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Wakefield generation in metamaterial-loaded waveguides
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Metamaterials (MTMs) are artificial structures made of periodic elements and are designed to obtain
specific electromagnetic properties. As long as the periodicity and the size of the elements are much
smaller than the wavelength of interest, an artificial structure can be assigned a permittivity and
permeability, just like natural materials. Metamaterials can be customized to have the permittivity
and permeability desired for a particular application. When the permittivity and permeability are
made simultaneously negative in some frequency range, the metamaterial is called double-negative
or left-handed and has some unusual properties. For example, Cherenkov radiation (CR) in a
left-handed metamaterial is backward; radiated energy propagates in the opposite direction to
particle velocity. This property can be used to improve the design of particle detectors. Waveguides
loaded with metamaterials are of interest because the metamaterials can change the dispersion
relation of the waveguide significantly. Slow backward waves, for example, can be produced in a
MTM-loaded waveguide without corrugations. In this paper we present theoretical studies of
waveguides loaded with an anisotropic and dispersive medium (metamaterial). The dispersion
relation of a MTM-loaded waveguide has several interesting frequency bands which are described.
We present a universal method to simulate wakefield (CR) generation in a waveguide loaded with
a dispersive and anisotropic medium. This method allows simulation of different waveguide cross
sections, any transverse beam distribution, and any physical dispersion, of the medium. The method
is benchmarked against simple cases, which can be theoretically calculated. Results show excellent

agreement. © 2007 American Institute of Physics. [DOIL: 10.1063/1.2767640]

INTRODUCTION

The electromagnetic properties of a medium are charac-
terized by the permittivity e (response to electric field) and
the permeability u (response to magnetic field). Typically ¢
and u are positive for most frequencies of electromagnetic
waves. In this case, the phase vector (k) of the wave forms a
right-handed system with the field vectors £ and B. The
Poynting vector is co-directed with k.

Veselago pointed out that propagation is also possible
when ¢ and u are simultaneously negative.1 Propagating
waves in such double-negative media (DNM) exhibit several
unusual properties. First of all, the phase vector forms a left-
handed system with the field vectors. This is why materials
with simultaneously negative & and w are called left-handed
(LHM). In such media the Poynting vector, which is collin-
ear with the group velocity, is counterdirected to the phase
vector. This gives rise to several unusual effects such as the
reversed Doppler Effect, reversed Cherenkov radiation
(CR),'_4 and negative refraction.’” Cherenkov radiation is
widely used in accelerator physics. It has particle detector
applications and it may be that reverse Cherenkov radiation
is uniquely useful for beam detection.>*®

At Argonne Wakefield Accelerator (AWA) Facility we
are focused on studies of particle interaction with metamate-
rials. We have designed and manufactured a double-negative
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metamaterial similar to others.” In Refs. 6 and 8 we reported
our metamaterial design. We used a known method’ to ex-
perimentally verify that the refraction of our left-handed
metamaterial is negative. We also performed a standard’ left-
handed transmission measurement for both the configuration
of a bulk metamaterial and for a metamaterial-loaded
waveguide.10 We observed much better transmission level
and stability to manufacture tolerances for a loaded wave-
guide. Thus, we are using a metamaterial-loaded waveguide
configuration for our further studies.

In this paper, we first discuss the nature of negative per-
meability and permittivity and how this is reflected in the
metamaterial design. We will explain how an artificial per-
mittivity and permeability are produced. Next we present a
detailed discussion of the calculation of dispersion relations
of TM modes in a rectangular metamaterial-loaded wave-
guide. The dispersion relations of a loaded waveguide allow
a simple way to check whether or not a particular mode will
be excited by injected particles moving at speed v, and if so,
at what frequency. However, it does not give quantitative
results on how much energy each mode will absorb from a
particle beam. These values depend on the transverse and
longitudinal particle distribution of the beam and scale with
the total charge. We present a method to simulate a wakefield
generation in a waveguide loaded with an anisotropic and
dispersive medium (metamaterial) for any transverse particle
distribution. The method is compared with known results for
dielectric-loaded accelerators.

© 2007 American Institute of Physics
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FIG. 1. (Color online) Typical frequency behavior of permittivity and per-
meability, produced by wire array and and array of split ring resonators.

