(p)/m and u(p’) = u(p’)y /m, from which
we have

(0 up) = 5 [l pu(p) + 5 A (o))

Then use the identity v#~* = (1/2){~+*,7"} + (1/2)[y*,~"] one can show the above equation

leads to . .
ot 10", — P
+
2m 2m

a(p) |2 u(p).

Problem 2

We are going to consider the Lorentz transformation property of the Dirac bilinear U* =
potep. Because WM is anti-symmetric, there are six independent components in it. On
the other hand, an irreducible representation (ji,j2) of SO(1,3) has (2j; + 1) x (2j2 + 1)
independent components. (This is called the dimension of the representation.)

(a) Write down all the irreducible representations of SO(1, 3) that are six-dimensional. Show
that W# can be none of them. (Hint: What is the parity of W*?)

(b) Next we need to consider reducible representations of the form (ji,j2) @ (ji,7%). By
counting the dimensionality show that there is a unique reducible representation in which
U could possibly fit. 3

(c) Recall in classical electromagnetism we define the dual of the field strength as F), =
(1/2)e"9¢ Fy,. Let’s define

1 ~
U = 5(111’“’ + 0 UH).
Then we can decompose U* = U + 0" Show that U4 are self-dual tensors which satisfy
= i

Again use the dimensionality counting to show that U4 would each fits into a unique irre-
ducible representation of the Lorentz group.

(d) Now prove your answers in (b) and (c) by explicitly working out the transformation
property of ¥* under the Lorentz group. (Hint: as always, to see how an object O trans-
forms under the Lorentz group, you compute the commutator of O with the generators of

1


http://www.hep.anl.gov/ian/teaching/QFT/QFT_Fall08.html

SO(1,3).)

Solution:

(a) The dimensionality of (ji, j2) is (271 +1) X (2j2+1), so the irreducible six-dimensional rep-
resentations are (0,5/2),(5/2,0),(1/2,1), and (1,1/2). None of them are parity-invariant,
so U* cannot sit in any of them.

(b) Parity invariance requires the reducible representation to be of the form (j1, 72) ® (j2, 71),
whose dimensionality is 2 X (2j; + 1) x (2j2 + 1). Thus there is only one reducible represen-
tation that is both six-dimensional and parity-invariant, which is (1,0) @ (0, 1).

(c) A general rank-two anti-symmetric tensor has six independent components:

0 FOl F02 FOS 0 F23 _F13 F12
5 0 F12 F13 - 0 _F03 F02
F* = 0 F23 , F " = 0 _ o1
0 0

Self-duality reduces the number down to three:

0 FOI + Z'F23 F02 - iF13 F03 + Z'F12
0 Fi(F® £iF?) £i(F FiF)
0 Ti(FO' 4 i F23)
0

1 - 1
I = —(F* £ ") = =
+ 2( l ) 5

So U must be fit into either (1,0) or (0,1).
(d) The crucial observation here is that the generator of the Lorentz group S* = (i/4)[y*, "]
is related to 0" = 25", So if we define
. 1 ... . ) . ) 1 .
L' = Setgh KT= 8% JL = (LK),

, 1 ... . . . , 1 . ,
Ly =S¢, Ky =0 (Jo)i = 5(Ly £iKy)

then from Problem 3.1 of Peskin and Schroeder we know immediately that
VL, (Ju)k] = ie7* (o)t

In other words, (Jy )4 transform like (1,0) (i.e. a three-vector under SU(2), ) and (Jy)_ like
(0,1). Therefore " transform like (1,0) @ (0.1). Furthermore, from the explicit expressions
for F” in (c) it is easy to see that (Jy), = F1W%.

Problem 3

(a) Show that the Dirac Lagrangian is invariant under space-time translations: z* — x#+a*.
(b) Derive the energy-momentum tensor of the Dirac field — the Noether current correspond-
ing to translations.

(c) Construct the expression for the conserved physical momentum P in the quantum theory
(that is, express it in terms of raising and lowering operators, by Cps etc.). Make sure you
discard infinite irrelevant additive constants and argue why you are doing it.

(d) Consider a one particle state,

Ip,s) = /2F, bfj|0>,



and show that this is indeed a state of definite momentum.

Solution:

(a) Under translation di) = a*d,1, then it is easy to show that, for Lp = (i@ — m)w,
5£D = CLV((S/;ED).

(b) Applying Eq. (2.17) in Peskin and Schroeder gives

T — iy 0" — g Lp.

However, since we used the equation of motion in deriving the Noether current, and Lp = 0
when the Dirac equation is satisfied, we could just write TH = itpy*9".
(c) The momentum operator P = T% = j1)19'p = —pT9;1p, from which we derive

P = / Pl (—iV)Y = / (;‘F’Tk)gk (b{jb{; +d c;;) .

(d) Using (c) and the anticommutation relations for the creation and annihilation operators
it is easy to show that P|p,s) = p|p, s).

Problem 4

(a) Derive Egs. (3.114) and (3.115) in Peskin and Schroeder. Use them to show that 1, (z)
and (y) anti-commute at space-like separations. That is, show that {t,(z),4,(y)} = 0 for
(r —y)* <0.

(b) Consider two operators, Oy(x) = ¥, (x)Awty(r) and Oy(x) = 1, (x) Baytbs(x), where A
and B are some matrices. (All operators corresponding to physically observable quantities of
a fermion field have this generic form — consider for example the energy-momentum tensor
and the Noether current encountered earlier in this homework.) Prove that O; and O,
commute at space-like separations:

[01(2), 05(y)] = 0 at  (z—y)* <0,

as required by causality.

Solution:

(a) Using the completeness relations for the spinors it is straightforward to prove Egs. (3.114)
and (3.115), which then imply {tq(z), Vs(y)} = (i@, +m)w(D(x —y)— D(y—x)). We proved
in the case of a scalar field that [¢(z), ¢(y)] = D(z —y) — D(y — x) = 0 for (z —y)? < 0.
(b) Using the identity for commutators [AC, B] = A{C, B} — {A, B}C, as well as the result
in (a), one can prove the assertion easily.



