hep-th/9609086 10 Sep 1996

CTP TAMU-27/96
1C/96/125

hep-th /9609086
September 1996

The M-Algebra

Ergin mmNmEE

Center for Theoretical Physics, Texas AEM University,
College Station, Texas 77843, U.S.A.

ABSTRACT

We construct a new extension of the Poincaré superalgebra in eleven dimensions which contains
super one-, two- and five-form charges. The latter two are associated with the supermembrane and
the superfivebrane of M-theory. Using the Maurer-Cartan equations of this algebra, we construct
closed super seven-forms in a number of ways. The pull-back of the corresponding super six-
forms are candidate superfivebrane Wess-Zumino terms, which are manifestly supersymmetric, and

contain coordinates associated with the new charges.
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As is well known, supergravity theories in diverse dimensions admit a variety of super p-brane
solitons. It is now widely appreciated that these objects play an important role in nonperturbative
string physics. While it is difficult to analyze the dynamics of super p-branes in general, they do
possess some algebraic properties that are more amenable to study. One of these properties is the
modification of the Poincaré superalgebra in presence of super p-brane solitons [}, 2].

Let us consider the case of eleven dimensional supergravity. It admits supermembrane soliton

which modifies the 11D Poincaré superalgebra as follows:

{Qa,Qp} = \xmm Pyt vuwap 2%, (1)

where the topological charge Z#¥ arises due to the presence of a supermembrane configuration in
spacetime. The Poincaré supercharges Q4 = (P,, Qo) generate supertranslations in flat superspace
parametrized by the coordinates Z™ = (X* 6), u = 0,1, ..., 10, where % are anticommuting 32
component Majorana spinors. The notation for the Dirac «-matrices is self explanatory.

Given a supermembrane soliton in D = 11, the Noether supercharge per unit membrane area
is defined as an integral over an eight dimensional transverse space-like surface. The Poisson
bracket algebra of the supercharges yields the result (). The p-form charges arising in this way
are variably referred to as topological charges, or Page charges, or sometimes as central charges.
Strictly speaking, they are not central because they do not commute with Lorentz generators,
except for p = 0.

The occurrence of the topological charge Z# in 11D Poincaré superalgebra can also be un-
derstood from the supermembrane worldvolume point of view. As shown in [2], the presence of
a Wess-Zumino term in the supermembrane action, which is supersymmetric only up to a to-
tal derivative term, modifies the algebra of supercharges precisely as in (1)), with the topological

charge realized as

Zm = \%q M9 X9 XY (2)

where o' (1 =0,1,2) are the worldvolume coordinates. These can also be viewed as the topological
charges associated with the identically conserved topological current ﬂ\%:\ = %?@Nt%wk:. If
at fixed time the membrane defines a nontrivial 2-cycle in space, then the above integral will be
nonzero [2].

It is known that D = 11 supergravity also admits a superfivebrane soliton [4]. Although the
corresponding superfivebrane action has yet to be constructed, it is reasonable to expect that
five-form topological charges will be associated with them.

Recently, it has been argued that [B] the p-brane topological charges discussed above are closely

associated with the boundaries of p-branes and as well as the topology of the background geometry



in which they propagate. It is furthermore observed [5] that more general kinds of topological
charges may emerge in general backgrounds other than flat spacetime.

Sometime ago, Bergshoeff and the author [f, 7] indeed found an extension of the 11D Poincaré
superalgebra with the extra generators Z#¥ and Z*®. A Kac-Moody extension of the algebra

naturally led to the following generators:
Z"(0) = T LELY, Z'(0) = S LEL] 2°%(0) = T LOLY (3)

where o refers to the membrane worldvolume coordinates, and the supersymmetric line elements
are given by

LY = 0:X" 4 59l 090,87 . LY = 06" )

Later, the extended version of 11D Poincaré superalgebra found in [6] was generalized to include
the generators Z%% [§], and a spinor generator Z% [0]. As far as we know, there is no superstring
soliton in D = 11, and therefore the occurrence of the spinor generator Z¢ is somewhat of a mystery
at present (see, however, [il0, 9]). Its occurrence in 10D Poincaré superalgebra is natural, and indeed
Green [iIl] discovered it sometime ago. This superalgebra was used in an interesting way by Siegel
[12], who introduced a new coordinate for the extra fermionic generator, and reformulated the
Green-Schwarz superstring such that the full action, including the Wess-Zumino term, exhibited
manifest supersymmetry. Siegel’s result forms an important part of our motivation for this work,
and therefore we shall come back to this point later.

