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ABSTRACT

Aims. We present the photometric calibration of the Supernova Legacy Survey (SNLS) fields. The SNLS aims at measuring the
distances to SNe Ia at (0.3 < z < 1) using MegaCam, the 1 deg2 imager on the Canada-France-Hawaii Telescope (CFHT). The uncer-
tainty affecting the photometric calibration of the survey dominates the systematic uncertainty of the key measurement of the survey,
namely the dark energy equation of state. The photometric calibration of the SNLS requires obtaining a uniform response across the
imager, calibrating the science field stars in each survey band (SDSS-like ugriz bands) with respect to standards with known flux
in the same bands, and binding the calibration to the UBVRI Landolt standards used to calibrate the nearby SNe from the literature
necessary to produce cosmological constraints.
Methods. The spatial non-uniformities of the imager photometric response are mapped using dithered observations of dense stellar
fields. Photometric zero-points against Landolt standards are obtained. The linearity of the instrument is studied.
Results. We show that the imager filters and photometric response are not uniform and publish correction maps. We present models
of the effective passbands of the instrument as a function of the position on the focal plane. We define a natural magnitude system for
MegaCam. We show that the systematics affecting the magnitude-to-flux relations can be reduced if we use the spectrophotometric
standard star BD +17 4708 instead of Vega as a fundamental flux standard. We publish ugriz catalogs of tertiary standards for all the
SNLS fields.

Key words. cosmology: observations – techniques: photometric – methods: observational

1. Introduction
As we enter an era of precision supernova cosmology, photo-
metric calibration becomes an increasingly important contribu-
tion to the systematic error budgets. All cosmology oriented sur-
veys have therefore undertaken ambitious calibration efforts in

� Based on observations obtained with MegaPrime/MegaCam, a joint
project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii
Telescope (CFHT) which is operated by the National Research Council
(NRC) of Canada, the Institut National des Sciences de l’Univers of the
Centre National de la Recherche Scientifique (CNRS) of France, and
the University of Hawaii. This work is based in part on data products
produced at the Canadian Astronomy Data Centre as part of the Canada-
France-Hawaii Telescope Legacy Survey, a collaborative project of
NRC and CNRS.
�� Tables 13–22 and D.1–D.3 are also available in electronic form at the
CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/506/999

order to “break the 1% barrier”. A notable example is the work
published by the Sloan Digital Sky Survey (SDSS) (Ivezić et al.
2007; Padmanabhan et al. 2008). Major future surveys are also
planning ambitious photometric calibration programs, relying on
stellar calibrator observations and in-situ laboratory measure-
ments (Burke 2007; Magnier 2007; Keller et al. 2007; Stubbs
& Tonry 2006; Tucker et al. 2007).

An example of a program demanding a better than 1% pho-
tometric precision is the measurement of the cosmological
parameters using type Ia supernovae (SNe Ia) (Astier et al. 2006;
Wood-Vasey et al. 2007; Riess et al. 2007). This measurement is
all about comparing the luminosity distances of a set of distant
SNe Ia with those of their nearby counterparts. High-z (z ∼ 0.7)
SN Ia distances are determined from measurements taken with
the redder bands of the survey (r, i and z), a model of the SNe Ia
spectral energy distribution (SED) and a model of the survey
passbands. Intermediate (z ∼ 0.4) SN Ia distances rely on the
same ingredients but measurements taken with the bluer bands
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of the survey (typically g and r). Nearby (z ∼ 0.05) supernovae
usually come from datasets collected in the 1990s by dedicated
low-redshift surveys (Hamuy et al. 1996; Riess et al. 1999; Jha
et al. 2006), and calibrated in the Landolt UBVRI system. Astier
et al. (2006) analyze in detail the impact of the high-redshift
survey calibration uncertainties on the cosmological parameters.
They show that a 1% shift of the high-redshift survey zero-points
results in a variation of the dark-energy equation of state param-
eter – w – of 0.040; a 1 nm precision of the survey passband cen-
tral wavelength results in an uncertainty of 0.013 on w; finally,
an error of 1% in the intercalibration of the B and R passbands
(respectively λ ∼ 438 nm and λ ∼ 652 nm) has also a sizeable
impact on w, of 0.024.

Another example is the determination of photometric red-
shifts of galaxies (Ilbert et al. 2006; Brodwin et al. 2006). The
measurement involves comparing the measured fluxes in several
bands with synthetic photometry computed from galaxy SED
models and models of the survey passbands. Ilbert et al. (2006)
demonstrate that photometric redshift determination and galaxy
type identification are sensitive to 1%-level zero point changes.
The analysis also requires an accurate determination of the sur-
vey passbands.

In many applications, notably the two presented above, the
survey measurements must be converted into physical fluxes at
some point in the analysis, in order to be compared with pre-
dicted synthetic fluxes, computed from a SED model and a
model of the survey passbands. A requirement of the photo-
metric calibration is therefore that the connection between the
magnitudes and their broadband flux counterparts is not broken.
The most direct way to ensure this, is to define the survey cal-
ibrated magnitudes as natural magnitudes. In other words, the
survey magnitude m of an object whose measured broadband
flux is φADU must be defined as:

m = −2.5 log10 φADU + calibration coefficients

and may not depend on the object’s colors.
This paper presents the photometric calibration of the

Canada-France-Hawaii Telescope Supernova Legacy Survey
(SNLS, Astier et al. 2006) 3-year dataset, taken with the wide
field imager MegaCam. Our primary motivation is the calibra-
tion of the luminosity distances to the type Ia supernovae discov-
ered by the SNLS. However, the results presented here should
be useful for all applications relying on photometric data taken
with MegaCam since the beginning of the CFHT Legacy Survey
(CFHTLS) operations in 2003.

Many broadband magnitude systems have been defined over
the last few decades and implemented under the form of cata-
logs of standard star magnitudes (Landolt 1973, 1983, 1992b;
Menzies et al. 1989; Stetson 2000; Stetson et al. 2005; Smith
et al. 2002; Ivezić et al. 2007). The most widely used standard
star network is that of Landolt (1992b). Using it to calibrate the
SNLS dataset is not the most obvious choice, notably because
the Johnson-Kron-Cousins UBVRI filters used by Landolt dif-
fer significantly from the ugriz filters which equip MegaCam.
Unfortunately, the magnitudes of the nearby supernovae used to
supplement the SNLS dataset are reported in the Landolt sys-
tem. Hence, adopting the same standard star network allows one
to minimize the systematic uncertainties which affect the com-
parison of the (external) nearby and (SNLS) distant-SN Ia lumi-
nosity distances.

The goal of the SNLS 3-year calibration was set by the
results of the systematic uncertainty analyzes presented in
Astier et al. (2006). Improving the precision on w requires push-
ing the uncertainties on the calibrated supernova fluxes as close

Fig. 1. SDSS 2.5-m effective passbands, and MegaCam effective pass-
bands at the center of the focal plane. The g′ and i′ SDSS passbands are
slightly bluer than the corresponding MegaCam passbands. The central
value of the SDSS r′ and z′ are very similar to those of their MegaCam
counterparts.

to 1% as possible. Attaining this kind of precision turned out
to be challenging. The key problems that had to be solved
were (1) the control of the imager photometric response uni-
formity (2) the modeling of the large and non-linear Landolt-
to-MegaCam color transformations (3) the choice of the optimal
fundamental spectrophotometric standard used to interpret the
calibrated magnitudes as physical fluxes minimizing the associ-
ated systematic errors and (4) the modeling of the imager effec-
tive passbands. All these aspects are discussed in detail in this
paper.

The main output of the calibration consists in catalogs of
g, r, i, z natural magnitudes for each of the four fields surveyed
by SNLS, along with a recipe to map these magnitudes to fluxes.
Another key result is a model of the imager effective passbands.
The last important output of this work, the photometric response
maps, shall be released along with the next release of the survey
images.

The calibration of the u-band data poses additional problems,
and deserves a paper of its own. In particular, the mean wave-
length of the effective u MegaCam passbands is extremely sen-
sitive to the atmospheric conditions and to the airmass. As an
example, it varies by almost 2 nanometers between airmass 1
and 1.5. Moreover, the DEEP field u-band observations are not
used by the SNLS project and are therefore not time sequenced.
As a consequence less epochs are available, which makes the
calibration much less robust. The u-band magnitudes of the
SNLS tertiaries are presented in appendix. The precision on
the calibrated u-band fluxes is of about 5%, much larger than
the 1% obtained in the other bands.

A plan of the paper follows. In Sects. 2 and 3 we present
the MegaCam wide field imager and the SNLS survey. The
photometry algorithms used to derive the survey calibration are
presented in Sect. 4. Section 5 is devoted to the presentation of
Elixir, the image pre-processing pipeline developed at CFHT.
Given the stringent requirements on the calibration precision, the
Elixir results have been scrutinized by the SNLS collaboration,
and new maps of the imager photometric response have been
derived. This work is presented in Sect. 6. An essential ingredi-
ent needed to interpret the calibrated magnitudes as fluxes is a
reliable model of the imager effective passbands. The derivation
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of those is presented in Sect. 7. The last sections of the paper
are devoted to the main output of the calibration: the derivation
of the tertiary star catalogs. In Sect. 8 we discuss how we de-
rive the survey zero-points from the Landolt star observations.
The next section, Sect. 9, is devoted to the definition of a natural
MegaCam magnitude system. Section 10 discusses the conver-
sion of these natural magnitudes into physical fluxes, through the
use of a well chosen fundamental flux standard, namely the spec-
trophotometric standard star BD +17 4708. Section 11 presents
the derivation of the tertiary catalogs and the selection of the
photometric nights. Finally, we discuss in Sect. 12 the systematic
uncertainties affecting the calibrated magnitude measurements
and their physical flux counterparts.

2. MegaPrime and MegaCam

MegaCam is a wide-field camera, hosted in the dedicated prime
focus environment MegaPrime on the Canada France Hawaii
3.6 m telescope (Boulade et al. 2003). The camera images a
field of view 0.96 × 0.94 deg2, using 361 thinned E2V 2048 ×
4612 CCDs, with pixels of 13.5 μm that subtend 0.185′′ on a
side – the focal ratio being F/4.1. Each CCD is read out from
two amplifiers, which allows one to read out the 340 Mpixel fo-
cal plane in 35 s. The output of each amplifier is sampled by
a 16 bit ADC. The gains of the readout chain have been set to
about 1.5 e−/ADU with the consequence that only half of the
MegaCam CCD full well (∼200 000 e−) is actually sampled by
the readout electronics. The CFHT has an equatorial mount and
the camera angle is fixed with respect to both the telescope and
the sky.

The linearity of the imager photometric response has been
carefully checked using images of a dense stellar field, observed
under photometric conditions, with increasing exposure times
(see Appendix C for details). The linearity has been found to be
better than 1% at the pixel level. The corresponding upper limit
for the non-linearities affecting the star fluxes is much smaller,
of the order of 0.1%.

The filter system is a juke box which holds up to 8 filters.
The CFHT Legacy Survey performs observations in five bands,
labeled uM , gM, rM, iM , zM, similar to the SDSS u, g, r, i, z bands
(Fukugita et al. 1996; Gunn et al. 1998) and realized using in-
terference filters. The thinned MegaCam CCDs exhibit fringing,
of about 6% of the sky background peak to peak in iM , and 15%
in zM . The filters initially mounted on MegaPrime were manu-
factured by Sagem/REOSC. In June 2007, the iM filter was ac-
cidentally broken and a new filter (labeled i2M hereafter), was
procured from Barr Associates and installed on the camera in
October 2007. This new filter is not discussed in this work, and
the calibration obtained for the old filter cannot be applied to the
new one.

The transmission of the MegaPrime filters were character-
ized by their respective manufacturers and the CFHT team upon
reception. Their most salient feature is the significant spatial
non-uniformity of their transmission curves (namely of their
central wavelength), which impacts significantly the observa-
tions (see Sect. 6). Interestingly, the new i2M filter exhibits a
variation pattern similar to the old one, although different man-
ufacturers produced them.

1 In fact, the MegaCam focal plane is composed of 40 CCDs, but only
the 36 central CCDs are actually read out, the 4 additional ones being
almost completely vignetted by the filter frame. These four additional
chips are kept as spares.

Systematic differences were found between the MegaCam
and SDSS filters, which translate into small color terms between
both instruments (see Appendices B and G). In particular, the
uM-band filter is significantly bluer than its SDSS counterpart.
This is a deliberate design choice as the MegaCam E2V chips
are much more efficient in the blue than the SITe CCDs used
in the SDSS imager. For this reason, the uM-filter is sometimes
labeled u�, in order to distinguish it from a standard u′ filter.

The shutter is made of a half disk (1 m in diameter) whose ro-
tation is controlled precisely, in order to ensure a constant speed
when the shutter crosses the CCD mosaic. The minimum ex-
posure time that can be obtained is of 1 s, with uniformity of
illumination of the large focal plane better than 10 ms. In or-
der to increase the accuracy of the short exposure times, the ex-
act duration of the exposure is measured with a 1 ms accuracy
using a dedicated system independent from the shutter motion
controller.

MegaPrime is operated and maintained by the CFHT team,
which has steadily improved the performance of the imager.
From the first light, MegaPrime images appeared to suffer from
an image quality (IQ) degradation of 0.25′′ (FWHM) from center
to corner. For example, the mean image quality of the rM-band
exposures was 0.65′′ at the center of the focal plane, and almost
0.9′′ on the corners. Despite an optimization of the vertical po-
sition of the four-lens wide field corrector (WFC), this situation
prevailed until November 2004, when the almost flat WFC L3
lens was flipped during an investigation. This resulted in a dra-
matic improvement of the IQ uniformity, with no degradation
of the median IQ. In July 2005, a small tilt was applied to the
camera itself resulting in an essentially uniform image quality.
Exposures with IQ varying from 0.4′′ to 0.48′′ across the field of
view have been routinely obtained since then. A summary of the
main modifications of the imager setup is presented in Table 5.

3. The SNLS survey

The SNLS survey is a ground-based supernova survey, aiming
primarily at measuring the dark-energy equation of state param-
eter w. It has been designed to build up a sample of 500 SNe Ia in
the redshift range 0.3 < z < 1.0. The SNLS project has two com-
ponents: a large imaging survey using MegaPrime to detect su-
pernovae and monitor their lightcurves, and a spectroscopic sur-
vey to confirm the nature of the candidates, and determine their
redshift. During its five years of operation (mid-2003 to mid-
2008), the survey delivered about 100 spectroscopically identi-
fied SNe Ia per year. The cosmological measurements based on
the first year dataset have been presented in Astier et al. (2006).

SNLS exploits the DEEP component of the CFHT Legacy
Survey (CFHTLS), which targets four low Galactic extinction
fields (see Table 1 for coordinates and extinction). The data are
time sequenced in gM, rM , iM and zM with observations con-
ducted every 3−4 nights in dark time, allowing the construc-
tion of high-quality multicolor supernova light curves. Because
SNLS is highly vulnerable to gaps in the supernova light curves,
MegaPrime was mounted on the telescope at least 14 nights
around every new moon during the course of the survey – ev-
ery such observing period is called a MegaCam (or MegaPrime)
run. The deep CFHTLS component comprises additional ob-
servations in the MegaCam uM band, which are not time se-
quenced, and not directly used by the SNLS. The calibration of
the uM band data has however been included in the present work.

The CFHT Legacy Survey observations are taken in
“queue service observing” (QSO) mode by the CFHT staff
(Martin et al. 2002). For the SNLS, an image quality better than
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Table 1. Fields observed by the DEEP/SN component of the CFHTLS.

Field RA Dec E(B − V) a

(2000) (2000) (MW)
D1 02:26:00.00 −04:30:00.0 0.027
D2 10:00:28.60 +02:12:21.0 0.018
D3 14:19:28.01 +52:40:41.0 0.010
D4 22:15:31.67 −17:44:05.0 0.027

a (from Schlegel et al. 1998).

1′′ is required. Sometimes this constraint is relaxed to meet ad-
ditional constraints on the sequencing needed to ensure a regular
sampling of the supernova lightcurves. However, since the SNLS
is a high-priority program, and the median seeing at CFHT
(in the rM-band) is 0.75′′, the actual average IQ obtained over
the four fields is about 0.96′′, 0.88′′, 0.84′′ and 0.82′′ in the
gM rM iM zM bands. The cumulated exposure times acquired
every four nights (1125 s, 1800 s, 1800 to 3600 s, 3600 s in
gM , rM, iM and zM respectively) are split into 5 to 10 individual
exposures of 225 to 520 s each (see Sullivan et al. 2006). The sci-
ence exposures are dithered, in order to limit the impact of the
dead areas (dead columns, gaps) on the science observations.
The dithering offsets are essentially determined by the size of
the gaps between the CCDs, and reach 100 pixels in x (or right
ascension) and 500 pixels in y (or declination).

On average, the D1 and D2 fields are observed at an airmass
of 1.2, while the D3 and D4 fields are observed at a slightly
higher airmass of about 1.3.

Photometric calibration exposures are routinely taken, often
at the beginning and/or the end of every potentially photomet-
ric night. The science and calibration observations can there-
fore be separated by a few hours, and a careful detection of the
non-photometric nights must be implemented. The standard cal-
ibration program consists in 5 band observations of one Landolt
(1992b) field at a time. The calibration fields also contain sev-
eral standard stars from the Smith et al. (2002) catalog. Since
these latter standards can be bright (mag ≤ 12), the telescope
is slightly defocused, by 0.1 mm, which still allows a Gaussian
PSF profile, but reduces the maximum pixel flux by about a fac-
tor two in order to avoid saturation. The exposure time of the
calibration exposures is kept between two and three seconds.

All the exposures taken with MegaCam are pre-processed
at CFHT by the Elixir pipeline (Magnier & Cuillandre 2004 and
Sect. 5 of this paper). This pre-processing stage comprises a bias
removal, a flat field correction, a photometric flat correction (see
Sects. 5 and 6), and defringing of the long exposures (over 10 s)
taken in the iM and zM bands. No defringing is applied to the
calibration exposures.

This paper relies on the first 3.5 years of the survey – from
August 2003 to December 2006. Table 2 shows the number of
seasons and epochs for each field. It also presents the number
of photometric nights, as will be discussed in Sect. 11. As will
be shown below, the large number of observations allows us to
implement a very robust calibration procedure, and reach low
levels of internal systematic uncertainties.

4. Photometry

SNLS aims ultimately at assigning magnitudes to supernovae. In
practice, this means that we have to measure ratios of supernovae
fluxes to standard star fluxes. The measurement of these ratios is
carried out in two steps: the ratio of (secondary) standards to
science field stars (i.e. tertiary standard candidates), and the

Table 2. SNLS/DEEP and Landolt field observations.

Field Seasons Number of epochs
photometric/total

gM rM iM zM

D1 3.5 28/57 32/88 36/99 19/47
D2 3 13/44 21/63 25/66 19/26
D3 4 29/66 34/87 40/96 10/40
D4 4 30/67 34/97 29/100 19/55

Landolt a – 313 311 283 240

a All Landolt (1992b) fields taken together (two to three Landolt fields
may be observed each night).

ratio of supernova to field stars. In order to be optimal, faint su-
pernovae should be measured using PSF photometry, and hence
the ratios of SN to tertiaries will be a ratio of PSF fluxes, in the
same exposure. This measurement is not in the scope of this pa-
per, and we refer interested readers to Astier et al. (2006); Guy
et al. (2009).