ARTIFICIAL PERMITTIVITY AND PERMEABILITY

Left-handed materials do not exist naturally. LHM was
artificially constructed in 2001 (Refs. 5 and 9) using a wire
array [which provided e <0 (Ref. 11)] and an array of split
ring resonator (SRR) [which provided <0 (Ref. 12)]. It has
been shown'' that a wire array exhibits plasmalike behavior
(1) in the gigahertz frequency range (see Fig. 1, dashed line).
The frequency dependence of permittivity has the following
form:
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Here a is the periodic spacing between wires, 7 is the wire
radius, c is the speed of light and S is the wire cross section.
A simple antenna analysis gives the same result.'>'"* The
wire array shown in Fig. 2(a). can produce plasmalike be-
havior (negative permittivity) only for electric fields that are
parallel to the direction of the wires. This structure is aniso-

tropic. In order to have an isotropic tensor, e=¢ -i, where 1 is
the unity matrix, the wires should be assembled in a three-
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FIG. 2. (Color online) Wire array (a) and array of split ring resonators (b).
The structures are anisotropic. An artificial permeability is produced only if
magnetic field penetrates through the rings. Plasmalike behavior is observed
in the wire array only if electric field polarized along the wires.

a)
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dimensional (3D) grid to cover all three possible polariza-
tions of electric field.

In order to realize an artificial x4 we turn to magnetic
dipoles. A loop of current creates a magnetic dipole. An as-
sembly of small loop structures behaves like a continuous
media, provided the radiation wavelength is significantly
greater than the geometric scale of the loops. This assembly
produces a response to a magnetic field when it penetrates
the rings. These rings are usually made thin, so other polar-
izations of magnetic field do not produce any effect on the
rings. This makes metamaterials strongly anisotropic. One
has to make an additional effort to make the structure isotro-

pic so that u= ,u-f by having all three possible orientations of
loops L to x, y, and z. To create a resonant response one
needs to cut the ring [Fig. 2(b)]. The resulting split ring
resonator'” has a distributed self-inductance and a small ca-
pacitance in the cut. Therefore the system behaves similarly
to an RLC circuit and has a resonance. Our rings have a
square form for more efficient space usage. The typical re-
sponse of such a structure is almost Lorenz-like"” (see Fig. 1,
solid line). The frequency dependence of permeability has
the form given by

Fo®
Mefr=1- 2 (2)

2
W = W+ IYw

Here F is a geometrical factor. Constants w,., and vy are also
determined by geometry.

The geometry is customized for a particular application.
We use two concentric split ﬁngs7 to increase the capacitive
region and lower the resonance frequency. In the design we
studied at AWA (Refs. 6 and 8) we had a 2.54 mm overall
size of the ring. The resonant frequency was designed and
measured at 11.4 GHz (\>d).

We have measured propagation of the fundamental mode
(TE,p) in a metamaterial-loaded waveguide. These results are
presented in (Ref. 10). We observed much better transmis-
sion level and predictability compared to a bulk configura-
tion of metamaterial structure. We have chosen a loaded
waveguide configuration for our future metamaterial
structure-particle interaction studies. Since we are interested
in particle interaction with an electric field along the direc-
tion of beam motion, the TM modes in a metamaterial-
loaded waveguide will be analyzed.

GENERAL SOLUTION FOR TM AND TE MODES
IN A WAVEGUIDE LOADED WITH ANISOTROPIC
AND DISPERSIVE MEDIA

The dispersion relation of a waveguide structure can be
used to find the frequencies where the phase velocity of a
propagating electromagnetic mode in the structure is
matched to the velocity of injected particles. Once these syn-
chronous modes are identified, further analysis can be nar-
rowed to a consideration of these particular frequencies.

We will assume a waveguide to be aligned longitudinally
with the z axis. A rectangular waveguide is chosen to best
match the alignment of the metamaterial. The size of the
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waveguide is a along x direction and b along y direction. We
chose our metamaterial to have the following tensors for per-
mittivity and permeability.