Interestingly enough, extensions of the 11D Poincaré superalgebra which contains some of the
generators mentioned above were considered long ago, before the discovery of higher super p-branes.
In particular, D’Auria and Fré [I3] considered the extra generators Z#¥, Z#1#> and Z, in their
attempts to gauge the D = 11 supergravity. The issue of whether the dual formulation of D = 11
supergravity with a six-form potential existed also emerged in a related study which used these
extensions [i4].

It is clearly of interest to unify and extend the results mentioned above, in a way that would take
into account the existence of the superfivebrane in D = 11. Further motivations for studying the
general topological extensions of 11D Poincaré superalgebra are: (a) They may provide a powerful
tool, in the framework of an extended super Poincaré geometry with new p-form coordinates,
for probing supermembrane-superfivebrane duality, (b) the topologically extended super Poincaré
geometry may provide important ingredients for the construction of the elusive eleven dimensional
superfivebrane action and (c) knowledge of their representations may shed some light some algebraic

aspects of M-theory, including the spectrum of nonperturbative states [5].



In this paper, we shall give the most general extension of the 11D Poincaré superalgebra moti-
vated by some geometrical considerations which will be spelled out below, and that contains super

one-, two- and five-form charges
ZMrtkarter oo =125 k=0,1,...,p, (5)

in addition to the usual super Poincaré generators P, and (),. Our result contains the ones in
[6, 8, H, 3] as special cases. For short, we will refer to this algebra as the M-algebra. We have in
mind, of course, the role it is expected to play in M-theory. Interestingly, we find that the existence
of the super five-form charges in the algebra necessarily requires the presence of the super two-form
charges, while the reverse is not true. Moreover, it turns out that some of the super two-form
charges cease to (anti) commute with each other.

We expect that there will be a number of interesting properties of the M-algebra which will be
uncovered in the future. For the purposes of this note, however, it will suffice to (a) present the
algebra, and (b) to construct closed super seven-forms that live on the full supergroup manifold.
At the end of the paper, we shall comment on their possible use in the construction of candidate
Wess-Zumino terms for the eleven dimensional superfivebrane.

We now turn to the description of the M-algebra. Let us denote the generators of the algebra

collectively as T';. We consider the generators
MJ\M = AQ\T N\»a N\»ma N\r:.\»mv 3 @\» = ANUt;QQv ; Amv
where the Z-generators are totally graded antisymmetric. The M-algebra can be written as
(74T} = 15" Te (7)

where the structure constants will be given shortly. In the dual basis, one defines the Maurer-Cartan
super one-forms

e=azM A (8)

where dZM are the differentials on the supergroup manifold based on the M-algebra. We can also

define the supersymmetric line elements
A My A
Ly = 0,27 L™ . (9)
Explicit expressions for these objects can be obtained straightforwardly from

UTloU =LA T, (10)



where U is a group element, which can be parametrized in terms of the usual superspace coordinates,

and the new ¢-coordinates associated with the Z-generators as follows:

U= m&E.:ENE.:E .. .m&f.:gme:.gm m&ENE\ .. .m&guNgm m&tNt m&gNg mumfux m%@g . AHC

The details of hm

&, as well as the M-group transformations under which they are invariant, are

not particularly illuminating. However, the interested reader can find useful formulae for their
computation, as well as explicit expressions for h% in the case of Q4 and Z4P generators in K]

As is well known, the Maurer-Cartan structure equations 2
&mb”lw P Ae” ,xmib , (12)

contain equivalent information about the algebra. The fact that the Jacobi identities are satisfied
is, of course, encoded in the integrability condition d%e = 0. Tt is convenient to present our results
first in the form of Maurer-Cartan equations. The strategy we have followed to determine these
equations is very simple: We have parametrized the algebra in the most general possible way that

contains the components of the following super forms as structure constants:

T = —le*ne? Vhe s (13)
mmmov = A Ne’ Yuap (14)
Hy, = wmt Al Ae* A el Yuvas s (15)
m%ov = ZM A A AN R T (16)

Noting that the structure equations for e# and e® will not be modified compared to those in ordinary
Poincaré superspace, one can verify that the four-form Hy is closed, thanks to the following well
known identity

V(s Vos) = 0 (17)
which holds in D =4,5,7,11 [17]. The super-forms mmmov and m%ov are not closed. However, as we
will see later, they can be modified so as to be closed in the full M-algebra.