Because we have a large number of epochs and several im-
ages per epoch, the ratio of standard fluxes to science field star
fluxes is not photon-noise limited and can therefore be measured
using aperture photometry. This avoids the shortcomings of PSF
flux ratios over different images, with different PSFs. In this sec-
tion, we describe the aperture photometry algorithm and discuss
systematics affecting the ratio of standards to field star fluxes.

4.1. Aperture photometry

The calibration and science data is reduced using the SNLS stan-
dard reduction software used in Astier et al. (2006). Each expo-
sure file is split into 36 smaller FITS images each corresponding
to a CCD. On each smaller CCD-image, we detect the sources
and model the sky background using the SExtractor package
(Bertin & Arnouts 1996). We recompute the sky background
map, using only the pixels not affected by the detected object
fluxes. We subtract this new background map from the image.
We recompute the object Gaussian moments and aperture fluxes.

Figure 2 show the Gaussian second moments of the field
stars as a function of the position on the mosaic for a r-band
image taken in 2003 and a r-band image taken in the same con-
ditions, in 2005. It is apparent from this figure that the uniformity
of the PSF has improved over the course of the survey. However,
given the variations of the image quality across the mosaic, we
scale the photometry apertures with an estimate of the local im-
age quality, in order to try and minimize the spatial variations of
the aperture corrections.

The image quality on each CCD is estimated as the radius
of the circle that has the same area as the ellipse defined by the
average star second moments. We carry out the aperture photom-
etry in a set of 10 (IQ scaled) radii (typically from 5 to 30 pixels)
of all the objects detected. The apertures are centered on the po-
sitions obtained from the Gaussian fit. Tests on synthetic data
demonstrated that our aperture photometry code gives accurate
estimates of fluxes and errors.

Aperture pollution by neighbor objects can bias the flux es-
timations. We therefore chose to work with smaller apertures of
radius equal to 7.5 × HWHM (14 pixels on average). This leads
to non-negligible aperture corrections, of at least 3%. This is per-
fectly acceptable, as long as we check that these aperture correc-
tions (1) are uniform across the focal plane and (2) are the same
at the per mil level on the science and calibration exposures.
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Fig. 2. Value of the bright star Gaussian moments as a function of the
radial distance to the focal plane center. Black circles: Gaussian mo-
ments, computed on a rM -band image, taken in 2003-10-31 (before the
L3-flip). Red triangles: Gaussian moments, computed on a rM-band im-
age of identical seeing (at the center of the focal plane), taken two years
later on 2003-10-31. As can be seen, the uniformity of the image quality
has been noticeably improved.

Fig. 3. Ratio of the flux computed in two apertures of different sizes
(7.5 HWHM and 20 HWHM) as a function of the image quality com-
puted for each CCD, for a set of rM-band images taken on 2003-10-01,
when the PSF was not uniform over the focal plane. As can be seen, the
ratio is not sensitive to the image quality, and hence, on the focal plane
position.

To check that the scaling aperture strategy gives a uniform
photometry, we studied the ratio of the flux within the standard
aperture adopted for the calibration studies (7.5 HWHM) over
the flux computed in a much larger aperture (20 HWHM).

This shows that capturing a constant fraction of the flux of
stars at the per mil level across the mosaic is not straightforward.
There is a benefit for scaling apertures, but this approach is not
sufficient for excellent quality photometry, in terms of system-
atic errors. We however settled for scaling apertures, using an
aperture of 7.5 seeings (RMS) in radius, which makes the aper-
ture size an issue at the 0.2% level.

4.2. Background estimation

The “underlying background” is the sum of all the underlying
sources of photons which do not come from the star itself –
sky background, mainly, plus undetected objects. It is subtracted

directly from the pixels using a background map computed by
SExtractor. An incorrect background subtraction may bias the
flux estimations, and this bias varies quadratically with the aper-
ture radius. In order to estimate the quality of the background
measurements, we chose to study the variation of the aperture
corrections in a large annulus around isolated stars as a func-
tion of the star fluxes, and measure how these corrections ex-
trapolate to very low flux. The residual background measured is
+0.06(0.003), −0.03(0.006), −0.23(0.03) and −0.04(0.02) ADU
per pixel in the gM, rM , iM- and zM-bands respectively. In the
gM- and rM-bands, the impact of the residual background on the
aperture magnitudes reported is smaller than 0.001 mag up to
mag 21. Idem in the zM-band up to mag 19. In the iM-band, how-
ever, it induces a sizeable magnitude dependent effect, reaching
0.005 mag at magnitude 21. However, since the measurement of
the residual background on a night basis is affected by large sta-
tistical uncertainties, we chose not to correct for this effect, and
include it in the systematic uncertainty budget (Sect. 12).

4.3. Aperture corrections

The tertiary stars in science frames are calibrated with respect
to observations of standard star fields. Although in both kinds of
frames the fluxes are measured using aperture photometry, there
is a possibility that the fraction of the flux within the aperture in
both cases be different. Indeed, standard exposures are typically
2−3 s, without guiding, and with a telescope slightly defocused,
while science exposure are integrated for 300 to 500 s, with guid-
ing. In addition, there is evidence that the telescope is still vibrat-
ing when taking the standard star exposures. As a consequence,
the PSF on each dataset is expected to be different, leading to
different aperture corrections.

To address this issue, we computed the fractional increase
of flux of sufficiently isolated objects in an aperture twice as
large (12 HWHM) as the one chosen for calibration purposes
(7.5 HWHM). This large aperture is considered here as an ac-
ceptable proxy for the total flux, because we expect that the
PSF shape at large radii becomes increasingly independent of
atmospheric variability and guiding. This flux increase is aver-
aged over all measurements of a given night, separately for sci-
ence and standard images, and separately for each band. Only
nights where both science and standards were observed enter in
these averages. These averages are refered to as aperture correc-
tions, although fluxes are not “corrected”. We report in Table 3
the average and rms of these aperture corrections together with
statistics of the image quality. One can note that aperture correc-
tions differ only by 0.2% between science and standard frames,
and are well correlated over the same night. This difference is
small and is probably due to standards being observed on aver-
age with a poorer image quality. These differential aperture cor-
rections are about 0.2% for g, r, i and z bands, and compatible
with 0 for u band, where the image quality is on average identical
for science and standard fields. This effect is accounted for by
correcting the tertiary standard calibrated magnitudes, as dis-
cussed in Sect. 12.

5. The Elixir pipeline

At the end of each MegaPrime run, master twilight flat
field frames and master fringe frames are built from all
the exposures taken during the run, including non-CFHTLS
data (which represents about half of the total dataset). The
Elixir pipeline, developed and operated by the CFHT team
(Magnier & Cuillandre 2004), builds master flat fields for each

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=3
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Table 3. Statistics of the average aperture corrections and image quality
over nights when both science and standards were observed.

Science Standards
ρsci,stdaverage rms average rms

AC 2.34% 0.55% 2.10% 0.59% 0.66
IQ 0.89′′ 0.2′′ 0.99′′ 0.30′′ 0.42

The correlation coefficients (last column) are computed for data taken
over the same night in the same band.

filter by stacking the individual flat field frames. Individual
frames inadvertently contaminated by clouds or nearby moon
light are rejected. They are identified by dividing each individ-
ual flat field exposure by the master flat, and inspecting the result
visually. Typically, no more than one iteration is needed to reject
the outliers. In order to mitigate possible non-linearity residuals
at the sub-percent level, individual flat field images are acquired
in the 10 000 to 15 000 ADU range. After two weeks, there are
typically 40 to 60 usable frames that can be stacked into a final
normalized frame equivalent to a single 400 000 ADU counts per
pixels, reducing to negligible photon noise levels (between one
and two per mil).

If one measures the photometry of the same star on an image
flatfielded from the twilight flats, the flux varies by about 15% in
the uM band and 10% in the gM-, rM-, iM-, and zM-bands when
moving the star from center to edges of the field of view. The
variation is monotonic and essentially follows a circular pattern.
A photometric flat, which ought to deliver uniform photometry
across the field of view (see below and Sect. 6) is then created by
multiplying the master flat frame by the maps of the imager pho-
tometric response non-uniformities. This frame is the one used
for flatfielding the science images of the entire run, and allows
for all multiplicative effects in the image to be corrected at once.
The photometric flat was expected to correct this to within a per-
cent. Section 6 will reveal that this is not the case, with 4% peak-
to-peak residuals remaining.

Fringe patterns are built by processing all iM- and zM-band
images corrected by the final flat. First the sky background is
mapped at a large scale (100 pixels) and subtracted. Then, the ex-
posures are scaled according to the fringe amplitudes measured
on 100 peak-valley pairs on each CCD. Since all CCDs see the
same sky, a single scaling factor is derived from the 36 CCDs.
The scaled exposures are stacked, and an iterative process simi-
lar to the one described above is carried out, with a visual control
allowing the rejection of frames containing extended astrophys-
ical sources such as large galaxies. Note that the fringe pattern
contains the signature of the photometric grid.

After these steps, Elixir processes all the images of the run,
and derives an astrometric solution per CCD only, at the pixel
scale level (0.2′′) – no global solution over the mosaic is com-
puted. The goal is to provide the users with a first order astro-
metric solution. Following this step, all the frames containing
Smith et al. (2002) standards are identified and processed, with
the SExtractor package (Bertin & Arnouts 1996). The flux of
the Smith et al. (2002) standard stars is determined using the
SExtractor bestphot algorithm. A median zero-point for the
entire run is derived for each filter, since it is not reasonable time
wise to obtain enough Smith et al. (2002) standard star observa-
tions per night to derive solid zero-point solutions. Again, the in-
tention is to provide users with a photometric scaling, but SNLS
uses its own procedures to calibrate the images, as the default
calibration is not precise enough for our needs.

5.1. Plate scale variations

Plate scale variations cause a variation of the photometric re-
sponse on images flat-fielded using twilight images (or any kind
of isotropic illumination), because twilight images encode both
sensitivity variations and variations of the solid angle subtended
by the instrument pixels. To correct this photometric distortion
introduced through flat fielding by plate scale variations, it is
common to resample images on a iso-area projection prior to
photometry, ignoring the Jacobian of the geometrical transfor-
mation in the course of the resampling. As this approach as-
sumes that the only source of photometric non-uniformity of
flatfielded images is the plate-scale variation, we should com-
pare plate-scale variations and photometric non-uniformity. Note
however that SNLS photometric reductions do not involve any
resampling on iso-area projections.

The plate scale can be determined with a precision better
than 1‰ from the astrometry of dense stellar fields:
∣∣∣∣∣ ∂ω∂x∂y

∣∣∣∣∣ = 1
cos δ

×
∣∣∣∣∣∂(αδ)∂(xy)

∣∣∣∣∣ (1)

where ∂ω/∂x∂y is the solid angle subtended by one pixel, α and
δ refer to (e.g.) equatorial coordinates on the sky, and x and y are
pixel coordinates on CCDs.

Figure 4 shows the variations of |∂xy/∂ω| on the focal plane,
relative to a point located on CCD #13, close to the center of
the camera. The pixel area scale can be up to 4% smaller on the
focal plane corners than on the center. Since this variation is far
smaller than the variation of photometric response we measure
(∼10−15%), we should conclude that most of the photometric
non-uniformity is not due to plate scale variations.

The measured plate scale variation pattern is similar in all
bands and seems to be extremely stable. It was not affected by
the substantial changes of the imaging system: we have com-
pared plate scales measured on semester 2003B and 2006B and
found them to be identical at the 1‰-level.

5.2. Elixir strategy

The residual non-uniformity of photometric response is likely
to be due to some source of light hitting the focal plane that
does not follow the normal light path that forms a star image.
This “extra” light is called “scattered light” in Elixir parlance.
This name remains although the elimination of genuine sources
of scattered light by extra baffling added in MegaPrime did not
change the overall shape of twilight images.

It is however not necessary to identify the source of photo-
metric response variations across the field of view to correct it.
The pragmatic approach of the Elixir team has been to mea-
sure as precisely as possible the non-uniformity of the photo-
metric response and include a correction in the flat-field images
applied to the raw images. This choice has two consequences.
First, images flat-fielded this way have a spatially varying sky
background. Second, the 4% response variation expected from
plate-scale variations is corrected for in the flat-fielding and
users resampling images should account for the Jacobian of the
resampling transformation prior to photometry, in order to pre-
serve fluxes across the resampling.

The key data to measure the photometric response is a set of
dithered exposures on low Galactic latitude fields, also called the
“photometric grid” by the Elixir team. Elixir has implemented a
reduction of these data sets and the resulting correction maps
are incorporated into the flat-fields. Since the goal of the SNLS
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Fig. 4. Pixel area variations (i.e. square of the plate scale variations)
computed on the MegaCam focal plane. Each grid rectangle corre-
sponds to one CCD. CCD #0 is up left. CCD #35 is down right. Each
CCD has been divided into 4 × 9 superpixels. The reference super-
pixel is located on CCD#13, close to the center of the focal plane.
On the edges of the focal plane, the solid angle subtended by a pixel
can be up to 4% smaller than on the center. Hence, due to this effect,
the instrumental flux of a star measured on the edges, is at least 4%
higher than the instrumental flux of this same star, measured in the same
conditions on the center of the mosaic. Note that the non-uniformities
actually measured on dithered exposures of dense fields (Sect. 6 and
Appendix A) are about 3 times larger. This indicates that the flatfield
exposures taken during twilight are affected by stray light, absent from
the stars’ light.

is to calibrate the imager with a sub percent precision, we have
decided to put the Elixir pipeline results under scrutiny and to
redetermine independently the grid correction maps applied to
the data.

6. The photometric grids

The photometric response non-uniformity maps are derived from
dithered observations of the two dense fields listed in Table 4.
The dithered sequence starts with an exposure followed by a se-
ries of 6 offset observations in the X direction and 6 in the Y di-
rection. The steps increase logarithmically from a few hundred
pixels up to half a mosaic. Such observations are performed al-
most each semester, and after each significant change in the op-
tical path. Table 5 lists all the datasets taken since the beginning
of the survey, along with the improvements of the optical path
performed by the CFHT team. In order to limit the shortcomings
of extinction corrections, observations are carried out in a sin-
gle sequence and over a limited airmass range (typically 0.01 or
less). This data is refered to as “grid observations” in the Elixir
parlance, and the corrections derived from them are called “grid
corrections”.

The grid exposures are processed with the standard Elixir
procedure, except that no photometric flat is applied to the pix-
els. The instrumental fluxes of the grid stars are therefore af-
fected by the 10% to 15% non-uniformities we are trying to
model.

The data is reduced using the standard SNLS reduction pro-
cedure described below (4.1). In particular, we filter the detected
objects on each individual exposure, selecting isolated star-like

Table 4. The dense stellar fields observed to model the imager non-
uniformities (Grid Fields).

Name RA Dec
Grid-1 06:30:00.00 14:20:00.0 winter field
Grid-2 20:00:00.00 10:00:00.0 summer field

Table 5. Grid field observations and MegaCam/MegaPrime optical
improvements.

Semester Date Field Band

2003B
2003-10-02 Grid-2 rMiM

2003-10-23 Grid-2 uMgMzM

2003-10-24 Grid-2 iMrM

2004A
2004-02-25 light baffle installed
2004-03-19 Grid-1 uMgMrMiMzM

2004B
2004-12-03 L3 Lens flipped upside-down
2004-12-03 Grid-1 gMrMiM

2004-12-11 Grid-1 uMgMzM

2004A 2005-07-20 Spacer moved (5.5 mm to 2.1 mm)

2005B 2005-09-20 Focal plane tilt tweaked
2005-10-10 Grid-2 uMgMrMiMzM

2006B

2006-09-13 Grid-2 iM

2006-09-14 Grid-2 rM

2006-09-15 Grid-2 zM

2006-09-16 Grid-2 uM

2006-09-19 Grid-2 gM

2007A

2007-03-21 Grid-1 rM

2007-03-22 Grid-1 uMgM

2007-03-23 Grid-1 iM

2007-03-24 Grid-1 zM

2007B

2007-10-18 Grid-1 iM 2
2007-11-08 Grid-1 iM 2
2007-11-11 Grid-1 rM

2007-11-12 Grid-1 gM

objects. In the rM-band, this leaves us with ∼1200 usable flux
measurements per CCD. For a whole grid sequence (13 dithered
observations), this represent about 100 000 stars measured twice
or more, and about 600 000 flux measurements.

6.1. The photometric response maps

Our goal is to determine how the instrumental magnitudes2 of
a star vary as a function of the position on the focal plane. In
practice, it is convenient to choose a specific location as the ref-
erence location, x0, and the relation between the instrumental
magnitudes of an object, at positions x and x0, mADU|x
and mADU|x0 can be parametrized as:

mADU|x − mADU|x0 = δzp(x) + δk(x) × col|x0

where col is some color of the star. The maps δzp(x) and δk(x)
are determined from the grid observations, and account for the
non-uniformities of the imager. By definition, these maps van-
ish at the reference location: δzp(x0) = 0 and δk(x0) = 0.
Physically speaking, δzp(x) encodes the spatial variations of the
overall integral of the bandpass, while δk(x) encodes (at first or-
der) the variations of its central wavelength. In what follows,
“passband variations” refer to variations of the passband shape

2 I.e. −2.5 × log10 φADU, where φADU is the instrumental flux of the
object, expressed in ADU per second.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=4
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irreducible to an overall constant. If the imager passbands are
uniform over the focal plane, we expect δk(x) to be zero every-
where. Conversely, if the imager passbands do vary as a func-
tion of the position, we should measure a non-zero color term
between positions x and x0.

The quantity col|x0 is the star color, measured in the
MegaCam passbands at the reference location. There is some de-
gree of arbitrariness in the definition of col|x0 , since it is always
possible to redefine the color reference col → col + Δcol, and
absorb the difference in the δzp(x)’s: δzp(x)→ δzp(x)− δk(x) ×
Δcol. Hence, there is a color convention associated with each
δzp(x) map, which must be made explicit. We choose to define
a conventional grid reference color, colgrid, and parametrize the
grid corrections as:

mADU|x − mADU|x0 = δzp(x) + δk(x) ×
[

col|x0 − colgrid

]
. (2)

There are several ways to choose the grid reference colors. One
possibility is to define them as the mean color of the grid stars,
in order to minimize the statistical uncertainties carried by the
δzp(x) maps. Another way is to choose them close to the colors
of the science objects under study. This way, the instrumental
magnitudes of these objects, once corrected by the δzp(x) maps
would be almost uniform on the focal plane. We must note how-
ever, that the grid reference colors are just internal quantities,
that do not affect the definition of the tertiary magnitudes.

In the next section, we detail how we extract the δzp(x) and
δk(x) maps from the grid data.

6.2. Measuring the photometric response maps

As described in Sect. 5 the grid data in one MegaCam band con-
sists in 13 dithered observations of a dense stellar field (about
100 000 isolated stars per exposure). Each field star being ob-
served at various locations on the focal plane, one can compare
the instrumental magnitudes at those locations and fit the δzp(x)
and δk(x) maps defined in the previous section.