These properties are realized by the metamaterial design
we plan to study expelrimentally.10 However, there is an issue
of strong spatial dispersion at large wavelengths.16 We will
briefly discuss the consequences of this effect in the Appen-
dix. The following analysis is done for the uniform aniso-
tropic and dispersive medium:
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Here o, o, are resonance frequencies, w,. is plasma
frequency, and wy., wy, are attenuation parameters.

In order to find dispersion relations for the modes sup-
ported by a loaded waveguide, we start solving Maxwell’s
equations in the frequency domain, searching for solutions
[exp(ik.z)] propagating in the z direction. Because of aniso-
tropy we have to write the vector equations separately for
each component and simplify the system to get the disper-
sion relations for the modes. The standard methods of such
analysis are described, for example, in Ref. 17 and used for
different configurations of metamaterials in. Refs. 18 and 19.
We obtain

2, 2
+ X5

kg = k%si,ul(l - XX—’-XZ> for TM modes (ky = w/c),
g ky

(6)
Xt X,

2) for TE modes. (7)
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Our primary interest is the excitation of metamaterial
structures by particles. Since only the TM modes can realize
the synchronization condition, we will limit our analysis to
TM modes only.

The accelerating structures are usually described by E,

component. The other field components can be expressed in
terms of E,

_ikory O, _ _ikety OF;
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The dispersion relation for TM modes provides several inter-
esting regimes. There are several characteristic frequencies
in the € and w tensors of the medium, which can be adjusted
to manipulate the form of the dispersion relation: (1) cutoff
frequency of the empty waveguide, (2) plasma frequency for

ELXiHX Iy
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FIG. 3. (Color online) Top: Transverse values of permittivity and perme-
ability. Characteristical frequencies create five frequency domains with dif-
ferent behaviors of the TM mode. Bottom: (green) dispersion of an MTM-
loaded waveguide and (orange) dispersion of an empty waveguide. We
observe (from left to right) nonmagnetic, ¢ <0, u>0 above cutoff, left-
handed, quasi-non-magnetic, and empty-waveguide-like mode regimes.

&,, [Eq. (4)], (3) resonance frequency for s, [Eq. (5)], and
(4) magnetic plasma frequency for ., [Eq. (5)].

The typical choice of parameter sequence iS ®qyoff
< Wres < W< ®,. This insures we will have a frequency
range where €, and u, are simultaneously negative. Aniso-
tropic and dispersive media change the dispersion relations
for the modes in a waveguide dramatically. The dispersion of
an empty waveguide is compared to that of a loaded wave-
guide in Fig. 3. The transverse €, and u, dependence on
frequency are plotted above the waveguide dispersion (g
=pm=1) to highlight their effect. The negative slope of the
waveguide dispersion corresponds to a backward mode
(negative group velocity). There are five different transmis-
sion bands in the dispersion of waveguide loaded with aniso-
tropic and dispersive medium, the importance and properties
of which are discussed in the Appendix. Here we focus on
the range of frequencies most affected by the presence of
such medium.

Fast particles (we consider electrons at speed v, close to
¢) can generate modes in a waveguide loaded with aniso-
tropic and dispersive medium. To show this we plot the elec-
tron dispersion (ky=w/v) together with dispersion of the
modes. Points where the electron line and mode dispersion
intersect indicate the frequencies and phase numbers of
modes which can be excited by a particle. However, this
method does not give information as to which modes will
absorb more energy from the particles. A detailed wakefield
(Cherenkov) calculation or simulation is needed (see the next
section of this paper).

As can be seen in Fig. 4, in the presence of anisotropy
and dispersion for both & and u, particles can excite various
backward modes. There is also a forward regime at the reso-
nant frequency of the permeability (black dot on Fig. 4).
However, its group velocity is practically zero, and so we
will not consider it further. Figure 5 presents the case when
only the permittivity is anisotropic and dispersive (u=1).
Even in this case there is a possibility of interaction between
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FIG. 4. (Color online) Dispersion of TM;; (red), TM,; and TM,, (blue,
degenerate) and TM,, (green) modes. Solid lines correspond to LHM-loaded
case and dashed lines correspond to empty waveguide. The dotted line is a
particle dispersion. There are several different synchronization opportunities
in nonmagnetic, left-handed, and quasi-non-magnetic regimes.

particle and a waveguide mode, although it happens below
the cutoff frequency for an empty waveguide (see Appen-
dix).