The occurrence of () and (13) can be understood from the structure of the known super p-brane
actions [6, i, 16]. The inclusion of (i16) is motivated by superfivebrane considerations, and the
assumption that there may exist a dual formulation of 11D supergravity in which, both, the three-
form and six-form potentials occur. Finally, we have included (i14) for the sake of completeness; a

point which will become more transparent below.

2Qur conventions for super p-forms are those of ﬁ& In particular, the components of a super p-form F are

defined by F = % eMa . eMp Frr,. 04y, and the exterior derivative by dIFf = % eMpeMepeM Om Py ny -

Furthermore, given a super g-form G, we have the rule: d(FAG) = FAdG + (=1)Y dF AG.


hyperp@ram%20#13.hbox%20{}

The parametrization of the ansatze in a manner described above contains a large number of
parameters. We have determined these parameters by explicit computation of all the integrability
conditions d2¢4 = 0. These conditions not only are sufficient to determine all the parameters in
our ansatze, but they also provide several cross checks, since we obtain an overdetermined system
of equations for these parameters. It is also worth mentioning that, in addition to repeated use of

(17), we have also used the following identity [14]

Apvpo v _po
st =3t =0 (18)
Also useful are the following identities
QEAQ\Q\K@@ + Wd&tio%\&m\v =0, Ava
Vit V) F 755 Vi (a5 Vogy " =0 (20)

The identities (18) and (1Y) follow straightforwardly from the main identity (1), and the identity
(20) can be easily derived from (I8§).
With the preliminaries thus explained, we are now ready to present our results. We propose

the following set of Maurer-Cartan equations:

det = Iw e A ef \xmm ,
de® = 0,
&mm = Iwmg AeP Yuaf
de!, = —ef Net Yuopg + (L= A =1T) mm>mm Qmmlwdmm>ﬂ:\ \xmm
— =5 e’ A €1y -pis \xmw.tm )
de,, = Iwmg A eP Yuvas
deyo = N YuvaB — e? A €ur Yo »
deog = wmt>m: Yuvas — wﬂ:\>mt Yog — wﬂ3>mg \xmmlwmt9>mg \xmf ,
Ay = —2e* A€’ Yunap
deyy e = €N Yrprpsas + €0 N s Yo — 667 A €y Vyispaols s
dejvpap = wmq A€ Yorpvpas — w@:%qq Ne? vist w@:%i Ne' Vg

—2€7ppa N €7 ng + wmq N€ry Yopap — 3€ A€y Yoras
|wm\< N €uy Yvpap — 6e A €uo YvpBy T Wmﬂt Neyp \xmm )
deyvapy = 2€° Neorpve Yoy + et A €ruvso Yy T 5¢® A Eruvaf Vos

—10e” A eyn Yorgy — 5¢® A €af Vuvys — 2€7 N €ra Yuvhy
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where it is understood that the obvious symmetries of indices on the left hand side are to be
implemented on the right hand side, with unit strength (anti) symmetrizations. The parameters
A and 7 are arbitrary. Of course, by rescaling various one-forms, one can introduce a number of
new parameters. However, the consistency of any contraction has to be checked carefully. We shall
come back to this point shortly.

The world indices can be raised and lowered with the 11D Minkowski metric, and the fermionic
indices with the charge—conjugation matrix, as usual. However, we have found it convenient not
to do so in our calculations, and to always keep the world and spinor indices in a fixed position
(see comment (iii) below). Nevertheless, to avoid any confusion between the one-forms associated
with the supertranslation generators @ 4, and the topological charge Z4, we have used a prime to
distinguish the latter from the former.