To parametrize the grid maps, we chose to develop them on
basis functions: δzp(x) =

∑
k αk pk(x) and δk(x) =

∑
k βkqk(x).

Since the photometric response variations may be sharp, espe-
cially when transitioning from one CCD to another, we used a
basis of independent superpixels (also called cells thereafter),
rather than smooth functions such as splines or polynomials.
To model the δzp(x) map, we divided each CCD into Nx ×
Ny = 4× 9 superpixels. Each superpixel is 512× 512 pixels wide
and contains about 70 bright, isolated grid stars, which is enough
to measure the δzp(x) with a precision better than 0.001 mag.
We have found that determining the δk(x) requires more stars
per superpixel, in order to have a sufficient color lever-arm in
each cell. We therefore used larger cells, dividing each CCD into
Nx × Ny = 2 × 3 cells.

With such a parametrization, the number of grid parameters
is 4 × 9 × 36 + 2 × 3 × 36 − 2 = 1510, one cell being taken as
a reference for each map. Fitting such a model (i.e. building and
inverting a 1510 × 1510 symmetric positive definite matrix) is
routinely done on modern desktop computers.

With only 13 dithered exposures, about 99% of the grid stars
are never observed on the reference cells. Hence the instrumen-
tal magnitudes of these stars at the reference location, mADU|x0 ,
are never directly measured and must be fitted along with the
grid map parameters. The same is true for the star colors col|x0 ,
which means that we must analyze the grid data in two bands si-
multaneously. This adds about 200 000 (nuisance) parameters to

the fit, turning it into a large dimensionality, non-linear problem,
which is much more difficult to solve.

In order to make the problem tractable, we have followed
an iterative approach, after checking with simulations that this
is feasible. In the first step, we fit the data independently in
each band, ignoring the δk(x) × col terms. We then update the
star colors, and refit the grid data in each band. We have found
that it suffices to iterate the procedure twice in order to retrieve
the correct colors. No such iterative procedure applies for the
star magnitudes though. Fitting 100 000 parameters is still pos-
sible, using approximate methods, which do not require to build
the χ2 second derivative matrix, such as the conjugate gradient
method. It is also possible to fit alternatively one set of param-
eters, keeping the other ones fixed. We have experienced how-
ever, that the conjugate gradient method converges very slowly
and can lead to wrong solutions, if one is not ready to perform
the O(100 000) required iterations. Successive optimizations on
the grid parameters at fixed star magnitudes, and vice versa also
converge very slowly and remain far from the true minimum.

Fortunately, we have found that the structure of the prob-
lem is simple enough to allow us to obtain the true minimum of
the χ2, and determine simultaneously the grid parameters, the
grid star magnitudes, along with their exact covariances. The
details of the method are documented in details in Appendix A.
The approach in fact applies to many other calibration problems,
such as least squares for astrometric solutions as posed in e.g.
Kaiser et al. (1999); Padmanabhan et al. (2008). In the remain-
ing of this section, we will present the results obtained with this
technique.

6.3. Monte-Carlo checks

The extraction technique described in Appendix A was tested
on simulated data. Our main concern was to look for possible
degeneracies affecting the determination of the grid correction
parameters, as well as possible biases, coming from the fact that
the fit is slightly non-linear.

A realistic catalog of grid stars was built from real rM- and
iM-band measurements. Using this catalog, a photometric distor-
tion model and the dithering pattern applied to the grid sequence,
we generated a hundred realizations of a typical two-band grid
run. From this set of data, the grid corrections, δzp(x) and δk(x)
were reconstructed from each realization and compared to the
photometric distorsion model.

Figures 5 and 6 show the distribution of the difference be-
tween the simulated photometric distorsion model and the re-
constructed grid calibration parameters, in the iM-band, for all
the 100 realization processed. It is clear from those figures that
the extraction method is an unbiased estimator of the photomet-
ric distorsion model, as could be expected from a (almost) lin-
ear fit.

On the same figure, we have represented the same differ-
ence, obtained for one realization only. We see that the recon-
structed grid correction parameters are offset by a small amount,
and the value of the offset is almost exactly opposite for the
δzp(x) and the δλ(x). This effect comes from the structure of
the noise affecting the δzp(x) and δk(x) map estimates. All the
δzp(x) (resp. δk(x)) are positively correlated with a correlation
coefficient of about 0.5. These values can be easily explained if
we consider that each δzp (resp. δki) cell value is the difference
between the the zero point (resp. color term) of cell number i and
the zero point (resp. color term) of the reference cell.
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Fig. 5. Top panel: normalized distribution of the difference between
the reconstructed and simulated δzp(x) parameters, for 100 realization
(filled histogram) and 1 single realization (unfilled histogram). The re-
constructed grid parameters are globally affected by the uncertainty of
the reference cell zero point (see Sect. 6.3). Bottom panel: difference
of the reconstructed and simulated grid parameters as a function of the
cell number, for a single realization. No spatially dependent effect can
be detected.

Robustification algorithms have been implemented in the fit
procedure: the fit was performed several times, and at each cy-
cle, the measurements with a partial χ2 above 4 sigmas of the
median χ2 were removed. This is unavoidable, since least-square
methods are extremely vulnerable to outliers, and since we are
dealing with 105−106 measurements, potentially affected by un-
detected cosmics or bad pixels. We have checked the robusti-
fication scheme by generating 2% of outliers in the simulated
dataset. The error affecting the outliers was chosen uniform in
the [−2 mag;+2 mag] range. The results presented in Figs. 5
and 6 show that the robustification procedure correctly rejects
the outliers.

The extraction method described above ignores possible
variations of the atmospheric absorption during one dithering
scan. Since such variations can bias the grid parameter recon-
struction, it is tempting to fit, along with the grid parameters,
one global zero point per exposure, in order to correct from such
variations. We have implemented this model, and run it on sim-
ulated data. We have found, inspecting the covariance matrix of
the fit that there is an almost total degeneracy between the grid
parameters and the exposure zero-points.

Not surprisingly, the uncertainties on the reconstructed grid
parameters, marginalized over the exposure zero points are much
higher, of the order of several percents. Hence, the only way to
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Fig. 6. Top panel: distribution of the difference between the recon-
structed and simulated δk parameters, for 100 realization (filled his-
togram) and 1 single realization (unfilled histogram). The reconstructed
grid parameters are globally affected by the uncertainty of the reference
cell zero point (see Sect. 6.3). Bottom panel: difference of the recon-
structed and simulated grid parameters as a function of the cell number,
for a single realization. No spatially dependent effect can be detected.

deal with atmospheric absorption is to add a control exposure
at the end of the sequence, similar to the first exposure. This
would allow one to assess whether the sequence was photomet-
ric or not. Unfortunately, no such control exposure is currently
available. One may recover an acceptable accuracy by fitting
a coarser (typically one coefficient per CCD) non-uniformity
model to the data. One can still be reasonably confident that the
atmospheric variations do not affect the grid data. Indeed, before
taking a grid sequence, the observers ensured that the conditions
were indeed photometric according to the SkyProbe3 monitor.

Finally, it is interesting to compare the minimum χ2 values
obtained when fitting either the grid model presented above or
the same model, with all δk(x) parameters fixed to zero. We no-
tice that the δχ2 between both models is of the order of 3000
(for 215 parameters added). This is a very significant improve-
ment. However the fractional improvement on the fit residuals
remains very modest: below 10−2. This shows that when dealing
with such a large dimensionality problem, we can get a perfectly
acceptable reduced χ2

min for a model which is obviously wrong.
Hence, obtaining the true minimum of the χ2 function using an
exact technique such as the one presented in Appendix A is vital
to determine the optimal grid corrections.

3 www.cfht.hawaii.edu/Instruments/Elixir/skyprobe
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Fig. 7. gM , rM , iM- and zM-band δzp(x) maps determined from grid observations taken in 2005. In all bands, the instrumental flux of a star, measured
on the corner a flat-field corrected image, will be 10 to 15% higher than that of the same star, measured on the center of the mosaic. The plate scale
variations account for about half of this effect. The other half is attributed to so-called “scattered light”, i.e. light that does not follow the normal
path that form a star. In some bands, we see sharp steps between the two CCD amplifiers. These are due to the fact that the flat-field images are
taken by combining all the images taken during a run, and that the gain of the amplifiers can vary by about 1% during a run.

6.4. Results

All the datasets presented in Table 5 were analyzed with the
procedure described in Sects. 6.2, 6.3 and Appendix A. We
parametrize the color corrections as follows:

gADU|x = gADU|x0 + δzpg(x) + δkggr(x) ×
[
(g − r)|x0 − (g − r)grid

]

rADU|x = rADU|x0 + δzpr(x) + δkrri(x) ×
[
(r − i)|x0 − (r − i)grid

]

iADU|x = iADU|x0 + δzpi(x) + δkiri(x) ×
[
(r − i)|x0 − (r − i)grid

]

zADU|x = zADU|x0 + δzpz(x) + δkziz(x) ×
[
(i − z)|x0 − (i − z)grid

]
.

Figure 7 presents the gM, rM , iM- and zM-band δzp maps obtained
on the 2005B dataset, using images flat-fielded with twilight
flats. In all bands, a same star will yield a higher instrumental
flux if observed on the edge of the camera than if observed on
the center. These maps include the plate scale variations, but dis-
play larger non-uniformities. Juramy et al. (2008) present strong

evidence for internal reflections in the MegaPrime wide-field
corrector which add extra light in the center of the field of view,
and hence tend to explain the need for correcting twilight flats.
The structure of the δzp(x) maps evolves slowly as a function of
time, as shown in Fig. 8. This evolution is mainly due to small
changes in the optical path (see Table 5) and to the accumulation
of metal shavings from the filter exchange mechanism on the
top optical surface below the filter mechanism4, due to the in-
tense operation of the filter jukebox. This dust being somewhat
shiny, it probably modified the internal reflection pattern within
the optical path, corrupting the flatfields. The dust was identi-
fied and removed in January 2007, and a preventive program to
monitor the cleanliness of the optical path was set up.

The δk(x) maps are presented in Fig. 9. We do measure non-
zero color terms between the reference location and any other
focal plane location. This came as a surprise, and was later val-
idated by the filter scans provided by the filter manufacturer

4 More precisely, the tip-tilt plate, located above the wide-field
corrector.
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Fig. 8. rM−band δzp(x) maps determined from grid observations taken from 2003 to 2007. The variations of the maps are due to metal shavings
accumulating is the optical path, and modifying the “scattered light” pattern.

(see Sect. 7). The non-uniformity pattern is essentially
invariant by rotation around the center of each filter. This is
inherently the result of the manufacturer pushing the technol-
ogy when coating filters of that size (300 mm × 300 mm) with
multiple layers. The coating chambers simply do have a projec-
tion beam uniform enough to deliver the uniformity routinely
achieved on smaller filters. The δk(x) maps were determined in-
dependently on each grid set. No significant variations of the
maps were found between 2003 and 2006.

The reduced χ2
min obtained from the fits is of about 4 in the

gM-band and 3 in the rM , iM and zM-bands. Indeed, we have
neglected the contribution of the flat field errors and of the
fringing when evaluating the photometric measurement uncer-
tainties. Since the fit is linear, we have chosen to re-scale the
photometric errors by the appropriate amount, in order to obtain
χ2

min/ndof ∼ 1, and to renormalize the covariance matrix of the
grid corrections accordingly.

The statistical uncertainties affecting the δzp(x) are of a little
less than 0.001 mag in all bands. This uncertainty level is com-
parable to the photon noise affecting the bright star instrumental
magnitudes. The statistical uncertainties on the δk(x) maps are
of about 0.002 mag in all MegaCam bands. At the chosen grid

reference color, they are slightly correlated with the δzp(x) maps
with a correlation coefficient of −0.25. We have checked that, in
all bands, the statistical uncertainty introduced by the grid cor-
rections on the magnitudes transformed to the reference location
is never larger than 0.002 mag for stars of colors gM − rM < 1.0,
and of about 0.003 for stars of gM − rM ∼ 1.5.

The fact that the imager passbands depend on the focal plane
position has important consequences on the calibration scheme.
In particular, a significant part (up to 1−2%) of the uniformity
corrections depend on the color of each object. We will detail
how we account for the grid corrections in Sect. 6.6.

6.5. Comparison with Elixir findings

The Elixir analysis of the grid data did not find significant color
terms and solved for the δzp(x) without δk(x) terms and did not
solve for star magnitudes. The results are hence significantly dif-
ferent: the δzp(x) maps re-analyzed by the SNLS collaboration
span a range larger by about 0.04 mag than the ones found by
Elixir, as shown in Fig. 10. We found that the residual non-
uniformity pattern observed on the Elixir processed images is
not constant and varies from one grid observation set to another.
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Fig. 9. gM -, rM , iM- and zM -band δk(x) maps determined from grid observations taken in 2005. In all bands, we observe a radial pattern, which
is well reproduced using synthetic photometry and filter scans provided by the filter manufacturer (REOSC), as will be shown in Sect. 7.3. The
contour lines are displayed to allow the reader to estimate the amplitude of the passband variations.

The discovery of these non-uniformities triggered the reanalysis
of the grid dataset described above.

Up to the T0006 CFHTLS release (spring 2009), data were
processed using the standard Elixir recipe. The uniformity cor-
rections presented in the previous section will be integrated
in 2009 after further interactions with the Elixir team and the
CFHTLS users community. This is planned for the final release
of the CFHTLS data T0007 (spring 2010).

6.6. Applying the grid corrections to the data

Because the grid corrections are color dependent, it is impos-
sible to obtain uniform instrumental magnitudes for all ob-
jects. In practice, we have chosen to apply the δzp(x) maps
directly to the instrumental star magnitudes, defining so-called
“hat-magnitudes”:

ĝADU|x = gADU|x − δzpg(x)

. . .

ẑADU|x = zADU|x − δzpz(x) (3)

It would have been possible to apply them directly at the pixel
level. We have chosen to deal directly with the fluxes mainly for
practical reasons, as it did not imply a full reprocessing of the
SNLS data.

The hat magnitudes of stars of colors equal to the grid refer-
ence colors are uniform across the focal plane. The hat magni-
tudes of all other objects vary according to the relations:

ĝADU|x = gADU|x0 + δkggr(x) ×
[
(g − r)|x0 − (g − r)grid

]
. . .

ẑADU|x = zADU|x0 + δkziz(x) ×
[
(i − z)|x0 − (i − z)grid

]
. (4)

It should be pointed out once again that the definition of the hat
magnitudes depend on the conventional grid reference colors,
colgrid. However, we will see in Sects. 8 and 9 that the grid color
conventions are purely internal quantities and have no impact on
the calibrated tertiary magnitudes.

The instrumental magnitudes entering the calibration
pipeline were measured on the survey images processed with the
official Elixir pipeline, which included a correction for the non-
uniformities of the imager. This correction was applied at the
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Fig. 10. Residual non-uniformities measured on a set of grid exposures
taken during semester 2004B, and processed with Elixir, using the pho-
tometric correction maps in use for releases T0004.

pixel level (see above). Hence, what we measured were actually
“Elixir hat-magnitudes”:

ĝElixir
ADU|x = gADU|x − δzpElixir

g (x)

. . .

ẑElixir
ADU|x = zADU|x − δzpElixir

z (x). (5)

As a consequence, the Elixir grid corrections had to be removed
and the new δzp(x) corrections applied:

ĝADU|x = ĝElixir
ADU|x + δzpElixir

g (x) − δzpg(x)

. . .

ẑADU|x = ẑElixir
ADU|x + δzpElixir

z (x) − δzpz(x).

There are basically two ways to handle the residual color correc-
tions. We can elect a specific focal plane position (e.g. x0), trans-
form all the hat magnitudes to this position, using the δk(x) maps
and choose to report all the MegaCam magnitudes at this specific
position. However, stars are complicated objects, and even main
sequence stars do not follow linear color corrections over large
color ranges, of one magnitude or more. Furthermore, non stel-
lar objects such as galaxies or supernovae do not obey the grid
corrections. Instead, we chose to leave the science object instru-
mental magnitudes untouched, and define a system of “local nat-
ural magnitudes”. This is possible because the ditherings applied
to the survey images are small, which ensures that each object is
always observed with the same effective filters5. Working with
natural magnitudes ensures that they can be directly converted
into broadband fluxes, provided that we have a model of the tele-
scope effective passbands at each position of the focal plane –
as well as a spectrum with known magnitudes. Building such a
model is the subject of Sect. 7.

The average δk(x) maps may be obtained from the CDS. The
δzp(x) will be made available along with the next Elixir data re-
lease. Indeed, some further work with the Elixir team is needed,
in order to decide the optimal grid reference colors for each com-
ponent of the CFHT Legacy Survey and validate the new reduc-
tion procedure with a larger user base.

5 We call the combination of the filter passbands, the transmission
of the optics, the reflectivity of the mirrors, the quantum efficiency of
the detectors and the average transmission of the atmosphere effective
filters.

7. MegaCam passbands

7.1. Transmission of the filters in the telescope beam

MegaCam filters are interference filters and exhibit a transmis-
sion depending on the crossing angle, as expected for this type
of filters. We describe in this paragraph how we synthesized the
transmission of the filters in the telescope beam from laboratory
measurements of the filter transmissions.

We have at our disposal two kinds of laboratory measure-
ments: a set of transmission curves measured at about a dozen
of positions on the filter, all on the sides of the filters because
the equipment has a limited mechanical clearance. Some of the
positions were measured at 0, 2, 4 and 6 degrees from normal
incidence (Benedict, private communication). The other set of
measurements was provided by the filters manufacturer: it con-
sists in a transmission curve at normal incidence at 10 positions
along a radius for each filter. From the first set of measurements,
we can check that the circular symmetry is an excellent approx-
imation. We can also model the angular dependence. Assuming
the circular symmetry, interpolating the other set of measure-
ments provides us with transmission curves at normal incidence
anywhere on the filters. Since filters are located at about 10 cm
from the focal plane, we identify in what follows a position on
the focal plane with a position on the filter.

The angular dependence of interference filters transmission
can be approximated by:

T (λ, θ) = T

⎛⎜⎜⎜⎜⎜⎝λ
[
1 − sin2 θ

n2

]−1/2

, θ = 0

⎞⎟⎟⎟⎟⎟⎠
where n is the refracting index of the filter, and θ the incidence
angle. This expression, exact for a single Fabry-Perrot layer, is
sufficiently accurate to describe the angular dependence mea-
sured on the MegaCam filters. We find effective indices of 1.80,
1.70, 1.80, 1.60, 1.50 for uM, gM, rM , iM and zM respectively,
with an uncertainty of about 0.1. The angular dependence of
the transmission has potentially two effects: it induces a radial
dependence of the transmission of a filter, even if it were per-
fectly uniform; secondly, it shifts towards the blue the transmis-
sion in the telescope beam compared to the laboratory measure-
ments at normal incidence. The first effect is in fact very small
for MegaCam: the mean angle of the beam changes by about
10 milliradians between the center and the corner of the mosaic,
and the cut-on and cut-off wavelengths of a filter are shifted by
less than a part in 104, and cannot account for the position depen-
dence of the transmission measured on the sky. The second effect
turns out to be non-negligible in the f/4 beam at CFHT prime
focus: it shifts the filter central wavelengths by a few per mil.
In order to synthesize the transmission of the filters, we inte-
grated the measurements provided by the manufacturer over the
telescope beam (with central occultation), assuming the above
expression for the angular dependence. If compared to normal
incidence transmissions, the effective wavelengths shift to the
blue uniformly across the focal plane by amounts ranging from
4 Å for uM band to 14 Å for zM band.