CHERENKOV RADIATION IN A WAVEGUIDE LOADED
WITH DISPERSIVE AND ANISOTROPIC MEDIUM

Waveguides loaded with metamaterials can be used for
particle detection, particularly as beam diagnostics. In the
following section we will consider theoretically some aspects
of Cherenkov radiation in waveguides loaded with aniso-
tropic and dispersive media (metamaterial).

The theory of Cherenkov radiation in waveguides with
dispersive materials has been discussed in a number of pa-
pers (see, for example, Refs. 20-22). Various methods of
analysis have been developed for waveguides loaded with
both passivenf25 and active®?’ isotropic materials.

When both dispersion and anisotropy are present the
analysis becomes more involved.”® Below we will describe a
general method for finding the wakefield of a particle beam
traveling through the waveguide loaded with anisotropic and
dispersive medium, as well as for finding the power depos-
ited in each mode by the beam. Use of our simulation allows
us to skip some of the intermediate steps in the analytic
calculation and directly obtain the final result; the excitation
spectrum.

FIG. 5. (Color online) Dispersion of TM;; (red), TM,; and TM,, (blue,
degenerate), and TM,, (green) modes. Solid lines correspond to & loaded
case, u=1, and dashed lines correspond to empty waveguide. The dotted
line is a particle dispersion. The only possibility for particle-mode interac-
tion is in nonmagnetic regime.

J. Appl. Phys. 102, 034906 (2007)

We will be solving Maxwell’s equations in the frequency
domain for the £, component. Other components of the elec-
tric and magnetic fields can be found via the relations given
by Eq. (8). For the particle beam source, we assume a narrow
longitudinal beam traveling in the z direction at speed v (rep-
resented by a delta function), with a transverse particle dis-
tribution 7(x,y). Sometimes such beam is called a “pancake”
beam. The study of beams with finite longitudinal extent can
be done once the solution for a pancake beam is known (this
provides the needed Green’s function). The charge and cur-
rent density of the beam are given by

p(r,) = %T T(x,y) - 8z - i),

)
J(r,0) = %T cv - T(x,y) - 8(z—vt).

The delta functions in Eq. (9) will become exp(i- w-z/v)
terms after Fourier transform. Therefore, for the z component
of electric field we can also assume the dependence,

E(x,y.2,0) = Eg(x,y) - exp( i%z) . (10)

Without explicit time and z dependence we obtain a two-
dimensional (2D) partial differential equation (PDE) equa-
tion for the transverse profile of E, field Ey(x,y) of the fol-
lowing form:

2
w
-& A Ey+ 8(;) Eo— kogie i Eg

=i'47r'w~q~T(x,y)-(%—l2>. (11)
c v

Here, the tensors of permittivity and permeability have
the form (3). This equation can be simulated in a waveguide
cross section. The cross section can be of any form. Zero
tangential electric field on the waveguide wall imposes Di-
richlet boundary conditions. The dispersion of components
of permittivity and permeability can be arbitrary, providing it
is physical (satisfies Kramers-Kroenig relations).

In principle, Eq. (11) can be solved using a technique
based on decomposition of the radiated field into waveguide
modes.”*” The transverse beam distribution is decomposed
into waveguide cross-section eigenfunctions as well,

Ey(x,y) = E a;Ey(x,y),

T(x,y) = E 1Eo(x,y), with (12)

= A Eyi=NEy;.

Therefore, the solution for Eq. (11) can be obtained in terms
of eigenfunctions as

Downloaded 14 Aug 2007 to 146.139.52.32. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



034906-5 Antipov et al.
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E()(-x7y7 (1)) = E

X Egi(x,y). (13)

Transforming back to the time domain brings us to a solution
in a general form as an integral of a sum with singularities in
the denominator,

E.(x,y,z,1) = E 4ari - qt;Ep(x,y)

fm wle (e w 1c? = 1/v?) - oD
dw.

o Ni— (wzsu/si) : (8MM/C2 - 1/U2)
(14)

The theory of residues is used to evaluate the integral.
The poles of the function under integration lie on the inte-
gration path. This makes the solution nonunique. The values
of the integral for the route passing over the poles and pass-
ing under the poles both satisfy Maxwell equations. We need
to use the causality principle to determine which solution is
physical.