To see the structure of the algebra that underlies the Maurer-Cartan equations (21) more
explicitly, it is convenient to go over to the dual basis. This is easily done by using (i) and (12),

and we thus find the following (anti) commutation rules:

A@QQQQW = \xmm NUE + Yua g Vs + Yuvap Vit ATQE.:EVQQ /A e ,

[Pe,Qa] = Vet 2% — Vivas Z°% — Yy omgas 2070
(PPl = vuvas 2% + vws sy £ 0095
Qa2 = (1=A=7)vb5 27,
[Py, 2] = 38% ?w& Z°F — 3% 00 Néqgmv + 3Ypap 2107
[Qar 2] = 5748 2° 4+ 2li5 27 = 670005 2777,
[P 2] = =28 yaepy 2777 4 10905, 2777
{Qa, 27} = 360 s 2700+ 290, 27 4+ 388 Yo 207+ 6qupany 20T
@ NQE = —5Vuns ZHe? 85 Vuvse Zmvboe
[P, Z°%] = =3y, 209070
(7", 7°7] = Iw<mm vpoal a
(7", 77 = |3m$ AL w\xmm gHvapy



(21, 2°F) = 2yl zrofe

{zr2, 20} = =3yl 2707
ﬁNtQaij — @Q% gabryée a
[Qur 27°) = =gyl ™ 20l 20
[Py, zawe] = wuw \xgm ZkeHsaf )
AQSNQE...EW — wum \fm VAL Eé._'w\x VAL Emga
Tu?NmE...EL — w&» \g Ntwtwmé
ﬁQSNE\%j — %m \x%m Fvpybe T m\xmm Fvphe a
TquE%md — %» \ém gplvbe a
AQMQNE\QQQW — %m \xt gvbyen |\§m VASTERE a
[P, 2] = =364 yp, 200
[Qa, 22774] = 631 Al 7o 4 Ty e (22)

Several comments are in order:

(i) The existence of the algebra (22) is highly nontrivial. To show that the Jacobi identities are
satisfied, one makes crucial use of the y-matrix identity (1) and its consequences (I%)-(20). As is
well known, the identity (il7) holds in D = 4,5,7,11 [iI7], i.e. precisely the dimensions in which the
supermembrane action of [15] exists.

(i) While in the absence of the super five-form generators all the remaining Z-charges (anti)
commute with each other, this ceases to be the case once the super five-form generators are intro-
duced. This is a surprising feature, since one normally thinks of the topological charges as coming
from antisymmetric products of LY and L%, which are expected to have vanishing Poisson brackets
with each other.

(iii) The form of the algebra is suggestive of a geometrization in which one works with the
generators Q 4, Z4, ZAB, 74145 and use the super torsion tensor T4g%, and the graded antisym-
metric tensors Hapc, Hapop and Hy, .4, defined in (13)-(16) as structure constants. This would
correspond to a rigid version of a curved superspace algebra. Surprisingly, this does not work, as

748 as the new

it can already be established at the level of the subalgebra containing only the
generators. This may suggest the existence of an improved version of the algebra which can be
geometrized. Whether this is indeed possible remains to be seen.

wc HT@ Hn:.w;m :5@ Oﬁ. ﬁTHw NP @UHN can U@ ut :,_;mO a H_,O l_l 2 ﬁSB@SMwOSN\_ ﬁOHB
ﬁ@oi@h% = YiavapB me Vit -flea3 N.ﬁf:tm 3 AMWV

where i = 0,1, ...,10,12, Q is a 32 component Majorana-Weyl spinor, and the 66 component Z#7,



together with the self-dual 462 component N@...pm add up to 528 generators. However, it is far
from obvious if the full algebra presented above can be casted into a 10 4+ 2 dimensional form.

(v) While the presence of the super two- and five-form generators are related to the existence of
the supermembranes and superfivebranes of eleven dimensional supergravity, the occurrence of the
super one-form generator Z4 is somewhat unexpected, and it is a surprising feature of the above
algebra. See, however, [iL0, 9] where the issue of superstring in D = 11 is discussed. In particular,

let us note the existence of the following closed super three-form
Hy=e"Ne" NeP y,05+ e Ael Q\/ +r—1)e€, vhs+ A CuvVing T 755 Cun s \xmw.ﬁwv . (29)

Indeed dH3 = 0, and expressing Hs = dC5, and using the Maurer-Cartan equations (21), one finds
that
Cy=—e“Nel, . (25)

One might envisage using the pull-back of this super two-form in constructing a Wess-Zumino term
for a superstring action in D = 11. Interestingly enough, this form turns out to play a role in the
construction of a novel Wess-Zumino term for superfivebrane, as we shall show later. However,
these constructions raise a number of questions, among which is the interpretation of the new
coordinates involved in the action.

(vi) Once the five-form generator Z#1"'#s is included in the algebra, it is clear that one has
to also include the two-form generator Z#, as can be seen from the {Q,{Q,Q}} Jacobi identity
and the y-matrix identity (). The reverse is not true, i.e. one can have the two-form generator
without having to introduce the one- and/or five-form generators, in view of the y-matrix identity
(17). In fact, the super one- and/or five-form generators can be contracted away consistently.