7.2. Effective passbands

The effective passbands combine many contributions, among
which (1) the CCD quantum efficiencies (2) the filter transmis-
sions (3) the transmission of the various lenses and windows in
the optical path (4) the mirror reflectivity (5) the average atmo-
spheric transmission at Mauna Kea as recently determined by
the Nearby Supernova Factory (SNF) (Buton & SNfactory 2009)
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Fig. 11. Difference between the iM instrumental magnitude of stars lo-
cated on the edge of the focal plane (ccd # 9, 17, 18 and 26) as a func-
tion of their (rM − iM) color at the reference location. The large dots
are the profile of the star measurements, corrected for the δzp(x) map,
the small dots are the synthetic magnitudes, computed using the Pickles
(1998) library and models of the passbands at the the center of the focal
plane and at 11.5 cm from the center. The line shows the average linear
grid color correction δk(x) × (rM − iM). As can be seen, the grid color
corrections are well approximated by linear relations.

and (6) the transmission spectrum of the telluric features includ-
ing the strong O2, OH and H20 absorption features in the red and
near infrared (Hinkle et al. 2003).

The effective passbands, along with their ingredients are
listed in Appendix B. The full electronic version of these tables
can be retrieved from the CDS.

7.3. Comparison of the observed and synthetic color terms

Figure 11 compares the iM-band instrumental magnitudes of
stars observed at the edge of the focal plane and at the refer-
ence location as a function of the star (rM − iM) colors. As can
be seen, there is a good agreement between the synthetic mag-
nitudes computed using the effective passband models presented
in this section and the grid measurements. Note also that the ef-
fect of the filter non-uniformities is small, and well described by
a linear color term. Figure 12 compares the color terms across
the focal plane measured with the grid data with synthetic eval-
uations from the Pickles (1998) stellar library. Except for the
filter itself, we used average transmissions, and in particular the
average quantum efficiency curve for the CCDs.

Similar results are obtained using the Stritzinger et al. (2005)
stellar library, except for the rM band, where the agreement be-
comes worse than shown here. We suspect that stellar SEDs are
poorly indexed by rM − iM , and do not regard this mild disagree-
ment (at the level of 0.01) as very serious. The fair agreement
in the other bands, together with its stability with a change of
stellar library is indeed a good indication of the quality of the
grid solution. Taken at face value, the differences between the
two sets of curves cause shifts of the zero points below the mil-
limagnitude level for all bands (and is hence negligible) except
for rM band where it would reach 2 mmag. We decided to ig-
nore this potential contribution to the error budget because the
synthetic rM color terms are very sensitive to the assumed stellar
population, making the result questionable.

Fig. 12. Comparison of the color terms measured on the grid data, with
synthetic ones as a function of the distance to field center. The mea-
surement points are averages at the quoted radius, with their error bars
displaying the rms over the circle. The synthetic ones are computed by
integrating the Pickles (1998) stellar library in the synthetic transmis-
sions. The synthetic color terms depend only mildly on the color range
and stellar types, except for the rM band, where the disagreement wors-
ens with the Stritzinger et al. (2005) library.

8. Landolt stars

8.1. The Landolt photometric system

The photometric catalog published by Landolt (1992b) is
the most widely used standard star network. It contains
UBVRI Johnson-Kron-Cousins magnitudes of 526 stars centered
on the celestial equator in the 11.5 < V < 16.0 mag range. The
repeatability is of about 1% in all bands resulting in magnitude
uncertainties of 0.003 mag. The uniformity of the catalog is be-
lieved to be excellent, of about 1%. This standard star network
was used to calibrate the broadband observations of the nearby
SNe Ia used to supplement the SNLS dataset. The systematic
differences between photometric systems are not well controlled
and can amount to 2−4%. In order to avoid this additional source
of error in the cosmological analyzes, we rely on the Landolt
(1992b) standard star network to calibrate the SNLS survey.

The genealogy of the Landolt UBV magnitudes can be traced
back to the pioneering work of Johnson & Morgan (1951, 1953);
Johnson & Harris (1954); Johnson (1955, 1963). Landolt (1973)
transferred the Johnson (1963) photometric system to a set of
642 bright (6.0 < V < 12.5) equatorial stars, selected for their
stability. This program was conducted at Kitt Peak National
Observatory (KPNO), using the 16- and 36-inches telescopes,
and a refrigerated 1P21 photomultiplier similar to that used
by Johnson and collaborators. R- and I-band magnitudes were
added about ten years later. The catalog published in (Landolt
1983) gives UBVRI magnitudes of 223 7.0 < V < 12.5 stars.
This work was based on observations made on the Cerro Tololo
Inter-American Observatory (CTIO) 0.4- and 0.9-m telescopes,
using a different type of photomultiplier (RCA 31034) and
slightly different filters. The UBV magnitudes were tied to the
Landolt (1973) system, the RI band observations were tied to
the system defined by Cousins (1978). Finally, Landolt (1992b)
published UBVRI magnitudes of 526 fainter (11.5 < V < 16.0)
equatorial stars, tied to the 1983 catalog. This catalog was built
from observations taken with the CTIO 0.9-m and 1.5-m tele-
scopes, RCA 31034A and Hamamatsu R943-02 photomultipli-
ers and the same UBVRI filters used to develop the 1983 catalog.
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Additional papers containing photometry of particularly well-
studied stars, mainly spectrophotometric standards were also
published (Landolt 1992a; Landolt & Uomoto 2007). In partic-
ular, Landolt & Uomoto (2007) contains Landolt magnitudes of
31 stars, among which spectrophotometric standards used to cal-
ibrate the Hubble Space Telescope. Most Landolt (1992b) stan-
dards are red objects with an average B − V color of 0.81 ±
0.52(rms). The Landolt stars observed by MegaCam are mainly
located in the Selected Area (SA) fields, which contain very few
blue stars. The average B−V color of the Landolt stars observed
with MegaCam is 0.77 ± 0.31(rms). As a consequence there are
very few observed stars in the color range 0 < B − V < 0.25.

Contrary to statements found in the literature, the Landolt
system is not defined in terms of any particular magnitude of
Vega, nor is the Johnson system. The absolute “gray” zero-point
of the Johnson system is linked to the former “International
Photovisual System” via 9 stars in the so-called “North Polar
Sequence”, reobserved by Johnson & Morgan (1951). The color
zero-points were set from 6 A0V stars of which Vega is one,
by the condition that the average B − V and U − B color in-
dex of these stars is exactly zero (Johnson & Morgan 1953).
Vega and the North Polar Sequence objects were too bright for
Landolt to observe, even on small telescopes. As noted above,
the Landolt R and I magnitudes are tied to the system defined
by Cousins (1976). The zero-points of this latter system are also
defined so that the colors of a “typical” A0V star are all zero.
However, no mention of Vega appears in Cousins (1976). Hence,
there are large uncertainties on the magnitudes of Vega in the
Landolt system.

It must also be noted that the Landolt system is not a natu-
ral system. The reduction procedure used to derive the calibrated
magnitudes from the raw observations is described in great detail
in Landolt (2007) and can be summarized as follows. First, air-
mass corrections are applied to the data in order to obtain mag-
nitudes above the atmosphere. Second order (i.e. color depen-
dent) corrections are applied to the B − V , U − B, V − R, R − I,
V − I color indexes, while only a first order correction was ap-
plied to the V band magnitudes. Then, zero-points as well as
(unpublished) linear color corrections are determined, for each
night using standard stars. This procedure is not discussed in the
Landolt (1973, 1983, 1992b) papers. The zero-points and color
corrections are parametrized as:

V = V|X=0 + z + f × (B − V)|X=0

(B − V) = (B − V)|X=0 + a + b × (B − V)|X=0

(U − B) = (U − B)|X=0 + c + d × (U − B)|X=0

(V − R) = (V − R)|X=0 + p + q × (V − R)|X=0

(R − I) = (R − I)|X=0 + r + s × (R − I)|X=0

(V − I) = (V − I)|X=0 + t + u × (V − I)|X=0

where the (X = 0) quantities are the instrumental magnitudes
and colors extrapolated to an airmass of zero. The color correc-
tion parameters vary from night to night, and can be large. For
example, while building the Landolt & Uomoto (2007) catalog,
typical values of +0.026, +1.036, +0.913, +1.033 and +1.093
and +1.069 were derived for the f , b, d, q, s and u parameters re-
spectively (Landolt, private communication). Finally, at the end
of the reduction procedure, smaller color corrections are applied
to the calibrated magnitudes, in order to account for the changes
of instrumentation throughout each program. These corrections
are discussed in the Landolt papers. They are non-linear and
parametrized using (non-continuous) piecewise-linear functions.
They are generally about a factor two smaller than the unpub-
lished color corrections discussed above.

An obvious difficulty when trying to calibrate MegaCam
against the Landolt system, is that the UBVRI and
gM , rM, iM , zM passbands are extremely different, leading
to large and non-linear color transformations between both
systems. Furthermore, these color transformation are extremely
difficult to model, especially for blue stars (0 < B − V < 0.4)
given the scarcity of the Landolt stars in this region.

Note also that the reddest Landolt band, I-band, is signifi-
cantly bluer than the MegaCam zM-band. Hence, calibrating the
latter band requires extrapolating the Landolt calibration to red-
der wavelengths.

In Astier et al. (2006), we attempted to model these color
transformations, using synthetic photometry and the library of
spectra published by Pickles (1998). The color transformations
were interpolated from the synthetic MegaCam-Landolt gM −
V vs. B − V . . . zM − I vs. R − I color−color diagrams. The
synthetic magnitudes of each spectrum were computed using
(1) models of the Landolt and MegaCam passbands and (2) the
measurement of the Vega spectral energy distribution published
by Bohlin & Gilliland (2004b). The MegaCam filter model was
not as sophisticated as the one presented in Sect. 7 and in
Appendix B. It was an average of the Sagem/REOSC measure-
ments. Hence it was significantly bluer than the filters at the cen-
ter of the focal plane. To approximate the Landolt passbands,
we used the determinations published in Bessell (1990), each
one being shifted in wavelength by a quantity δλ that had to be
determined. These shifts were estimated by comparing the syn-
thetic and observed Landolt magnitudes of the Baldwin Stone
Southern Hemisphere spectrophotometric standard, observed by
Landolt (1992a); Hamuy et al. (1992, 1994). We found at that
time that the B,V,R and I Bessell filters had to be blueshifted
by 41, 27, 21 and 25 Å respectively, in order to match the Landolt
effective filters. The Landolt-to-MegaCam synthetic color trans-
formations computed using these blueshifted filters reproduced
the measurements well.

Redoing this study using the new determination of the
MegaCam filters, and alternate libraries of spectrophotometric
standards with known Landolt magnitudes, (Stritzinger et al.
2005; Bohlin 2007, aka CALSPEC) we were not able to repro-
duce the blueshifts listed above. Both libraries gave compatible
results, namely small redshifts of less than 10 Å for the B, V
and R-bands, and a blueshift of about −40 Å for the I-band. The
reasons for the discrepancy between the results relying on the
Hamuy data, on one hand, and the Stritzinger or CALSPEC data
on the other hand are not yet well understood. It may point to
a wavelength, or flux calibration problem affecting the Hamuy
et al. (1992, 1994) spectra. By an unhappy coincidence, the
(probably) incorrect Bessell filter blueshifts derived in Astier
et al. (2006) allowed us nevertheless to obtain the correct syn-
thetic color transformations, because the MegaCam filter mod-
els we used at that time were also slightly bluer than our current
model at the center of the focal plane, where most Landolt stars
are observed (see Fig. 13).

Because of the large differences between the Landolt
and MegaCam filters, the modeling of the large Landolt-to-
MegaCam color relations turned out to be delicate. In addition
to the broken linear relations used in this paper (see below), we
also considered a more physical model based on SED libraries
and manipulating filter passbands. To decide between the two
approaches, we did a series of blind tests on fake standard star
observations based on physical models and including realistic
noise. We found that the broken linear method used here was
considerably more robust to uncertainties in the stellar library,
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Fig. 13. Average number of Landolt star observations per CCD, in the
iM-band. CCD number 0 is top left, while CCD number 35 bottom right.
Two to three stars per night and per band are observed on the central
CCDs. On the other hand, often less than 0.5 (and even less than 0.1 for
CCDs 27 to 35) star are observed on the CCDs located on the side of
the focal plane. Hence, each CCD cannot be calibrated independently,
and we have to rely on the uniformity maps to propagate the calibration
to the entire focal plane.

although at the cost of not providing as direct a physical inter-
pretation to our measurements.

Further attempts to refine the analysis presented in Astier
et al. (2006) using synthetic photometry proved unsuccessful.
Eventually, we came to the following conclusions. First, it is
illusory to seek a description of the Landolt system as a nat-
ural system of some “effective” hypothetical instrument. Using
shifted Bessell filters to describe the Landolt passbands is not ac-
curate given how the shape of these filters differ from the shape
of the filters used by Landolt. For example, using a refined mod-
eling of the Landolt instrument, we obtained an estimate of the
B − V magnitude of Vega which differed by 0.02 mag from the
estimate obtained with shifted Bessell filters.

Second, the concept of Landolt-to-MegaCam color transfor-
mation is not well-defined. These transformations depend on the
mean properties (metallicity and logg) of the stellar population
observed by Landolt. In particular, since there are less than a
dozen of Landolt stars observed in the 0 < B − V < 0.25 re-
gion – where most A0V stars lie, including Vega – there are
large systematic uncertainties affecting these transformations in
this region.

Finally, it is possible to reduce significantly the impact of
the systematics affecting the Landolt-to-MegaCam color trans-
formations by choosing a fundamental standard whose colors are
close to the mean color of the Landolt stars. It is then enough to
model roughly the color transformations using piecewise-linear
functions, as described in the next section. The choice of an op-
timal primary standard is discussed in Sect. 10.

8.2. Calibration model

Landolt fields are observed almost each potentially photomet-
ric night. The flux of the Landolt stars is measured using the
aperture photometry algorithm described in Sect. 4. On aver-
age, between 2 and 3 stars are observed each night, in each
band, on each central CCD (Fig. 13). On the other hand, less

than 0.5 Landolt star per night are observed on the CCDs which
are on the sides of the focal plane. The Landolt star observations
allow us to determine the zero-points of each night, in each band,
along with additional (nuisance) parameters, such as the coeffi-
cients describing the Landolt to MegaCam transformations and
the mean airmass coefficients.

Due to the significant differences between the Landolt
Johnson-Kron-Cousins-UBVRI and MegaCam gM, rM , iM ,
zM filter-sets, the Landolt-to-MegaCam color transformations
were found to be large and even non-linear. We model them us-
ing piecewise-linear functions of the form:

C(color;α, β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α × color, if color < colorbreak

α × colorbreak + β ×
(
color − colorbreak

)
,

otherwise

where color is a Landolt color. The equation above has three un-
known parameters: 2 slopes, α and β, and a “color break” mark-
ing the transition between the two slopes. The slopes α and β are
fitted along with the zero-points. The parameter colorbreak is ad-
justed by studying the fit residuals, and fixed. We have found that
the sensitivity of the zero points to the break position is small: in
all bands they vary by less than 0.0015 mag if the break varies
by 0.1 mag. As discussed above, if we choose a fundamental
standard whose colors are similar to the Landolt star colors, the
impact of the break position will be even smaller than 0.001 mag.

Since the MegaCam passbands are not uniform, there are, in
practice as many photometric systems as there are locations on
the focal plane. The density of Landolt stars in the calibration
fields does not allow us to calibrate independently each loca-
tion, and we must rely on the grid maps to propagate the cal-
ibration to the whole focal plane. To establish the calibration
equations, let’s first assume that the Landolt stars are all ob-
served at the reference location, x0. The relations between the
MegaCam instrumental “hat magnitudes” (corrected for “gray”
non-uniformities) as defined in Sect. 6 and the magnitudes re-
ported by Landolt (UBVRI) can be parametrized as:

ĝADU|x0 = V − kg(X − 1) +C(B − V;αg, βg) + ZPg
r̂ADU|x0 = R − kr(X − 1) +C(V − R;αr, βr) + ZPr

îADU|x0 = I − ki(X − 1) +C(R − I;αi, βi) + ZPi

ẑADU|x0 = I − kz(X − 1) +C(R − I;αz, βz) + ZPz.

X is the airmass of the observation, ku, . . . kz are the airmass coef-
ficients and ZPu, . . .ZPz the zero-points. The free parameters of
the calibration relations above are the five airmass terms kugriz,
the ten color transformations slopes αugriz and βugriz and about
1600 zero points – one zero-point per night and per band. All
these parameters are fit simultaneously on the whole calibration
dataset.

The airmass range of the calibration data taken each night is
extremely variable and does not allow one to fit an airmass co-
efficient per night and per band. For this reason, we have chosen
to fit one global airmass coefficient per band. This has no conse-
quence on the tertiary magnitudes which are built by averaging
the data coming from many different epochs.

Quite often, second order terms of the form k′ × (X − 1) ×
color enter the airmass parametrization and are neglected here.
This will be discussed in more detail in Sect. 12. We have esti-
mated the magnitude of these contributions using the passband
models discussed in Sect. 7 and synthetic photometry and found
them to be extremely small (<0.001 mag).

In reality, the Landolt stars are not observed at the focal plane
reference location, but at many random locations. We therefore

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=13
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rely on the grid transformations determined in Sect. 6 in order
to relate the instrumental magnitudes of the Landolt stars at any
position with the same magnitudes at the reference position. The
calibration equations actually implemented in the zero-point fit
are therefore a little more complex:

ĝADU|x = δkggr(x)
(
(g − r)|x0 − (g − r)grid

)
+ V − kg(X − 1)

+C(B − V;αg, βg) + ZPg
. . .

ẑADU|x = δkziz(x)
(
(i − z)|x0 − (i − z)grid

)
+ I − kz(X − 1)

+C(R − I;αz, βz) + ZPz.

These equations imply that the MegaCam colors of the Landolt
stars, measured at the reference location: (g − r)|x0 , . . . (i − z)|x0

must be determined in the course of the calibration fit. They are
determined iteratively from the MegaCam observations of the
Landolt stars: in a first pass, we ignore the color grid corrections
and obtain a first approximation of the MegaCam colors of the
Landolt stars. These colors are then injected into the fit, and we
iterate.

The fact that the grid reference colors appear explicitly in
the calibration equations may seem a little odd. As mentioned
above, these colors are internal quantities, and should not impact
the calibration. Indeed, it can be verified that changing the grid
reference colors and changing the δzp(x) maps entering in the
definition of the hat magnitudes accordingly has no impact on
the value of the zero points.