For simple cases of anisotropy and dispersion it is pos-
sible to take the integral (14) analytically. In the case of
dispersive and anisotropic content of the waveguide the in-
tegral is harder to analyze. Typical examples of such analysis
can be found.*”*®

SIMULATION OF WAKEFIELD GENERATION
IN A WAVEGUIDE LOADED WITH DISPERSIVE
AND ANISOTROPIC MEDIUM

A PDE simulation provides the result without the com-
plete theoretical analysis, making it possible to analyze vari-
ous cross sections of the waveguides, different transverse
charge distributions, and more complicated cases of disper-
sion including anisotropy and losses. Simulation provides the
excitation spectrum and a time-dependent wakefield behind
the charge.

We pick the finite element method (FEM) to simulate
PDE (11) of wakefield generation because of its flexibility in
terms of meshing subdomains. A very fine mesh may be
applied to resolve a physically small beam, when its cross
section T(x,y) is much smaller than a waveguide aperture.
We simulate Eq. (11) parametrically, with parameter w, for
any transverse beam distribution T(x,y). The result of a
simulation is the whole sum (13), which is a function of
frequency. We observe the regions where this sum diverges
(Fig. 6). These regions correspond to the poles of the integral
(when denominator is zero) (14).

One way to postprocess the results of a simulation is to
take the Fourier transform and obtain the wakefield as a
function of time behind the particle. Values near the frequen-
cies where the sum diverges must be properly resolved in
simulation. Figure 7 shows the Fourier transform of a simu-
lation result giving the wakefield of a particle distribution
moving through a loaded waveguide.

In order to check our method, we simulated a cylindrical
waveguide loaded with an isotropic dielectric with a negligi-
bly small beam channel. This case has been discussed in

J. Appl. Phys. 102, 034906 (2007)
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FIG. 6. (Color online) Simulation results for E,(0,0, ). We can see that the
result diverges at frequencies corresponding to the mode exitation.

21,29-31 : : p .
several papers,”” 3 mostly in connection to a dielectric-

loaded accelerator (DLA). We compared our simulation re-
sults with scripts based on exact solutions.***! Results show
excellent agreement, as seen in Figs. 7 and 8.

Another way to analyze the wakefield is to plot the spec-
trum of modes. The relative amplitudes of the modes show
which modes absorb more energy from the particle. To ob-
tain this plot from the simulation results we have to take a
closer look at the dispersion relations and the integral (14).
As we can see in the case of dispersion (Figs. 3-5) all the
poles of the integral are of the first order. Higher order poles
would correspond to the electron dispersion having the same
first derivatives as the mode dispersion in the points of inter-
section on Figs. 4 and 5. This condition is hard to realize
theoretically and is practically impossible to create with
metamaterials due to manufacturing tolerances. Each diver-
gence of E, as a function of w is treated as a first-order pole

Wakefield, MV/m

i \/Av il

0123465678 9101112131415 16 17 1819 20 21 22 23 24 25 26 27 28 29
Distance behindthe bunch, cm

N

Wakefield MV/m

FIG. 7. (Color online) Results for a cylindrical waveguide (r=3 cm) loaded
with isotropic dielectric (€=10). Top: Fourier transform of the simulation
result, wakefield behind the 1 nC bunch, considering first 6 modes. Bottom:
Same result from dielectric-loaded accelerator code, based on. Ref. 31. Time
scale corresponds to a length scale through /=v"t. For particle under con-
sideration v=0.99c.
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FIG. 8. (Color online) Results for a cylindrical waveguide (r=3 cm) loaded
with isotropic dielectric (e=10). (1) Results from a script, based on. Ref. 30.
(2) Same result based on. Ref. 31. (3) Results from FEM simulation.

on the complex plane of the integral (14). The value of the
residue of a first-order pole can be obtained: Res(f,z=2)
=1im(f(z)- (z—zg) »2— 2p). Therefore we get rid of the diver-
gence by multiplying the simulation results by proper (w
—wy) - f(wy) values. This provides us with the correct ampli-
tudes for each of the excited modes. We compare our simu-
lation results with theoretical results for the case of a cylin-
drical waveguide loaded with isotropic nondispersive
dielectric. We see good agreement between the simulation
and the exact solution (Fig. 8).