Note in particular that the generators Z4 decouple from the algebra if we set A = 7 = 0 and
redefine the translation generator as P, + 7, = P,,. While it may be thought that Z* can always
be redefined away, there are some global subtleties in doing so, and at least in the case of 10D
superstrings, they have an interesting role to play in the description of the string winding states
o7)

(vii) The fact that the super five-form generator requires the presence of the super two-form
generator is related to the fact that a dual formulation of D = 11 supergravity containing only
the six-form potential is not possible [19, L4]. The coexistence of the super two- and five-form
generators in the M-algebra on the other hand, suggests a formulation of D = 11 supergravity
theory in which both the three-form and the six-form potentials are used. However, a duality
relation has to be imposed on the relevant field strengths, which then leads to non-localities [20].

(viii) Contracting away the super five-form generators yields the algebra of [9]. Contracting



away the super one-form generator as well, one obtains the algebra of [§]. Setting equal to zero
7P in addition gives the result of [6]. Keeping only the generators Z, Z# and Z#1 s gives the
algebra studied in [13].

(ix) The fermionic generators Z% and Z%1®* commute with all the other generators, except
Lorentz generators.

(x) Dimensional reduction of the algebra () to ten and lower dimensions is expected to produce
similar algebras for super p-branes existing in those dimensions. Aspects of these reductions will be
treated elsewhere. It should be noted, however, that the Type IIB Poincaré superalgebra in 10D,
as well as its M-algebra extension, if any, cannot be obtained in this way.

We now turn to the issue of Wess-Zumino terms based on the algebra (). First of all we observe

that the super four-form (I5) is closed within the full algebra, and writing Hy = dC3, we find [B]

QwHIwmt>mw>mE\IWmt>mQ>th+w|omQ>mm>QO. (26)

As shown in [], taking the standard D = 11 supermembrane action of [i5], but using the pull-back
of this C3 as Wess-Zumino term, one finds an alternative formulation of the supermembrane, that
generalizes a similar construction for the superstring due to Siegel [1Z]. In doing so, one introduces
coordinates for all the generators, including ¢, but the dependence on the new coordinates
comes as a total derivative term. This is due to the fact that the exterior derivative of C5 defined
in [I5] and that of C3 defined above give the same result, namely the super-four form (i5), which
in turn has no components along the new directions. Computing the Noether symmetry algebra
corresponding to the full left group action, one directly finds the full algebra of these generators,
without the occurrence of boundary terms in the Noether current that arise in a formulation with
the usual non-manifestly supersymmetric version of the Wess-Zumino term.

To construct a Wess-Zumino term for the superfivebrane in eleven dimensions, we need a super
seven-form. The obvious guess would be (16), but that form is not closed, as mentioned earlier.
The vy-matrix identity (I§) suggests the way to modify (i6) to obtain a closed super seven-form as

follows:

H, = % et A - et \/mQ\/m\Q \xtp...tmo\mn_lm»\/Qw , Awﬂv

Using the equations (21)) and the identity (1]), we see that indeed dH7 = 0. Furthermore, writing
H7 = dCs, we find that Cg is given by

| H INEE @EE Q
Cs = s (= 5 @A N Ny T A NE AT A ey

+%mt>mw>mn>mg>mm>mt§gmlMhmt>m:>mg>mm>mg>mt§§

5 A A A A €payay — 5 €T A A€M A€oy
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I%mt>m:>mn>m9>ﬂ:\>m3+%mt>mw>m9>mm>m§>m9m

FR et A NP N Neyn Negy ) (28)

Interestingly, the super-form (27) was considered long ago [14] within the framework of a sub-
algebra of (22) in which only Z%, Z* and Z"1#* are kept in addition to the super Poincaré
generators.

The same super-form was also considered in [20] within the framework of the usual 11D Poincaré

superalgebra. It was shown in [20] that defining in curved superspace

Hy = Wm: Aeb Ae A el Yabas + e N Ne™ Hea, oy s Awwv

mwov = He A Ne® AT A € Vayasos F €A NEYT €uprere HTH L (30)

one finds, via the Bianchi identities dH4 = 0 and &mwov = Hy N Hy, the correct equation of motion
for D = 11 supergravity. However, as was emphasized in [20], if one wishes to work with a super-six
form potential Cg alone, then one has a non-local relationship between m%ov and Cg.