Finally, a few words must be said about the uncertainty
model. One must recall that the Landolt stars do not form
an exact one-parameter sequence, and cannot be perfectly in-
dexed by one color only. In practice, the Landolt-MegaCam
color−color diagrams are affected by an intrinsic star-to-star
dispersion partly of astrophysical origin, of about 1% in the
gMrMiM-bands and 2% in the zM-band. The dispersion of the fit
residuals is dominated by this star-to-star dispersion and not by
the star measurement uncertainties (closer to 0.1%). Since each
star is measured several times, this means that the error model
has a very specific structure which must be modeled. The star-
to-star dispersion, in each band, is estimated from the fit resid-
uals. The correlations between the same band contributions of
each star are accounted for by fitting one additional parameter
per star and per band, δmag, this parameter being constrained by
adding terms in the χ2 of the form

(
δmag/σstar−to−star

)2.

8.3. Results

Figure 14 presents the color−color diagrams considered in the
zero-point fit described above. The parameters of the Landolt-
to-MegaCam color transformations are summarized in Table 6.
These slopes are measured with precisions of about 1% on
average, this error budget being dominated by the star-to-star
dispersion.

The airmass coefficients are summarized in Table 6. As can
be seen, they do differ from the mean coefficients reported by
Elixir, and these differences induce sizeable differences on the
calibrated magnitudes.

Figure 15 presents the variation of the gM, rM , iM and
zM zero-points as a function of time. The effect of dust accu-
mulating on the optical path is clearly visible. The recoveries
observed at various points of the survey can be explained with

the full MegaCam /MegaPrime history log6. The spectacular im-
provement observed at the beginning of the survey is due to the
recoating of the mirror (August 15th, 2003). Two additional sig-
nificant improvements were due to mirror cleanings (April 14th,
2004 and January 26th, 2005). Note that an additional mirror re-
coating took place on August, 2007, during the fourth year of the
survey. It allowed one to recover the efficiency levels observed
at the beginning of the survey.

The zero-point uncertainties determined at this stage are of
about 0.007, 0.003, 0.004 and 0.011 mag in the gM, rM , iM- and
zM-bands respectively. These uncertainties, are dominated by the
uncertainties on the color transformation parameters discussed
above. Indeed the average Landolt star colors are very far from
zero: B−V ∼ 0.77, V−R ∼ 0.46 and R−I ∼ 0.42. Since the color
transformations are global, this also means that the zero-points
in a given band are correlated. If we remove the color transfor-
mation contributions, the intrinsic zero-point uncertainties are of
about 0.003 mag in the gM, rM , iM-bands and 0.005 mag in zM .

We will see in the next sections that the impact of the zero-
point uncertainties on the flux interpretation of the tertiary stan-
dard actually depends on the colors of the fundamental standard
used to interpret the fluxes. If we choose a standard such as
Vega, the color transformation uncertainties will dominate. If we
choose a star whose colors are closer to the average Landolt star
colors, the zero-point contributions to the calibrated flux error
budget will be close to the intrinsic uncertainties.

9. MegaCam magnitudes

We are now ready to define the MegaCam magnitude sys-
tem. As discussed in the introduction of this paper, a require-
ment of the SNLS calibration is that the MegaCam magnitudes
must be easily interpreted as physical fluxes. This requires that
the MegaCam magnitudes be defined as natural magnitudes,
i.e. their definition should not integrate any term depending on
each star’s color.

9.1. Uniform magnitudes

First, let’s assume that the MegaCam passbands are spatially uni-
form. Or equivalently, that all our tertiary standards are observed
at the focal plane reference location. In this case, the definition
of the MegaCam magnitudes is:

g|x0 ≡ ĝADU|x0 + ZPg
. . .

z|x0 ≡ ẑADU|x0 + ZPz

In reality, the tertiary standards are observed at various reference
locations. But since we know how the hat magnitudes transform
all over the focal plane, we can define the MegaCam magni-
tudes as:

g|x0 ≡ ĝADU|x − δkggr(x) ×
[
(g − r)|x0 − (g − r)grid

]
+ ZPg

. . .

z|x0 ≡ ẑADU|x − δkziz(x) ×
[
(i − z)|x0 − (i − z)grid

]
+ ZPz. (6)

With this definition, the calibrated magnitudes do not depend on
the focal plane position where the stars have been observed. We
call them Uniform Magnitudes. These are typically the kind of

6 http://www.cfht.hawaii.edu/Instruments/Imaging/
MegaPrime/megaprimehistory.html

http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/megaprimehistory.html
http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/megaprimehistory.html
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(a) gM − V vs. B − V (b) rM − R vs. V − R

(c) iM − I vs. R − I (d) zM − I vs. R − I

Fig. 14. Upper panels: color−color plots considered in the gM , rM , iM and zM zero-point fits. The black points correspond to individual Landolt
star measurements. The red points are the average of the calibrated measurements of a same star. The color−color transformations are modeled
as piecewise-linear functions, with breaks at B − V = +0.45, V − R = +0.65, R − I = +0.40 and R − I = +0.35 in the gM , rM , iM and zM bands
respectively. Lower panels: color−color plots residuals (average of each Landolt star’s calibrated measurements only).

Table 6. Landolt to MegaCam color transformation slopes and airmass correction terms.

Band Landolt Color α β k kElixir
a

color index break
gM B − V +0.45 +0.4957 ± 0.0153 +0.4583 ± 0.0026 −0.1830 ± 0.0017 −0.15
rM V − R +0.65 +0.1654 ± 0.0049 +0.2079 ± 0.0248 −0.1346 ± 0.0017 −0.10
iM R − I +0.40 +0.2069 ± 0.0093 +0.1702 ± 0.0056 −0.0467 ± 0.0017 −0.04
zM R − I +0.35 −0.1949 ± 0.0301 −0.4420 ± 0.0133 −0.0585 ± 0.0034 −0.03

a Canonical airmass coefficients reported by the Elixir pipeline in the image headers.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=14
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(a) gM (b) rM

(c) iM (d) zM

Fig. 15. gM , rM , iM and zM zero-point as a function of time. The zero-point evolution is classically due to dust accumulating in the optical path
and the natural degradation of the mirror coating over time. We also indicate the main events (recoating, labeled “[R]”, and washings “[W]”)
which affected the primary mirror during the three first years of the survey. The significant improvement observed around +200 days is due a
mirror recoating (August 15th, 2003). The effect of two additional mirror cleanings, which took place on April 14th, 2004 and January 26th, 2005
are also clearly visible. The full MegaCam/MegaPrime history log is available at http://www.cfht.hawaii.edu/Instruments/Imaging/
MegaPrime/megaprimehistory.html.

magnitudes we would like to report to the end users, since they
hide the complexity of the MegaCam imager to the external user.
However, the Uniform Magnitudes are not natural magnitudes:
indeed, they include a color term in their definition.

9.2. Local natural magnitudes

The definition above tells us how to define the MegaCam natural
magnitudes. They must incorporate the grid color corrections.
We define these magnitudes as:

g|x ≡ g|x0 + δkggr(x) ×
[
(g − r)|x0 − (g − r)ref

]
. . .

z|x ≡ z|x0 + δkziz(x) ×
[
(i − z)|x0 − (i − z)ref

]
(7)

where g|x0 . . . z|x0 are the magnitudes defined above, and (g−r)ref
. . . (i − z)ref arbitrary color zero points. With this definition, the
relation between the calibrated magnitudes and the instrumental
magnitudes is:

g|x = ĝADU|x + ZPg − δkggr(x) ×
[
(g − r)ref − (g − r)grid

]
. . .

z|x = ẑADU|x + ZPz − δkziz(x) ×
[
(i − z)ref − (i − z)grid

]
. (8)

As we can see, the g|x, . . . z|x form a natural magnitude system.
We call them Local Natural Magnitudes. On the other hand, the
definition of these magnitudes explicitly depends on where each
star was observed on the focal plane.

Once again, it is easy to verify that the calibrated magni-
tudes do not depend on the choice of the grid reference colors,
since the quantities m̂ADU|x + δk(x) × (colorgrid) are themselves
independent of those reference colors. We also have introduced
another set of reference colors: (g− r)ref , . . . (i− z)ref . These col-
ors have the same status as the grid reference colors: they have
been introduced to make explicit that there is some degree of
arbitrariness in the Local Magnitude definition. In practice, it is
useful to take these colors equal the colors of the fundamental
standard at the center of the focal plane:

(g − r)ref = (g − r)ref
|x0

(r − i)ref = (r − i)ref
|x0

(i − z)ref = (i − z)ref
|x0
.

10. Flux interpretation of the MegaCam magnitudes

Now that we have defined a system of natural magnitudes, we
still have to explicit the magnitude to flux conversion. To do this,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=15
http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/megaprimehistory.html
http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/megaprimehistory.html


1018 N. Regnault et al.: Photometric calibration of the SNLS fields

we rely on a “fundamental spectrophotometric standard”, i.e. a
star of known SED, S ref(λ) and known MegaCam magnitudes in
the system defined above. The calibrated broadband flux, F|x of
an object of magnitude m|x is then:

F|x = 10−0.4 (m|x−mref) ×
∫

S ref (λ)T (λ; x)dλ (9)

where T (λ; x) is the effective passband of the imager at loca-
tion x on the focal plane.

Systematic uncertainties affect this mapping function. First,
the MegaCam passbands are not known perfectly. Furthermore,
the SED of the fundamental standard is not perfectly mea-
sured. Finally, the MegaCam magnitudes of the fundamental
standard, in the system defined in the previous section are not
known perfectly. At best, the fundamental standard is directly
observed with the survey telescope, and the measurement uncer-
tainties must be taken into account. Most often, the fundamen-
tal standard is too bright to be directly observed, and its mag-
nitudes must be inferred in some way, introducing additional
uncertainties.

It must also be noted that the quantities relevant for the cos-
mology studies are not exactly physical fluxes, but rather the ra-
tio of physical fluxes, measured in different passbands. In other
words, the cosmological measurements are completely insensi-
tive to any change of the absolute flux scale. For this reason,
we report the uncertainties of the fluxes and magnitudes rela-
tive to a reference band, namely the Landolt V-band. In partic-
ular, the relevant uncertainties are those affecting (1) the ratios∫

S ref (λ)T (λ; x)dλ/
∫

S ref (λ)V(λ)dλ and (2) the colors gref − V ,
rref − V , iref − V and zref − V .

10.1. Selecting a fundamental standard

No spectrophotometric standard usable as a fundamental stan-
dard has reliable magnitudes established from MegaCam obser-
vations. Such a program is underway, but has not been completed
yet. The MegaCam magnitudes of the fundamental standard
must therefore be infered from its Landolt magnitudes, using the
Landolt to MegaCam color transformations. For example, if the
Landolt colors of the star are bluer than the color break:

gref
|x0
= V ref + αg × (B − V)ref + Δgref

|x0

. . .

zref
|x0
= Iref + αz × (R − I)ref + Δzref

|x0
(10)

where the quantities Δmref
|x0

account for the fact that the funda-
mental standard departs slightly from the Landolt-to-MegaCam
color−color law. The uncertainties on the MegaCam magnitudes
of the fundamental standard account directly as systematic er-
rors on the calibrated fluxes. The Δmref

|x0
offsets can be as large

as one percent, given the standard deviation of the residuals to
the Landolt-to-MegaCam color laws. Hence, they must be evalu-
ated, using synthetic photometry. Furthermore, we point out that
the uncertainty on the Landolt-to-MegaCam color transforma-
tions also affect the estimates of g|x0 , . . . z|x0 . Our concern in this
section, is therefore to choose a fundamental standard, which
would allow us to minimize this error budget.

A standard choice is the star α-Lyræ, also called Vega. Vega
is one of the six A0V stars that define the zero-points of the
historical Johnson & Morgan (1951, 1953) UBV system. The
Landolt magnitudes of this star being all close to zero (although
not exactly zero), the Landolt system is often (improperly) re-
ferred to as a “Vega based system” and the SED of Vega is

generally used to convert the Landolt magnitudes into fluxes.
This was the approach used in Astier et al. (2006). The “canoni-
cal” magnitudes of Vega reported, for example in Fukugita et al.
(1996) were used to twist the SED of Vega measured by Bohlin
& Gilliland (2004b) and to get an approximation of the SED of
the hypothetical fundamental standard of the Landolt system.

However, a close study of the systematic error budget shows
that Vega is not a wise choice if we seek a 1% precision or better
on the calibrated fluxes. First, Landolt did not actually observe
Vega directly while building his catalogs due to its brightness.
An estimate of the Landolt Vega U − B and B − V colors can
be obtained by propagating the initial measurements of Johnson
& Morgan (1951) through the color transformations cited by
Landolt (1973, 1983, 1992b). The R − I color index can traced
back from the original Cousins (1978) papers. However, val-
ues of R − I that differ by about 0.05 mag are cited in Taylor
(1986); Fukugita et al. (1996). Furthermore, no measurement of
the V − R color index could be found in the literature. In any
case, it is not possible to guarantee a precision of 0.01 mag on
the Vega magnitudes reconstructed in such a way.

Another problem with Vega, is that it is significantly bluer
than the average Landolt star (B−V ∼ 0.77) and the average ter-
tiary standards. As discussed in Sect. 8, there are large uncertain-
ties associated with the modeling of the Landolt-to-MegaCam
color transformations. In particular, given the low number of
blue Landolt stars, it is nearly impossible to tell anything about
the linearity of the color transformations in the bluer parts of the
color-color diagrams. Furthermore, as noted in Sect. 8, the blue
side of the Landolt-to-MegaCam transformations (the α param-
eters) are determined with a precision not better than 1.5% in g
and 3% in z. This induces an additional uncertainty of about 1%
on the MegaCam colors of Vega infered with Eq. (10). This prob-
lem disappears if we use, as a fundamental standard, a star of
colors close to the average color of the Landolt stars, and if pos-
sible, a star directly observed by Landolt.

Few Landolt stars have measured spectral energy distribu-
tions, covering the wavelength-range 3000−11 000 Å covered
by MegaCam. The HST community has put considerable ef-
fort into building a database of high-quality spectrophotometric
standards – the so-called CALSPEC database (Bohlin 2000a).
An absolute flux scale was defined, based on NLTE mod-
els of three pure hydrogen white-dwarfs: G191-B2B, GD 153
and GD 71. The SEDs of several key standards such as Vega
and BD +17 4708 have been re-observed and re-calibrated
with the Space Telescope Imaging Spectrograph (STIS) and
the Near Infrared Camera and Multi-Object Spectrometer
(NICMOS) instruments (Bohlin 2000b; Bohlin & Gilliland
2004b; Bohlin 2007). More recently, Landolt & Uomoto
(2007, hereafter LU07) published magnitudes of some of the
CALSPEC HST spectrophotometric standards. Combining these
two sources, we found that six stars have simultaneously
known Landolt magnitudes and known SEDs, published by
the CALSPEC project and measured exclusively with the HST
STIS and NICMOS instruments: AGK +81 266, BD +17 4708,
G 191-B2B, GD 71, GRW 705824 and LDS 749B. Most of these
objects are very blue stars, except BD +17 4708, whose colors
are close to the average Landolt colors.

We have therefore selected BD +17 4708 as a fundamen-
tal standard. This F8-type star has been chosen as a fundamen-
tal standard for many photometric systems, notably that of the
Sloan Digital Sky Survey (SDSS) (Fukugita et al. 1996; Smith
et al. 2002; Gunn et al. 1998, 2006; Ivezić et al. 2007) and con-
sequently has been studied by many groups, which have derived
estimates of its extinction, effective temperature, metallicity and
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Table 7. Landolt and MegaCam Magnitudes and colors of BD +17 4708 with their uncertainties.

1st order Offset Final Landolt Color log g [M/H] E(B − V) Binarity Total
value uncertainties transformations† uncertainty

V – – +9.464 ±0.0026 – – – – – ±0.0026
U − V – – +0.260 ±0.0026 – – – – – ±0.0026
B − V – – +0.443 ±0.0015 – – – – – ±0.0015
R − V – – −0.298 ±0.0011 – – – – – ±0.0011
I − V – – −0.618 ±0.0013 – – – – – ±0.0013
gM − V +0.2196 +0.007 +0.2266 ±0.0007 ±0.0067 <0.001 ±0.002 <0.001 ±0.001 ±0.0023
rM − V −0.2487 +0.003 −0.2457 ±0.0009 ±0.0015 <0.001 ±0.001 ±0.001 ±0.004 ±0.0043
iM − V −0.5518 +0.002 −0.5498 ±0.0013 ±0.0029 <0.001 ±0.001 <0.001 ±0.002 ±0.0026
zM − V −0.6804 −0.010 −0.6904 ±0.0013 ±0.0185 ±0.003 ±0.001 ±0.009 ±0.015 ±0.0178

† Not included in the total uncertainty budget reported in the last column (total uncertainty). The total impact of the color transformation uncer-
tainties on the calibrated tertiary fluxes is much smaller. It is discussed in Sect. 11.

surface gravity (see Ramírez et al. 2006, and references therein).
Bohlin & Gilliland (2004a) have measured the absolute spec-
tral energy distribution of BD +17 4708 in the wavelength range
1700 Å < λ < 10 000 Å, with an accuracy of less than 0.5% in
the transfer of the flux calibration of the three white dwarfs pri-
mary standards, and an accuracy of the relative flux distribution
of about 2%7.

On the other hand, it has been pointed out that BD +17 4708
may be a binary system, with a faint late-M companion of mass
∼0.15 M� revolving around the main star in about 220 days
(Latham et al. 1988; Ramírez et al. 2006). Furthermore, with
a V-band magnitude of 9.464, BD +17 4708 is a little bright to
be observed directly with MegaCam with a good accuracy. The
indirect determination of its MegaCam magnitudes is presented
in the next section.

In addition to BD +17 4708, LU07 present magnitudes for
the fundamental CALSPEC white dwarf calibrators. We also
considered using these stars, but the fact that they are even
bluer than Vega exacerbates the extrapolation problem when
calculating their MegaCam magnitudes. Furthermore, there is
some evidence that a similar problem affects the Landolt mag-
nitudes themselves. As noted earlier, the original Landolt tele-
scope/detector system no longer exists, so the magnitudes tabu-
lated in LU07 have been transformed from some natural system
to the Landolt (1992b) system using a similar method as that
described in 9.1. These transformations were calculated using
“typical” Landolt stars, which are much redder than the white
dwarfs. Therefore, these transformations may not be accurate for
the very blue white dwarfs, especially in B and U where the ab-
sence of a Balmer break makes the SEDs very different.

Without knowing the exact Landolt catalog system pass-
bands we have no way of precisely calculating the amount of
bias present or correcting for it, but we can check for the plausi-
bility of this issue by simulating a similar set of observations and
reduction procedures as actually used by LU07. We start with
an assumed model for the Landolt catalog passbands Bessell
(1990) and use the natural system passbands given in LU07,
folding in mirror reflectivity and photomultiplier response, then
carry out synthetic photometry using a library of SEDs Pickles
(1998) in both systems. We then calculate multi-step linear trans-
formations following the prescription of Landolt (1992b) using
the redder stars and compare the transformed magnitudes of the
CALSPEC WDs to the actual synthetic magnitudes in the nat-
ural system. We find that the transformations are biased at the

7 In this analysis we use the latest version posted on the CALSPEC
ftp server: ftp://ftp.stsci.edu/cdbs/current_calspec/ and
labeled bd17d4708_stisnic_002.fits

1−2% level, particularly in B where the LU07 B filter has a
“notch” near the peak transmission. The exact amount of bias
is sensitive to the assumed Landolt catalog filters, but its exis-
tence is not. We conclude that there is reason to be cautious when
using the WDs for photometric calibration. Note that these con-
cerns have no effect on the CALSPEC spectroscopic calibration.