For the next example we will consider the anisotropic
and dispersive medium used for the dispersion curve analysis
(Figs. 3 and 4). We use the transverse particle distribution
shown in Fig. 9, representing a 1 nC, 1 um full width at half
maximum (FWHM) size beam, passing off center through
the waveguide. We plot it on a grid to show that the mesh is
locally enhanced at the center of the transverse beam distri-
bution. The results are shown in Fig. 10. We plot the spec-
trum of the E, component of the electric field, measured on
the wall of the waveguide, as is planned for the experiment.
We observe the excitation of a discrete set of frequencies.

/

20 micron

34.036mm

FIG. 9. (Color online) Irregular mesh in finite element method. Mesh is
refined in the center to resolve a micron size off-centered beam with 1 nC
charge passing through the waveguide.
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FIG. 10. (Color online) E,, MV/m on the sidewall of the waveguide, spec-
trum. Pictures show the field distribution at particular value of a parameter
.

The delta-function peaks correspond perfectly to the inter-
sections between the dispersion curves and the electron line
in Fig. 4. Once we plot the Ey(x,y) field distribution at the
excited frequencies, we see that each frequency corresponds
to a particular mode. Some modes such as TM;, and TM,,
are degenerate, and we observe a linear combination of these
modes at the excitation frequencies. The relative amplitudes
of the TM;, and TM,; modes depend on the transverse par-
ticle distribution. Figure 10 shows that for a misaligned
beam there is excitation of a linear combination of TM,, and
TM,,. Close to 6.5 GHz we observe a linear combination of
TM5 and TMj3,, then TM3, and TM,s, followed by TM,
and TMy;.

If the beam is placed in the center of the waveguide we
see that the modes absorb energy from the beam differently
than in the previous case of a misaligned beam. Dipole
modes are not excited (Fig. 11).

SUMMARY

We investigated the interaction of a charged particle dis-
tribution with dispersive anisotropic medium (metamateri-
als). This was done using a uniform media approximation,
where an effective medium substitutes for the metamaterial it

3
Ex, MV/m 1nC, 1 micron, centered beam
pictures: Ez field E §
distribution
| @
\ \ @
1 T !
\ \ T T
(‘l \\ e |
/
| Y "e»
| L/
0 T L T T T
45 55 65 75 85 95 GHz

FIG. 11. (Color online) Beam passing through the center of the waveguide.
E., MV/m on the sidewall of the waveguide spectrum. Pictures show the
field distribution at particular frequency w. Dipole modes are not excited
because of symmetry.
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is supposed to mimic. However, wire array-based metamate-
rial unlike a uniform medium has a strong spatial dispersion
at large wavelengths.16 This effect is briefly discussed in the
Appendix. The effective medium has the appropriate tensors
of permittivity and permeability to match the character of the
metamaterial. The particular case of two-axis crystal was
studied, since this closely matches the realization of our
metamaterial. We used calculated dispersion curves to ana-
lyze the particle interaction with the modes of metamaterial-
loaded waveguide. This method is simple and provides the
frequencies of the modes which can be excited by the par-
ticle traveling through such system at speed v. However, it
does not tell which mode will absorb more energy from the
particle. This depends on the transverse and longitudinal
beam distribution and linearly scales with the total charge. A
simulation approach is described that treats the problem of a
beam propagating through the waveguide loaded with an an-
isotropic and dispersive medium. The method also allows us
to study various waveguide cross sections and transverse
beam distributions. We checked the simulation against
known codes for dielectric-loaded accelerators based on ex-
act solutions. Then we presented results for wakefield gen-
eration in the waveguide loaded with anisotropic and disper-
sive media. Single particle representation in a simulation is
discussed. The finite element method makes it possible to
simulate physically small (much smaller than the waveguide
cross section) sources due to the possibility of refining the
mesh locally at the places of interest.