Turning to the super six-form (28) which is defined in the M-extended Poincaré superspace, we

can write down a Wess-Zumino term for a superfivebrane as follows

Twy = \n@ a (31)

where Cg is the pull-back of C's. We use a notation in which the underlining of a target space form
indicates its pull-back. This action is manifestly invariant under the M-group transformations,
including supersymmetry. However, H7 = dCg equals an expression that contains Cs as shown in
(27), which in turn has nonvanishing components in the e4? directions, as shown in (26). Therefore,

748 such

the Wess-Zumino action (31}) contains the coordinates ¢ 45 associated with the generators
that they are not confined to a total derivative term. This is in contrast to the supermembrane
case where all the dependence on the new coordinates is contained in a total derivative term [4].

Using the super three-form C5 of the standard D = 11 supermembrane action [{A] in the
definition of H7, on the other hand, would yield a closed super seven-form that strictly lives in
the usual Poincaré superspace. However, the resulting Wess-Zumino term would not be manifestly
supersymmetric.

In the context of usual Poincaré superspace, let us focus our attention to the case of purely
bosonic target space background, and consider the two-form gauge transformations 6C5 = dA;.
From H; = m%ov + Hy4 A Cs, noting that m%ov is invariant, one sees that Cg must transform as
§Cs = C5 A dXg [20]. Of course, Iywyz given in (31) is not invariant under these transformations.

However, it has been observed that [21], since the worldvolume fields of the superfivebrane include

10



a fundamental two-form Bj, there is a way to write down a manifestly tensor-gauge invariant
Wess-Zumino term, namely Iwz = [(Cgz+ dBz A C5), with By transforming as § Bz = Aq.
Turning to the case of superfivebrane in the context of the M-extended Poincaré superspace,

we can consider, in analogy with the case discussed above, the following Wess-Zumino term:

Iy g = \ (Ce+dB2 AC3) (32)

where, we recall that Cs and C3 are given in () and (26). This term, just as in the case of (31)
discussed earlier, contains coordinates other than X* and <, which are not contained in a total
derivative term. The target space is flat or curved M-extended superspace. In the latter case
relations similar () and (80) can be utilized. However, since super-form coordinates occur in the
action, it is not altogether clear what this implies for D = 11 supergravity, and whether it can lead
its dual formulation in a novel way.

Going back to the issue of Wess-Zumino terms, it should be emphasized that one can construct
a number of distinct and manifestly supersymmetric Wess-Zumino terms, within the context of the
M-algebra, by taking various Lorentz-invariant combinations of the left-invariant super-one forms
LA, However, presumably not all of these terms are relevant for the seeked superfivebrane action
with the right properties.

To illustrate the point about the variety of ways in which a superfivebrane Wess-Zumino term
can be constructed in our framework, we present an example which is particularly interesting

because it makes use of the stringy coordinates Z4. Consider the super seven-form
HY = Hy A Hs (33)

where H, is defined in (13) and Hs in (24). Since Hy and Hj are closed, so is Hr. Moreover, writing
HL = dC{, we have

Cl=Cs N Hy (34)
(up to an irrelevant closed form) where C3 is given in (26) and Hs in (24). Unlike in the case
of H; which can be formulated in ordinary Poincaré superspace, the existence of HY requires the

M-extended superspace based on the M-algebra, or a suitable subalgebra thereof. Using (34), we

can construct a third kind of Wess-Zumino term given by
Ty = [ Ci (35)

This is manifestly supersymmetric and tensor-gauge invariant. However, whether it can be used in
the construction of a sensible superfivebrane action, and if so, exactly which D = 11 supersymmetric

field theory it may describe, remains to be seen.

11
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So far, we have discussed the superfivebrane Wess-Zumino terms. As far as the kinetic term
is concerned, matters are somewhat more complicated. Even in the case of a minimal target
superspace without any new coordinates, the full kinetic term is not known. For the progress made

in this front, and a discussion of various related matters, see [21, 22, 23, 24, 25]. The problem is
further complicated in the M-extended superspace, because of the presence of new coordinates. To
avoid the propagation of any unwanted degrees of freedom, one has to find new kinds of fermionic

and bosonic local symmetries, analogous to the more familiar k-symmetry.
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