10.2. The MegaCam magnitudes of BD +17 4708

At first order, the MegaCam magnitudes of BD +17 4708 can
be derived from the magnitudes and colors reported by Landolt,
and the Landolt-to-MegaCam color transformations determined
in Sect. 8 (see Eq. (10)). In Table 7, we report the gM−V , rM−V ,
iM − V and zM − V colors of BD +17 4708. The uncertainties
quoted by Landolt are propagated, assuming that the magnitudes
and colors V , B − V , V − R and R − I reported by Landolt are
essentially independent. Note that the iM − V and zM − V are
strongly correlated, with a correlation coefficient of 0.96. The
statistical uncertainties affecting the Landolt-to-MegaCam color
transformations do also affect the MegaCam colors reported in
Table 7. However, we will see in Sect. 11 that the impact of the
color transformations on the calibrated tertiary fluxes is actually
much smaller. As a consequence, we do not include them in the
final uncertainty budget listed in Table 7.

The determination of the offsets Δgref
|x0

. . . Δzref
|x0

defined in
Eq. (10) is a little more complex. These quantities account for
how the BD +17 4708 magnitudes differ, on average, from those
of the Landolt stars whose colors are close to BD +17 4708.
To estimate them, we will rely on (1) estimates of the extinction,
temperature, metallicity and surface gravity of BD +17 4708;
(2) rough estimates of the same quantities for Landolt stars of
colors similar to those of BD +17 4708 and (3) the Phoenix
library of synthetic star SED models (Hauschildt et al. 1997;
Baron & Hauschildt 1998; Hauschildt & Baron 1999, and ref-
erences therein)8.

The extinction, temperature, surface gravity and metallic-
ity of BD +17 4708 are estimated in Ramírez et al. (2006):
E(B − V) � 0.010 ± 0.003, Teff � 6141 ± 50 K, log g = 3.87 ±
0.08 and [M/H] = −1.74 ± 0.09. (Ramírez et al. 2006) also
gives rough estimates of the type (late-M), mass (∼0.15 M�) and
effective temperature (∼3000 K) of its faint companion.

On the other hand, not much is known about the Landolt
stars. We assume them to be nearby disk stars. Their mean
metallicity may be derived from Ramírez et al. (2007):
−0.5 < [M/H] < −0.3, substantially higher than the metallicity

8 The study presented here relies on version 2.6.1 of the Phoenix/
GAIA spectral library, that can be retrieved from the Phoenix ftp server:
ftp://ftp.hs.uni-hamburg.de/pub/outgoing/phoenix/GAIA
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of BD +17 4708. Landolt stars of colors similar to those of
BD +17 4708 have an effective temperature Teff ∼ 6200 K and
a surface gravity log g ∼ 4.3 (Allen 1976). In what follows,
we estimate the magnitude offsets induced by (1) the fact that
BD +17 4708 is a likely binary system (2) the metallicity differ-
ences between BD +17 4708 and the mean Landolt star (3) the
surface gravity differences and (4) the extinction differences.

Binarity. We can estimate the impact of the likely faint com-
panion with synthetic photometry. We select the Phoenix stellar
models whose parameters are as close as possible to those of
BD +17 4708 and its companion, respectively Teff = 6000 K,
log g = 3.5, [M/H] = −2 and Teff = 3000 K, log g = 4.5
and [M/H] = −2 (Ramírez et al. 2006). The impact on the cal-
ibration is given by the difference of residuals to the Landolt-
to-MegaCam color transformation, with and without the con-
tribution of the faint companion. We obtain (in the sense with
companion minus without companion):

Δg � +0.001

Δr � +0.004

Δi � −0.002

Δz � −0.015. (11)

There is a large uncertainty, of about 50% on those numbers. We
account for them as additional systematic uncertainties, as we
do not known the fraction of Landolt stars that are also in binary
systems.

Metallicity. As noted above the metallicity of BD +17 4708
is significantly lower than that of Landolt stars of similar col-
ors. The impact of this difference was estimated by comput-
ing the offsets between the MegaCam synthetic magnitudes
of GAIA/Phoenix stars of metallicities and colors close to that
of BD +17 4708, and the synthetic magnitudes of Phoenix SEDs
of similar colors but metallicity close to that of Landolt stars. We
obtained the following offsets (in the sense BD +17 4708 mag
minus Landolt mag):

Δg = +0.007 ± 0.002

Δr = +0.003 ± 0.001

Δi = +0.002 ± 0.001

Δz = −0.009 ± 0.001. (12)

These offsets are applied to the first order estimates of the mag-
nitudes of BD +17 4708.

Surface Gravity. The impact of the surface gravity differences
between the Landolt stars and BD +17 4708 can be evaluated in
a similar fashion. We find that the corrections are smaller than
0.001 mag in all bands except in zM (in the sense BD +17 4708
mag minus Landolt mag):

Δz = −0.001 ± 0.003. (13)

We apply this offset to the BD +17 4708 magnitude estimates,
and retain a systematic uncertainty of 0.003 mag in the system-
atic error budget.

Extinction. The mean reddening affecting the Landolt stars is
poorly known. It can be constrained by the locus of the Landolt
stars, in the V−R vs. R−I color−color diagram. Indeed, the V−R

and R − I colors of the Landolt stars are very well correlated in
the color region of BD +17 4708. More precisely, the quantity
ΔVRI = (R − I) − 0.7(V − R), computed in the same color re-
gion, has an rms of 0.019 and an average value of 0.995 ± 0.002.
For BD +17 4708, ΔVRI = 0.111. This quantity can be related
to unmeasured quantities such as the reddening using synthetic
photometry:

ΔBD +17 4708
VRI − ΔLandolt

VRI =
∂ΔVRI

∂E(B − V)
δE(B − V)

+
∂ΔVRI

∂[M/H]
δ[M/H] +

∂ΔVRI

∂ log g
δ log g.

Using the Phoenix models, we find that the derivatives of
ΔVRI w.r.t. the extinction and metallicity in the color region of
BD +17 4708 to be, respectively: 0.22, 0.02, the effect of the sur-
face gravity being essentially negligible in this color range. This
can be translated into a constraint on the extinction difference
between BD +17 4708 and the Landolt stars of similar colors:

ΔE(B − V)=E(B − V)(BD + 17)−E(B− V)(Landolt)�0.045.

Again, using synthetic photometry and the Cardelli et al. (1989)
law, this can be translated into calibration offsets:

ΔgM = −0.01 × ΔE(B − V) = −0.0005

ΔrM = +0.02 × ΔE(B − V) = +0.0009

ΔiM = +0.01 × ΔE(B − V) = +0.0005

ΔzM = −0.19 × ΔE(B − V) = −0.0085. (14)

The effect of the reddening differences between BD +17 4708
and the Landolt stars impacts essentially the zM-band mag-
nitudes, because this band requires an extrapolation from I
to zM . We will consider these offsets as additional systematic
uncertainties.

To summarize: we have derived MegaCam Natural colors
g − V , r − V , i − V and z − V for BD +17 4708, relying on the
Landolt-to-MegaCam color transformations, and on synthetic
photometry computed from the Phoenix/GAIA spectral library.
The results along with their uncertainties are summarized in
Table 7. The Landolt magnitudes of BD +17 4708, as well as
our estimates of the BD +17 4708 MegaCam magnitudes are all
correlated. The full covariance matrix, VBD +17 4708, reported in
Table D.1 (Appendix D) is the sum of two 9 × 9 components:

VBD +17 4708 = VLandolt + VΔm

VΔm contains the uncertainties on the deviations to the linear
Landolt-to-MegaCam color corrections derived in this section
and assumed to be independent. VLandolt accounts for the Landolt
uncertainties on the g−V , r−V , i−V , z−V , U −V , B−V , R−V
and I − V-colors. Note that since Landolt & Uomoto (2007) do
not discuss the correlations between their measurement uncer-
tainties, we had to make an assumption on their error budget:
we have chosen to assume that their V , U − B, B − V , V − R,
R − I and V − I measurements are essentially independent. This
is equivalent to assuming that the individual magnitudes mea-
surements are all affected by an overall “gray” uncertainty, that
correlate them positively. This “gray” uncertainty is reflected in
the higher V-band uncertainty reported by Landolt & Uomoto
(2007). The uncertainties on the MegaCam X − V colors are ob-
tained by propagating the Landolt errors using Eq. (10).

To be complete, we should also add the contribution of the
uncertainties that affect the Landolt-to-MegaCam transforma-
tion coefficients themselves. However, as will be discussed later,
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this contribution is itself strongly correlated with the zero-point
uncertainties, hence with the tertiary star magnitudes. Since the
uncertainties we are ultimately interested in are those which af-
fect the differences between the tertiary star magnitudes and the
corresponding magnitudes of BD +17 4708, we will discuss this
term later in the analysis, once we have discussed the tertiary
star uncertainty budget. Note however that this contribution de-
pends on the difference between the BD +17 4708 colors and the
average Landolt star colors. Since BD +17 4708 is much redder
than Vega, this contribution is greatly reduced by using this star
instead of Vega.

Finally, the MegaCam magnitudes of BD +17 4708, along
with their covariance matrix can be computed from the quantities
listed in Table 7. We find gM = 9.6906 ± 0.0035, rM = 9.2183 ±
0.0050, iM = 8.9142 ± 0.0037 and zM = 8.7736 ± 0.0180. The
full covariance matrix (without the color transformation uncer-
tainties) is reported in Appendix D (Table D.1).

11. Tertiary catalogs
We now turn to the production of the tertiary standard catalogs.
One such catalog is produced for each of the four SNLS fields,
using science and calibration exposures taken under photometric
conditions. Once established for each of the four SNLS fields,
the tertiary standard catalogs allow any user to propagate the
calibration to any SNLS exposure. In this section, we discuss
the general procedure to derive tertiary standard catalogs from
the science and calibration exposures.

11.1. Tertiary star selection

The tertiary standard catalogs should only contain well mea-
sured, isolated, non-variable stars. The star identification is car-
ried out as follows. The objects are detected on deep stacks of the
SNLS fields, using the SExtractor package (Bertin & Arnouts
1996). The second moments (mxx, myy, mxy) of the sources de-
tected on each CCD are estimated from a 2D Gaussian fit. The
star locus in the mxx versus myy diagram is then identified. A first
list of tertiary standard candidates is established. It contains all
the isolated objects belonging to the star locus and measured
with a signal-to-noise ratio better than 10. By “isolated”, we
mean that the aperture flux pollution due to the closest neigh-
bor must be less that 0.1% of the star flux.

The selection is then refined by examining the contents of
each star aperture. If the aperture contains pixels flagged as bad
in the dead pixel maps, identified cosmics or pixels whose value
is below 10 sigma below the sky background, the star measure-
ment is rejected. At the end of this selection process, we end up
with approximately 100 to 200 tertiary standard candidates per
CCD, depending on the field.

The master lists of tertiary star candidates are then matched
with the detection catalogs produced for each individual frame.
The completeness of these catalogs varies from one epoch to an-
other, depending on the observing conditions. Figure 16 shows
the number of measurements as a function of the star magnitude
for the D1 field. We see that our catalogs are complete below
mag 22, 21.5, 21, and 19 for bands gM, rM , iM and zM respec-
tively. Above theses magnitudes, an increasing fraction of the
detections does not pass the signal-to-noise cuts (>5) and the cal-
ibrated magnitudes we may compute from these measurements
will be biased. We therefore choose not to report calibrated mag-
nitudes fainter than the thresholds listed above.

The last cut applied to the tertiary star candidates is based on
their variability: at the end of the calibration process, we exam-
ine the lightcurves of each candidate (actually, we compute the

Fig. 16. Average number of measurements per tertiary standard (in per-
centage of the total number of good epochs) in the gM , rM , iM- and
zM -bands, as a function of the tertiary standard magnitude. The effi-
ciency drops we observe depend on the signal-to-noise cut applied dur-
ing the object detection. These drops set the magnitude limits of the ter-
tiary catalogs. The drop observed for small magnitude stars is mainly
due to saturation. We keep all the bright stars, provided that they have
more than 3 non-saturated measurements.

partial χ2 of each individual calibrated measurement around the
average calibrated magnitude) and reject all the objects which
display a dispersion above a given threshold.

11.2. Building the tertiary catalogs

The flux of the field stars are measured using the photometry
algorithms described in Sect. 4. We use the exact same algo-
rithms that were used to measured the standard star fluxes. In
practice, we use adaptive apertures of 7.5 seeing (14 pixels on
average). The measured fluxes are divided by the exposure time
reported in the image headers with a precision of 3 ms, and
then transposed to an airmass of 1 using the extinction coeffi-
cients reported in Table 6. The effect of varying airmass on the
gM , rM, iM and zM effective passbands is very small (below 5 Å in
the 1.0−1.6 airmass range). Therefore, no second-order airmass-
color correction was applied. No evidence for such an effect was
found in the calibration residuals. Finally, we compute the so-
called “hat instrumental magnitudes” de-applying the Elixir uni-
formity maps, and applying the δzp(x) as described in Sect. 6.

The science exposures are taken in sequences of 5 to
10 exposures, depending on the band. These measurements are
merged in order to produce one single list of averaged magni-
tudes per night. The merging procedure selects one exposure of
the sequence as a reference, and allows for one free photomet-
ric alignment factor for each exposure. This permits to account
for the atmospheric extinction variations during the sequence, as
well as additional effects, such as fluctuations of the image qual-
ity, inducing variations of the aperture corrections. We found that
on most nights, the fluctuations from one exposure to another do
not exceed 0.3%.

The Local Natural Magnitudes described in the previ-
ous section are then computed using the night and band
zero-points, the photometric grid maps δk(x), the grid reference
colors and the MegaCam colors of the fundamental standard
(namely BD +17 4708). At this stage, we have a lightcurve for
each selected tertiary star, with observations taken at 20 epochs
on average, spanning a time range of 3 years. All the calibrated

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=16
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measurements of each selected tertiary star, in each band are
then averaged, in order to produce the tertiary catalogs. This av-
eraging process is iterative: it comprises several outlier rejection
steps, and attempts to identify the non-photometric nights, as de-
scribed below. In the following of this section, we detail the most
important points of the procedure.

11.3. Photometric error model

The uncertainties estimated by the photometric algorithm, re-
flect only the Poissonian fluctuations of the background and star
photon counts. They do not account for fluctuations of the see-
ing and atmospheric transmission from one exposure to another.
As a consequence, the uncertainties affecting the bright stars are
underestimated. Since we do perform an outlier rejection while
averaging the night fluxes, it is essential to build a realistic error
model.

The uncertainties σφ affecting each measurement φ can be
classically parametrized as:

σφ = a
√
φ ⊕ b φ ⊕ c (15)

where ⊕ is the quadratic summation symbol. The first term is
the stochastic Poisson noise. The second term describes all the
multiplicative fluctuations from one exposure to another, such
as the atmospheric extinction, the aperture correction variations
and the flat-field noise. The last term accounts for all the fluc-
tuations which are independent of the flux, primarily the back-
ground subtraction residuals. The a−c coefficients are fitted on
the data for each night, in each band. On photometric nights, the
typical values of the b coefficient is 0.002. This gives an estimate
of the photometric repeatability on short time scales, in photo-
metric conditions.

11.4. Outlier rejection

The calibrated measurements being averaged are polluted by a
small fraction of outliers, usually due to CCD defects or cosmics.
The outlier rejection algorithm is based on the comparison of the
partial χ2 of each individual measurement, object or night, com-
pared to the χ2 value we could expect from a 5-σ measurement,
object or night. The expected 5-σ cut is computed in a robust
way, from the median value of the individual measurements.

Additional procedures were implemented, in order to iden-
tify the “non-photometric nights”, as well as the variable stars.

11.5. Photometric night selection

As noted in Sect. 3, the calibration exposures are often taken sev-
eral hours before or after the science exposures. The atmospheric
transparency may therefore vary significantly between both sets
of exposures. However the SNLS dataset is exceptional in the
sense that each field was observed on a very large number of
epochs, with the calibration and science images taken in many
different configurations (different times in the night, variable
time intervals between the science and calibration exposures).
This ensures that the atmospheric transparency variations affect
similarly the calibration and science exposures. Therefore, these
variations can be treated just like an additional source of noise –
once we have identified the pathological nights, displaying vari-
ations of more than 10%, or suffering from a large amount of
absorption.

The night selection was performed as follows: first, the
nights which are obviously affected by a large absorption, i.e.

whose fitted zero-points depart from the average zero-points
measured on the neighboring nights by more than 0.1 mag are
identified and removed. Then, the nights containing a science
exposure sequence which is non photometric, i.e. presenting an
exposure-to-exposurevariation greater than 1% are also rejected.

After having applied those two cuts, we are left with two sets
of nights. The first set contains the nights during which a large
number of calibration exposures was taken, over a large time
range (>3 h). The second set contains the nights with calibration
exposures concentrated at a given time. The long term photomet-
ric stability of the first set of nights can be estimated directly by
measuring the dispersion of the zero-points determined on each
calibration exposure. The photometric stability of the second set
cannot be estimated likewise; instead, since the dispersion of the
calibrated magnitudes around their mean can be measured, we
can identify and reject the non-stable nights from science data
only.

Tertiary catalogs were built using (1) the first set of nights,
rejecting those which display a zero-point stability worse
than 1% and (2) the same nights plus the nights from the sec-
ond set, the pathological nights being identified and removed,
using the calibration residuals. Table 8 summarizes the num-
ber of nights flagged as photometric for both sets, and the mea-
sured dispersion of the calibration residuals. This dispersion of
about 1% is mainly due to the atmospheric variations. As we
can see, the dispersion is about the same in both sets of nights.
With the larger set however, the statistical gain on the precision
on the mean calibrated magnitudes is significant. Moreover, the
mean differences between the magnitudes computed with each
set of nights are compatible with the expected dispersion, which
shows that no non-photometric night has been accidentally left
in the larger set. As a consequence, the tertiary catalogs released
with this paper are the ones built with the larger set. In all fields,
the uncertainty due to the atmospheric absorption variations is
of about 0.002 mag in gM , rM, iM and 0.003 mag in zM .

11.6. Results

The Local Natural Magnitudes of the tertiary standard are listed
in Appendix in Tables 19−22. We also report the corresponding
δk(x) grid coefficients at the mean focal plane position where
the star was observed, so that the Uniform Magnitudes can be
computed from the Local Magnitudes.

Figure 17 shows the rM−iMvs.gM−rM color−color plot for all
four SNLS fields. Since we are comparing objects over the whole
focal plane, this figure was produced using Uniform Magnitudes
instead of Local Natural Magnitudes. As we can see, the color
distributions of the four SNLS fields are compatible at the 1%-
level. Note that larger field-to-field differences in the stellar loci
would not necessarily suggest a drift of the calibration. Indeed,
we have verified using the Phoenix/GAIA library that larger ef-
fects, up to 4 to 6% may be observed due, for example, to sys-
tematic differences in the star metallicities.