Waveguides loaded with anisotropic and dispersive me-
dia have various interesting regimes of TM-mode propaga-
tion and excitation. We show three types of backward modes:
non-magnetic, left-handed, and quasinonmagnetic. Such sys-
tems may be of interest for particle detection. Metamaterial-
loaded waveguides may be used, for example, as beam-
position monitors®” and multithreshold detectors.
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APPENDIX: METAMATERIAL-LOADED WAVEGUIDE
OPERATION REGIMES

Previously we reported our derivation of a dispersion
relation for a waveguide loaded with anisotropic and disper-
sive media. Here we limit ourselves to analysis of TM modes
in such waveguides; these are the modes of interest for par-
ticle beam applications. Figure 3 shows the significant dif-
ference in the dispersion of an empty and metamaterial-
loaded waveguide. Characteristic frequencies of the system,
such as the cutoff frequency of the empty waveguide and
frequencies at which €, or w, change their sign, create five
different frequency bands for TM mode propagation in a
metamaterial-loaded waveguide. In Fig. 3 these bands are
denoted by letters and separated by vertical dashed lines.

(a) &<0 and w>0. This is the nonmagnetic band similar

J. Appl. Phys. 102, 034906 (2007)

to the one discussed in Refs. 18, 33, and 34 We see
(region I, Fig. 3) the propagation of the mode (real k,)
below the cutoff frequency, similar to Ref. 35 (non-¢).
There is a small nonpropagating region due to large
values of w. It is not very interesting and we do not
discuss it further.

(b) &>0and u>0. There is no propagation in this region
according to Eq. (6).

(¢) &>0 and u>0. In this region we observe classical
left-handed behavior. The resonant behavior of nega-
tive w [Eq. (5)] causes the dispersion curve of the
loaded waveguide to intersect with the dispersion of
highly relativistic electrons (w=k-c) (Fig. 4). There-
fore an interaction between the electrons and the back-
ward mode is possible, allowing energy exchange.

(d) &>0and 1> u>0. Nevertheless, propagation is pos-
sible, because low values of u make an effective cutoff
frequency (w2, ./ w) higher than the frequency in this
band. This band does not require negative values of u
to create a backward propagating mode. This quasi-
non-magnetic band requires the condition 1> x>0
which can be realized by natural diamagnetics. Further,
once u>1 propagation vanishes. This region is not
very interesting and we do not study it further.

() &>0and w>0. The behavior of the system resembles
the behavior of an empty waveguide. There is no inter-
action between the relativistic electrons and the mode.

These bands are important for future metamaterial devel-
opment. The idea of using a waveguide as an effective media
has been discussed in several papers.l&lg’&L36 It was empha-
sized that anisotropy plays a great role in realization of non-
magnetic regime. The nonmagnetic regime is attractive be-
cause it does not require split ring resonators. A split ring
resonator has a relatively high imaginary part for permeabil-
ity (loss) at the resonance. It is also very difficult to scale it
to terahertz and optical frequencifzs.l&33’34 The nonmagnetic
regime may allow us to create a left-handed metamaterial
without the split rings.

We had some discussion on the feasibility of realizing
left-handed behavior in the nonmagnetic regime, by loading
a wire array into a waveguide in. Ref. 36. Operation below
the cutoff frequency of an empty waveguide loaded with the
wire array is similar to a problem of wire array embedded
into a uniform medium with negative permeability, discussed
in. Ref. 37. It has been shown that such system does not
support transmission. Another way to explain this phenom-
enon is to note that wire array exhibits a strong spatial dis-
persion even in large wavelength limit.'® It has been shown
that metamaterial based on the wire array does not support
nonmagnetic band. However, nonmagnetic band can be real-
ized with natural anisotropic materials such as liquid helium
cooled bismuth.** The quasi-non-magnetic regime may offer
another alternative, since it is above the cutoff frequency of
an empty waveguide.

If we go back to dispersion plots done for a continuous
medium (Figs. 4 and 5), we see that there are nonmagnetic
excitations—excitation of a mode by a particle in a nonmag-
netic regime (blue points). All higher order modes synchro-
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nize in nonmagnetic band. Secondly, for some modes there is
synchronization with particles in a left-handed regime (red
point), which is our current interest. Finally it is possible to
generate modes in quasi-non-magnetic regime (for slightly
different medium parameters red point could be in there).
Based on the fact that nonmagnetic band does not exist for
the wire array configurations, we proposed a system which
does not support higher order mode synchronization.36
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