As can be seen in Fig. 17, the MegaCam magnitude system
defined in this paper is close to a Vega-based system. Indeed, it
is tied to Landolt through quasi-linear color relations. Note how-
ever that our magnitudes probably depart from true Vega magni-
tudes by a few percents, and the amplitude of this departure is not
known with precision. Other surveys, such as the Sloan Digital
Sky Survey (SDSS) use a different calibration path and report
magnitudes in an almost AB-system. Hence, the MegaCam mag-
nitudes differ from SDSS magnitudes by (1) a small color term
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Table 8. Night-to-night dispersion, number of nights and resulting statistical uncertainty for night sets 1 and 2.

Set #1 Set #2
field band σ # nights σ/

√
N σ # nights σ/

√
N

D1 g 0.007 13 0.002 0.009 28 0.002
r 0.009 14 0.002 0.007 32 0.001
i 0.007 11 0.002 0.009 36 0.002
z 0.014 11 0.004 0.014 19 0.003

D2 g 0.007 8 0.003 0.007 13 0.002
r 0.006 12 0.002 0.007 21 0.002
i 0.004 7 0.002 0.008 25 0.002
z 0.011 3 0.006 0.010 10 0.003

D3 g 0.002 15 0.002 0.009 29 0.002
r 0.007 18 0.002 0.009 34 0.002
i 0.006 14 0.002 0.013 40 0.002
z 0.009 3 0.005 0.011 10 0.003

D4 g 0.008 18 0.002 0.009 30 0.002
r 0.006 16 0.002 0.007 34 0.001
i 0.006 11 0.002 0.008 29 0.002
z 0.007 7 0.003 0.013 19 0.003

(a) rM − iM vs.gM − rM (b) rM − iM vs.gM − rM (profile)

Fig. 17. Left: rM − iM versus gM − rM color−color plot of the tertiary standards (Uniform Magnitudes). The agreement between all fields is good,
and the contamination of non-stellar objects seems to be very low. Right: a zoom on the blue branch of the same color−color plot, after subtraction
of the mean slope. We see that the colors of all four fields agree at the percent level.

due to small differences in the effective passbands and (2) a con-
stant term, which accounts for the differences between a AB-
and a Vega-like system (see Appendix G for more details).

11.7. Statistical uncertainties

The statistical uncertainties affecting the tertiary standard cal-
ibrated fluxes comprise four independent components: (1) the
tertiary standard flux measurement uncertainties – photon noise,
flatfield noise and readout noise – (2) the atmospheric trans-
parency variations between the science and calibration expo-
sures (3) the intrinsic zero-points uncertainties and (4) the
Landolt-to-MegaCam color transformation uncertainties. In this
section, we shall discuss the impact of each contribution.

As discussed in the previous sections, we are interested in
the uncertainties affecting the tertiary standard relative fluxes.
Inspecting Eq. (9), we see that they are essentially equal to the
statistical uncertainties on the differences between the tertiary
standard calibrated magnitudes and the MegaCam magnitudes
of BD +17 4708: g|x − gref , . . . z|x − zref .

Table 8 summarizes the night-to-night dispersion affecting
the calibrated tertiary fluxes. These dispersions are mainly at-
tributed to the atmospheric transparency variations between the
calibration and science exposures. We have looked for system-
atic variations of the atmospheric transparency as a function of
the time of the night (Sect. 12) and concluded that we can safely
assume these variations to be independent from night to night.
Hence, we derive a statistical uncertainty by dividing the mea-
sured dispersion by the square root of the number of photomet-
ric nights. The resulting uncertainties are of about 0.002 mag in
gM , rM, iM and 0.003 in zM .

The intrinsic zero-point uncertainties are of about 0.003 in
the gM, rM , and iM-bands and 0.005 in the zM-band. Given the
large number of epochs, the resulting statistical error is lower
than 0.001 mag in the gM, rM, iM-bands and of about 0.001 mag
in the zM-band.

The uncertainties reported along with the calibrated magni-
tudes of the tertiaries (see Tables 19−22 in Appendix E) combine
the uncertainties related to the photon-noise, zero-point and at-
mospheric variations. They are shown in Fig. 18. In the gM, rM
and iM-bands, for stars brighter than 20, they are dominated by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=17
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Fig. 18. Average random uncertainties as a function of the magnitudes for the SNLS DEEP fields, in the gM , rM , iM and zM -bands.

the night-to-night atmospheric dispersion reported in Table 8,
and then by photon noise. In the zM-band, the photon noise dom-
inates for stars fainter than about 18.5. This is expected given the
low quantum efficiency of the MegaCam detectors in the red.

The last cause of statistical uncertainties are the Landolt-
to-MegaCam color transformations which impact the g|x −
gBD +17 4708, . . . z|x − zBD +17 4708 magnitude differences. Since
we fit global color transformations, these uncertainties are cor-
related and do not average out, whatever the number of epochs.
We found them to be equal to 0.002 mag in gM, 0.0015 mag in
rM , 0.0012 in iM and 0.005 in zM . This is the dominant contribu-
tion to the statistical uncertainty budget.

12. Systematic uncertainties

The systematic uncertainties that affect the calibrated fluxes are
summarized in Table 12.

12.1. Photometry related errors

As discussed in Sect. 4, we use variable size apertures to measure
the flux of the calibration and tertiary stars. We do not expect the
PSF to be identical on the science exposures, which are long
guided exposures, and calibration exposures of much shorter ex-
posure time, not guided, and slightly defocused. We found that
on average, the seeing measured on the calibration exposures is

Table 9. Aperture correction differences between the science and cali-
bration exposures, in the sense science minus calibration exposures.

Band δaper
gM +0.0027 ± 0.0003
rM +0.0026 ± 0.0004
iM +0.0020 ± 0.0003
zM +0.0020 ± 0.0005

higher than the seeing measured on the science exposures by
about 0.13 arcsec. We also have evidence that the shape of the
PSF is different. As described in Sect. 4.3, we also have com-
puted the fractional increase of flux between our standard aper-
tures and apertures twice as large. The differences between these
science image aperture corrections minus the calibration image
aperture corrections are summarized in Table 9. On average, we
collect 0.2% more photons on the science images than on the
calibration images. The tertiary star magnitudes are corrected for
this effect. The residual systematic uncertainties are well below
0.001 mag.

12.2. The airmass corrections

As described in Sect. 8, the airmass dependent term is modeled
as a linear correction, neglecting the second order corrections, of
the form: k′ × (X − 1) × color. The second order coefficients can
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Table 10. Synthetic second order airmass corrections.

Band Color k′ 〈color〉 〈color〉 Biasa

index (synth) (Landolt) (tertiaries)
gM g − r −0.014 +0.735 +0.950 <0.001
rM r − i −0.005 +0.408 +0.618 <0.001
iM r − i <0.001 +0.408 +0.618 <0.001
zM i − z <0.001 +0.192 +0.272 <0.001

a Effects on the tertiary magnitudes of neglecting the second order cor-
rection. The resulting bias is smaller than 0.001 mag in all bands.

be modeled using synthetic photometry. Their theoretical values
are summarized in Table 10. Neglecting the second order correc-
tion result in a bias equal to:

k′ × (X − 1) ×
[
〈colorscience〉 − 〈colorLandolt〉

]
.

The values of these biases are listed in Table 10. As we can see,
they are smaller than 0.001 mag in all bands. We therefore ignore
them in the systematic error budget.

12.3. The shutter precision

As described in Sect. 2, the actual exposure time is measured us-
ing a dedicated system with a precision of 0.001 s. The shutter
ballistics was investigated by the CFHT team using sequences
of exposures of the same field, taken with increasing exposure
times. Cuillandre (2005) showed that the specification of 3 ms
was actually met. The study could not measure a systematic
shutter uncertainty. In order to be conservative, we assign an er-
ror of 3 ms to all the exposure times. This error is negligible for
the science exposures, but not for the calibration exposures, of
mean exposure time Texp ∼ 2 s. Being conservative, we consider
that this induces a systematic error on the tertiary magnitudes, of
0.0015 mag (correlated) in all bands.

12.4. Landolt catalog internal dispersion

The Landolt (1992b) catalog is known to be remarkably uni-
form, with a reported internal dispersion of 0.003 mag. We
have checked this assertion, and estimated the resulting error on
the tertiary magnitudes. Indeed, we observe regularly 8 Landolt
fields, containing about 250 Landolt stars and representing a lit-
tle less than half of the whole Landolt catalog. Since each SNLS
field is itself calibrated with a subset of no more than the three
or four Landolt fields that are observable along with it, we can
expect to measure a sizeable error due to the Landolt catalog
internal dispersion.

The field-to-field dispersion of the zero-points was measured
on the stable nights during which more than one Landolt field
was observed. We have measured it to be of 0.002 mag in gri
and 0.004 in z. Since each SNLS field is calibrated with about
4 different Landolt fields on average, we estimate the uncertainty
to be of about 0.001 mag in the gri-bands and 0.002 mag in the
z-band.

12.5. Grid reference colors

As discussed in Sect. 6, there is a hidden color reference asso-
ciated to each δzp(x) map. The grid sequences were calibrated
using the average run zero-points provided by the Elixir pipeline.
These zero-points are valid for an entire run (about two weeks),
and do not account for the night-to-night variations. We have

Table 11. Uncertainties on the grid reference colors and the associated
max error affecting the grid pixels.

Band Color maxx [δk(x)] σcolor max grid error
gM g − r 0.04 0.021 <0.001
rM r − i 0.04 0.013 <0.001
iM r − i 0.05 0.013 <0.001
zM i − z 0.06 0.019 <0.001

evaluated the night-to-night dispersion of the zero-points to be
of aboutσn−to−n ∼ 0.01−0.02 mag. The grid reference colors are
known to this precision, and each δzp(x) map pixel is therefore
affected by an error, equal to δk(x) × σn−to−n. Table 11 summa-
rizes the largest associated uncertainty.

12.6. Adequacy of the grid color corrections

The agreement of the MegaCam passband model and the grid
corrections has been discussed in 7.3. We have found that there is
an excellent agreement between the synthetic color terms deter-
mined using the Pickles (1998) library and the color terms mea-
sured from the grid corrections, except in the rM-band, where
there might be a slight disagreement. We found, using the real
spatial distribution of the Landolt star measurements, that the
differences between the model predictions and grid measure-
ments have an impact of less than 0.001 mag on the zero-points
in the gM, iM and zM-bands, and of 0.002 mag in the rM-band.

12.7. The magnitudes of BD +17 4708

BD +17 4708 is too bright to be observed directly with
MegaCam. Its MegaCam magnitudes were determined indirectly
in Sect. 9. The uncertainties on these estimates are dominated
by astrophysical considerations, especially the impact of the fact
that BD +17 4708 is possibly a binary system.

12.8. The SED of BD +17 4708

The last source of systematic uncertainties that must be
discussed is related to the measurement of the SED of
BD +17 4708. We use version 2 of the determination published
by Bohlin & Gilliland (2004a), available on the CALSPEC web
site. The uncertainties affecting this measurement come from
two sources. First, the repeatability of the STIS observations,
which is routinely monitored with repeated observations of the
star AGK +81 266. According to Fig. 1 of Bohlin & Gilliland
(2004a) this repeatability is of about 0.3% in the gM-, rM-, iM-
and and 0.6% in the zM-bands respectively (1σ errors). There are
hints that there are correlations between these uncertainties. We
have computed our own repeatability model using the original
monitoring spectra of AGK +81 266, integrated in the MegaCam
passbands. We found a repeatability of 0.2%, 0.3%, 0.3% and
0.6% in the gM-, rM-, iM- and zM-bands respectively, with strong
correlations between the neighboring bands.

The other main source of uncertainty come from the model
flux distributions of the three primary standards themselves. This
includes internal uncertainties of the NLTE white dwarf atmo-
sphere modeling, as well as uncertainties in the determination of
the star metallicities, surface gravity and effective temperature,
from the observation of the Balmer line profiles. From the re-
sults presented in Bohlin (2002), we adopt a 0.5% uncertainty
(1σ) over the range 3000−10 000 Å. This translates into uncer-
tainties on the gM, rM , iM and zM synthetic broadband fluxes of
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Table 12. Summary of the systematic uncertainties affecting the calibrated magnitudes and fluxes.

gM rM iM zM

Aperture corrections <0.001 <0.001 <0.001 <0.001
Background subtraction <0.001 <0.001 ±0.005 <0.001
Shutter precision ±0.0015 ±0.0015 ±0.0015 ±0.0015
Linearity <0.001 <0.001 <0.001 <0.001
Second order airmass corrections <0.001 <0.001 <0.001 <0.001
Grid Reference Colors <0.001 <0.001 <0.001 <0.001
Grid Color Corrections <0.001 <0.001 ±0.002 <0.001
Landolt catalog ±0.001 ±0.001 ±0.001 ±0.002
Magnitudes of BD +17 4708 ±0.002 ±0.004 ±0.003 ±0.018
Total ±0.003 ±0.004 ±0.006 ±0.018
SED of BD +17 4708 ±0.001 ±0.002 ±0.004 ±0.007
Total ±0.003 ±0.005 ±0.007 ±0.019

BD +17 4708, relative to the synthetic V-band flux, which are
essentially negligible, except for the iM- and zM-bands (0.15%
and 0.24% respectively).

The sum of the two contributions is dominated by the re-
peatability of the STIS instrument. Combining both sources
of uncertainties, we obtain the covariance matrix listed in
Appendix D, Table D.3.

12.9. Summary: the full uncertainty budget

We obtain the full uncertainty budget by combining the statis-
tical and systematic uncertainties. The full covariance matrix
is listed in Table D.2 (Appendix D). As discussed above, we
have chosen to report the uncertainties that affect the quanti-
ties gM − gref , rM − rref , iM − iref and zM − zref , i.e. the dif-
ferences between the tertiary magnitudes BD +17 4708 magni-
tudes. Note that these quantities are correlated with the Landolt
magnitudes of BD +17 4708: Uref , Bref, Vref , Rref and Iref .
Since the SNLS cosmology analysis does compare nearby su-
pernova UBVRI magnitudes with the MegaCam magnitudes of
more distant supernovae, we cannot ignore these correlations.
Hence, we report a 9 × 9 covariance matrix, containing all these
correlations.

The contribution of the uncertainties affecting the measure-
ment of the SED of BD +17 4708 are listed in Table D.3.
Similarly, we report a 9 × 9 covariance matrix, including the
5 Landolt bands in addition to the MegaCam bands.

13. Discussion

In this paper, we have characterized the MegaCam focal plane
photometric response, built a model of the MegaCam passbands,
and defined a system of Local Natural Magnitudes, depend-
ing on the focal plane position. This system is implemented
as four catalogs of tertiary standard stars, one for each of the
four CFHTLS DEEP field. The relations between these magni-
tudes and their physical flux counterparts have been explicited.
They rely on a specific star, BD +17 4708, with known Landolt
UBVRI and MegaCam gM, rM , iM , zM-magnitudes, and a known
Spectral Energy Distribution measured and calibrated indepen-
dently by Bohlin & Gilliland (2004a).

The statistical and systematic uncertainties affecting the ter-
tiary magnitudes and their flux counterparts have been discussed
in Sects. 10.2, 11.7 and 12. The uncertainties affecting the
MegaCam magnitudes of each tertiary standard may be classi-
cally split into two different contributions. First, a statistical un-
certainty which accounts for the flux measurement shot noise,

the number of epochs averaged and the average photometric con-
ditions under which this star was observed. This contribution is
summarized in Fig. 18. In the gM , rM and iM-bands, it amounts to
about 0.0025 mag for a mag 18 star and stays below 0.005 mag
up to mag 21. In the zM-band, it is higher, of about 0.005 mag
for a mag 18 star, and reaches 0.01 mag for a mag 19.5 star. The
second contribution is a systematic uncertainty which is summa-
rized in the first section of Table 12 and characterizes how well
the MegaCam system is tied to the Landolt system: 0.002 in gM
and rM , 0.006 in iM and 0.003 in zM . Finally, the magnitude-to-
flux conversion introduces additional uncertainties, of 0.005 mag
or better in the gM, rM , iM-bands and 0.019 mag in zM . The final
systematic uncertainty budget is detailed in Table 12 and in the
covariance matrices D.2 and D.3 listed in Appendix D.

In order to fully quantify how well this system is tied to
Landolt, we should also add to this budget the impact of the
Landolt-to-MegaCam color term uncertainties. If one considers
the full relevant color range from Vega (B − V ∼ 0) to the mean
colors of the Landolt stars (B − V ∼ 0.77), one finds that this
contribution is large, between 0.005 and 0.015 mag, depending
on the band. BD +17 4708 was chosen as a fundamental stan-
dard partly because its colors are closer to the mean color of the
Landolt stars. This allows one to reduce the final impact of the
Landolt-to-MegaCam color term uncertainties down to less than
0.002 mag in gM, rM , iM and 0.005 mag in zM .

The statistical and systematic error budgets are extremely
similar from one field to another, mainly because each field was
treated on an equal footing, with the same observation strategy.
The only systematic difference from one field to another is the
mean effective airmass ∼1.2 for D1 and D2 and ∼1.3 for D3
and D4. Propagating the uncertainties affecting the airmass coef-
ficients determined in Sect. 8, one finds that the impact of these
differences on the final tertiary magnitudes is very small, be-
low 0.001 mag.

The MegaCam magnitudes defined in this paper are tied to
the Landolt system using (quasi-)linear color relations. Hence
Vega (like any A0V star) should have MegaCam colors close to
zero. Note however that the Landolt and MegaCam magnitudes
of Vega are affected with large uncertainties of a few percents at
least. We have not been able to quantify with precision the depar-
ture of this system from a strictly Vega-based system. This is the
reason why we have discarded Vega as a fundamental standard,
and used BD +17 4708 instead.

We would like to stress again, that the photometric system
presented in this paper has been designed in such a way that
no color correction (or grid color correction) ever has to be ap-
plied to the science objects’ magnitudes. Indeed, our main goal
is to keep the connection between the magnitudes reported by the
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Table 13. Open transmission of the MegaCam imager (no filters).

λ Transmission
(Å)
. . . . . .

3100.0 0.0013
. . . . . .

4100.0 0.4817
. . . . . .

5100.0 0.5764
. . . . . .

6100.0 0.5190
. . . . . .

7100.0 0.4976
. . . . . .

8100.0 0.3705
. . . . . .

9100.0 0.1394
. . . . . .

10100.0 0.0272
. . . . . .

survey and the underlying physical fluxes. This is especially im-
portant when dealing with non-stellar objects, such as super-
novae or galaxies.

The main application of this work is the calibration of the su-
pernova lightcurves obtained during the 3 first years of the SNLS
survey. Nevertheless, we release all the necessary information so
that any MegaCam dataset can be anchored to this system, pro-
vided that one of the SNLS DEEP fields is regularly observed
during the program along with the science data.

The calibration of the SNLS 3-year supernova lightcurves
from the tertiary catalogs presented in this paper is discussed in
detail in Guy et al. (2009, in prep) and anyone interested in tying
a dataset to our system should study this paper as a first step. The
recommended procedure may be briefly outlined as follows:

1. first, the instrumental magnitudes of the SNLS tertiary stars
used as calibrators must be measured using the exact same
photometry algorithm as the one used to estimate the flux of
the science objects;

2. then, the zero-points are derived by comparing the instru-
mental magnitudes of the tertiaries with the calibrated mag-
nitudes released with this paper (see Appendix E);

3. the Local Natural Magnitudes can then be obtained by ap-
plying those zero-points to the science objects’ instrumental
magnitudes;

4. finally physical broadband fluxes may be derived from the
Local Natural Magnitudes using (a) Eq. (9) (b) the MegaCam
magnitudes of BD +17 4708 reported in Table 7 (c) the
SED of BD +17 4708 discussed in Sect. 10.1 and (d) the
MegaCam passband model detailed in Appendix B. The fil-
ter model at the exact focal plane location of the science tar-
get may be obtained by interpolating between the filter scans
detailed in Tables 14 to 18.

Very recently, Landolt (2009) published an extension of the cat-
alog used in this paper. Bluer as well as fainter stars were added
to the Landolt (1992b) catalog. The author tied the measure-
ments to his former magnitude system. Note that for a small sub-
set of the Landolt (1992b) catalog (about 40−50 stars), revised
magnitudes were published. In general the magnitude changes
are small, of about 0.003 mag, except for a handful of stars
(less than 10), for which they can amount to 0.01 to 0.1 mag.

We have checked that, for the stars used in this analysis, the
average magnitude difference between both catalogs is smaller
than 0.001 mag.

The SDSS-II first year dataset (Holtzman et al. 2008) relies
on a similar calibration scheme. The calibration of the SDSS
SN Ia lightcurves relies on the catalog of tertiary standard stars
published by Ivezić et al. (2007). This latter catalog contains
about 1.01 million non-variable stars located on the SDSS equa-
torial stripe 82 (|δJ2000| < 1.266, 20h34 < α < 4h) and is be-
lieved to be uniform at the 1% level. Although the reduction of
drift scan imaging data poses different problems, it is interesting
to note that Ivezić et al. (2007) had to solve very similar prob-
lems, such as the uniformity of the photometric response along
a drift scan, or the small differences between the filters which
equip each column of the camera.

The Ivezić et al. (2007) catalog is calibrated to the natural
SDSS 2.5-m photometric system, which deviates from a per-
fect AB system by about 4% in the u-band, and 1 to 2% in
the griz-bands. Therefore, Holtzman et al. (2008) chose to tie
their magnitudes to the HST white-dwarf scale. Several potential
CALSPEC primary standards were observed with the smaller
SDSS Photometric Telescope (PT) and their magnitudes were
transferred to the SDSS 2.5-m photometric system using lin-
ear color transformations, supplemented by synthetic photom-
etry in order to determine star-specific offsets with respect to
the color transformations. As in our case, the color transforma-
tions are not well-defined in the white-dwarf color range. Hence,
they chose to use the three CALSPEC red, faint, solar analogs
P330E, P177D and P041C as primary standards. The calibration
path adopted by Holtzman et al. (2008) is extremely similar to
that presented in this paper. Its main advantage is that the SDSS
Photometric Telescope response is well characterized, and that
the color transformations between the PT and the science tele-
scope are smaller.

There are several shortcomings affecting the calibration pre-
sented is this paper. First, BD +17 4708 has not been observed
directly with MegaCam. We therefore rely on (1) the Landolt
measurements of BD +17 4708; (2) the Landolt-to-MegaCam
color transformations; (3) on the Phoenix/GAIA synthetic li-
braries and combined with estimates of BD +17 4708’s metal-
licity, surface gravity and extinction to estimate its MegaCam
magnitudes. Then, the time interval between the calibration and
science measurements is of several hours. We are therefore sen-
sitive to the variations of the atmospheric conditions on such
long periods. The large number of epochs allows one to reduce
this source of uncertainty to 2 mmag on average. However, a
more robust calibration would be obtained if calibration and sci-
ence observations could be separated by intervals of a few min-
utes only, and if repeated exposures of the same field through
the observation sequence could allow one to estimate the pho-
tometricity of the observing condition, during the science and
calibration observations. Finally, the current grid dataset, with
observations every 6 months, does not allow one to monitor
precisely the run-to-run variations of the imager photometric
response.

In order to overcome these shortcomings, we have designed
a dedicated calibration program, called MAPC (MegaCam
Absolute Photometric Calibration). MAPC combines observa-
tions of the DEEP fields, HST spectrophotometric standards
which are a little fainter than BD +17 4708, and dithered ob-
servations of the SDSS equatorial stripe 82, all taken in a
little less than 30 min. This program will allow us to rede-
fine the MegaCam Local Natural Magnitudes independently of
the Landolt magnitudes. We also will be able to explicit the
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connections of the MegaCam magnitudes with the widely used
SDSS magnitude system.

A second article dealing with the precise photometric cali-
bration of MegaCam data will follow the current effort. It should
be noted that the photometric precision delivered since first light
by the Elixir pipeline (4%) falls within the typical scientific re-
quirements and has not been a limitation for most users. We ex-
pect, however, that the new level of precision provided by our
current work will enable science currently unforeseen with the
MegaCam data set.
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Appendix A: Measuring the photometric response
maps (details)

We have shown in Sect. 6 that fitting the uniformity maps δzp(x)
and δk(x) from the dithered grid field observations is a very
large dimensionality problem, involving about 200 000 param-
eters. Of these parameters, most are the grid stars instrumen-
tal magnitudes (i.e. nuisance parameters). The grid maps are
developed on independent superpixels δzp(x) =

∑N
k=1 αk pk(x),

δk(x) =
∑N′

k=1 βkqk(x). The δzp(x) are fit on 512 × 512 super-
pixels, with 1296 superpixels on the focal plane. The precision
obtained on the δk(x) parameters depends on the color lever
arm. In order to maximize it, the δk(x) maps are developed on
larger (1024 × 1537) superpixels, with only 216 superpixels on
the focal plane. Since both maps have a reference cell, there are
N = 1295 and N′ = 215 αk and βk coefficients respectively, rep-
resenting 1510 parameters in total. We have checked that first
order methods, which do not require one to build the second
derivatives of the χ2 converge very slowly and do not allow one
to obtain the exact solution in a reasonable amount of iterations.
In this section, we show that the structure of the problem is such
that the dimensionality of the normal equations can be in fact
greatly reduced. This allows us to obtain the exact solution of
the problem in a single step.

First, the model fitted on the instrumental magnitudes of the
grid stars is as follows. This model connects the expectation of
the jth measured instrumental magnitude of star i, mADU|x(i, j)
with the fit parameters, i.e. the grid map parameters αk and βk
and the magnitudes of the grid stars at the reference location,
m|x0 (i). The star colors are fixed, and recomputed iteratively
until they do not vary by more than 0.0001 mag. The model
can be written:

E
[
mADU|x(i, j)

]
= m|x0 (i) +

∑
k

αk pk(xi j)

+
∑

k

βkqk(xi j) ×
(
col|x0 (i) − colgrid

)
.

Grouping together the grid map parameters αk and βk in a single
vector p, and the star magnitudes in another (much larger) vec-
tor M, the equation above can be rewritten in the more compact
form:

E
[
mADU|x(i, j)

]
= DT

i j p+ ST
i M (A.1)

Di j and Si are one-dimensional vectors, defined for each mea-
surement j, and each star i. The large vector Si contains a single
non-zero element:

Di j[k] = pk(xi j) (A.2)

Di j[k + N] = qk(xi j) × colori (A.3)

Si[ j] = δi j (A.4)

The χ2 to minimize can be written as:

χ2(p,M) =
∑

i j

wi j

(
DT

i j p+ ST
i M − mADU|x(i, j)

)2
(A.5)

where wi j is the weight of the measurement mADU|x(i, j). The
associated normal equations are:(

Wp AT

A WM

)
×

(
p
M

)
=

(
Bp
BM

)
(A.6)

where

Wp =
∑

i j

wi j Di j DT
i j (A.7)

WM =
∑

i j

wi j Si ST
i (A.8)

A =
∑

i j

wi j Si DT
i j (A.9)

and

Bp =
∑

i j

wi j mADU|x(i, j) Di j (A.10)

BM =
∑

i j

wi j mADU|x(i, j) Si. (A.11)

Since all coordinates but one of each vector Si are zero, all the
matrices SiST

i are diagonal. Hence WM is diagonal. We can elim-
inate M from the above normal equations:(

Wp − ATW−1
M A

)
p = Bp − AT W−1

M BM (A.12)

and get a computationally tractable equation because W−1
M is di-

agonal. This linear equation has the dimensionality of p and can
be solved for p. M can then be determined from:

M =W−1
M

(
BM − Ap

)
(A.13)

using again that WM is diagonal.
Equations (A.12) and (A.13) yield the exact solution of the

linear least squares problem (A.5). Besides reaching the least
squares minimum, the method described here provides us with
the true covariance matrix of the calibration parameters. Indeed,
one can show from Eq. (A.6) that the full covariance matrix,
marginalized over the grid star magnitudes is given by:

C =
(
Wp − ATW−1

M A
)−1
. (A.14)

What allowed us to reduce the dimensionality of the problem
and obtain the exact solution is the very specific structure of the
χ2 second derivative matrix, which contained a very large diag-
onal sub-block. Such a structure seems to be very common in
calibration problems, such as the ones described in Kaiser et al.
(1999); Padmanabhan et al. (2008). This structure can be ob-
served when we can distinguish a set of global parameters (here,
the grid map parameters), combined with another much larger
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set of local parameters (here, the magnitudes). The key feature
of the least-squares problem that makes it eligible for this tech-
nique is that no χ2 term contains two elements of M. The same
procedure still applies if the mi are vectors, with the difference
that WM is block-diagonal. In those cases, the factorization de-
scribed here can be used, making the problem tractable or at least
saving large amounts of computing time.

Appendix B: MegaCam passbands

In this section, we detail our model of the ingredients of the
MegaCam effective passbands, presented in Sect. 7 and summa-
rized in Fig. B.1. For all bands, the model consists in the product
of five components:

T (λ; x) = Tf(λ; x) × To(λ) × Rm(λ) × Ta(λ) × ε(λ) (B.1)

Tf(λ; x) is the position dependent transmission of the interfer-
ence filters. To(λ) is the transmission of the four lens optical sys-
tem which equip MegaPrime. It also includes the transmission
of the camera window. Rm(λ) refers to the reflectivity of the pri-
mary mirror. Ta(λ) is the average transmission of the atmosphere
above Mauna Kea. Finally, ε(λ), is the mean quantum efficiency
of the E2V CCDs which equip the focal plane of MegaCam.

The transmission of the optical system, To(λ) and the re-
flectivity of the primary mirror, Rm(λ) were obtained from the
CFHT team. The quantum efficiency ε(λ) of the camera was
obtained from the CEA team. It is actually an average model,
derived from the measured quantum efficiencies of the chips
which equip MegaCam. The Mauna Kea atmospheric transmis-
sion Ta(λ) is being measured by the Nearby Supernova Factory
(Buton & SNfactory 2009). We use a preliminary version of this
measurement. Finally, the O2 and OH absorption lines have a
sizeable impact on the zM passband. We use the determination
presented in Hinkle et al. (2003)9. The resolution of the original
determined being of about 0.15 Å, we have rebinned it, with to
reach a bin size of about 3 Å. Table 13 displays the product of
all the components listed above.

Finally, the filter transmissions, Tf(λ, x), were characterized
by their manufacturer (Sagem/REOSC). For each filter, ten scans
were performed at ten different locations – namely, at the center
of the filter, and then, at 23, 47, 70, 93, 117, 140, 163, 186 and
210 millimeters from the center, along a diagonal. The transmis-
sions reported by Sagem/REOSC were blueshifted as described
in Sect. 7, in order to account for the fact that the f/4 beam does
not cross the filters at a normal incidence on average. The re-
sulting blueshifted transmissions uM, gM, rM , iM, and zM are re-
ported in Tables 14−18 respectively. In order to build a pass-
band model which is continuous as a function of the position,
the scans presented in those tables were interpolated, assuming
a central symmetry around the focal plane center, as indicated
by the δk(x) maps.

The sidereal positions of the objects can be mapped to “filter
coordinates” (in millimeters), using the following formula:

xf = F ×
[
cos(δ) sin(α − α0)

]

yf = F ×
[
− cos(δ) sin(δ0) cos(α − α0) + sin(δ) cos(δ0)

]
(B.2)

where (xf , yf) are the point coordinates in the filter frame
(expressed in millimeters), F is the MegaPrime focal length
(14 890 millimeters), (α, δ) and (α0, δ0) are the sidereal position

9 ftp://ftp.noao.edu/catalogs/atmospheric_transmission/

Fig. B.1. MegaCam effective passbands at the center of the focal plane
(filled) and close to the sides of the focal plane (solid gray lines). As dis-
cussed in Sect. 6, the filters are bluer on the edges than at the cen-
ter of the camera. We also display the cumulative effect of the main
ingredients of the effective passbands: average quantum efficiency of
the MegaCam CCDs ε(λ), mirror reflectivity Tm(λ), transmission of the
wide field adapter optics (including the camera window) To(λ), and av-
erage atmospheric transmission Ta(λ). The mirror reflectivity is essen-
tially flat, and does not impact the passband shape. In the zM-band, the
red cutoff is determined by the quantum efficiency curve. The blue side
of the uM -band is shaped by the quantum efficiency curve as well as the
optics and atmospheric transmissions, however the cutoff itself seems
to be determined by the filter transmission.

of the object and the field center respectively. In the formula
above, we use the fact that the distance between the filters and
the focal plane is negligible compared to the focal length.

Appendix C: Linearity checks

Photometric standards are bright stars. Even when observed with
short exposure times, their brightest pixel is commonly close to
saturation. On the contrary, most if not all supernovae represent
a small increase over the sky level. Since any amplifying elec-
tronic system is bound to become non-linear when approach-
ing saturation, we tried to measure or bound non-linearities of
MegaCam’s photometric response.

For this purpose, we did not use the light emitting diodes
built in the MegaPrime setup, although they enable in princi-
ple to inject controlled amounts of light in the imager. These
diodes illuminate the detectors almost uniformly, and the re-
sponse could be different than to localized astronomical sources.
Using genuine astronomical observations is obviously less flex-
ible, and we had to restrict our linearity test to checking if star
measurements are altered at the high end of the dynamic range.

Images of a low Galactic latitude field were observed on the
same night, within ten minutes, with exposure times of 1, 2, 4,
8 and 16 s, at an almost constant airmass of 1.01 and without
ditherings between exposures. These images were flat-fielded
using standard flats, but this is essentially irrelevant to what fol-
lows. We measured fluxes of stars in a 16 pixels radius aper-
ture ( f16), after a thorough estimation of the background level.
Namely, we first detected sources down to a S/N of about 3,
generously masked pixels attributed to these sources and used
the remaining pixels to compute a local background average
level below each source. For these low background levels, it is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=19
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Fig. C.1. Difference to unity of ratios of fluxes measured in different
duration exposures, as a function of peak flux. We deduce from this plot
that star fluxes measured at the high end of the dynamic range are on
average not altered by more than about one part in a thousand. The flux
independent offsets can be attributed to e.g. unaccounted for aperture
corrections or errors in the reported exposure times.

important to use a mean rather than a median, because the
Poisson distribution describing the pixel statistics is skewed. We
also computed the aperture flux in a 27 pixels radius ( f27) and
fitted a linear relation to f27 − f16 vs. f16 of the isolated mea-
surements in each CCD. The slope provides us with an average
aperture correction to 27 pixels radius and the offset indicates the
quality of the background subtraction. We averaged the aperture
corrections per exposure and applied them to the f16 measure-
ments, and checked that our background residuals (mostly below
0.1 ADU per pixel) do not affect the fluxes we are considering
by more than one part in a thousand. Figure C.1 displays ratios
of fluxes (per unit time) measured with different exposure times
as a function of object brightest pixel value, averaged over the
mosaic. Average values of these ratios differ slightly from unity,
and the difference is compatible with the expected differences
of aperture corrections beyond 27 pixels in radius. A lower re-
sponse at the high end of the range would cause a rise of this
ratio with peak flux, and we do not see such a trend. We assume
that the system is linear on the lower half of the peak flux range
and compare the average ratio at peak flux (in the 16 s exposure)
below 32 000 ADUs to the same quantity above 50 000 ADUs:
we find differences below the per mil with uncertainties below
the per mil as well. We hence conclude that possible average de-
partures from linearity affect bright star fluxes by less than one
part in a thousand (which roughly corresponds to 1% at the pixel
level). Possible non-linearities are therefore ignored.

Appendix D: Uncertainties and covariance matrices

We now report the various covariance matrices discussed in the
paper. All of them (Tables D.1−D.3) are available online.

First, we report the covariance matrix of the uncertainties af-
fecting the estimated MegaCam gref , rref , iref , and zref and the
Landolt Uref , Bref, Vref , Rref and Iref BD +17 4708 magnitudes.
It is listed in Table D.1. Note that this matrix was established
assuming that the Landolt Vref , U−Bref , B−Vref , V−Rref , R− Iref

Fig. D.1. Correlation matrix of the (statistical and systematic) uncer-
tainties affecting the ΔgD1 = g − gref (D1), . . . ΔgD4 = g − gref(D4) . . .
Δz(D1) = z−zref(D1) . . . ΔzD4 = z−zref (D4), Uref . . . Iref magnitudes. As
can be seen, the uncertainties on each field’s tertiary star magnitudes are
almost fully correlated in each band. Hence, we report only an average
9 × 9 matrix, valid for each field. The non-zero correlations between
the bands come from the overall “gray scale uncertainty” that affect the
Landolt magnitudes.

and V − Iref measurements are all independent. As discussed in
Sect. 10, this is equivalent to assuming that the Landolt cali-
brated magnitudes are all affected by an overall “gray scale” un-
certainty, which correlate them positively and that the Landolt
V-band uncertainty is a good estimate of it. This gray scale un-
certainty does not affect the Landolt colors though.

Then, we also report the covariance matrix of the uncertain-
ties affecting the MegaCam tertiary magnitudes. As discussed in
Sect. 10, the relevant quantities used to map calibrated magni-
tudes into fluxes are the differences between the tertiary stan-
dard magnitudes and the magnitudes of BD +17 4708: gM −
gref . . . zM − zref . By construction, these uncertainties are corre-
lated to the Landolt magnitudes of BD +17 4708. Hence, we
report in Table D.2 the covariance matrix of the gM − gref , . . .
zM − zref , Uref , . . . Iref magnitude uncertainties. This matrix con-
tains (1) the statistical uncertainties affecting the zero points and
the Landolt-to-MegaCam color transformation slopes, (2) the
night-to-night dispersion listed in Table 8 and (3) the systematic
uncertainties listed in the upper part of Table 12. As discussed
in Sect. 11, the influence of the color transformation slopes is
greatly reduced thanks to the fact that the colors of BD +17 4708
is much closer to the average colors of the Landolt stars.

In principle, we could have separately reported the uncer-
tainties affecting each field’s tertiary standards. Indeed, some
SNLS fields are better observed that others. However, we have
noticed that the total uncertainty budget is dominated by the sys-
tematics. Hence, the gM−gref . . . zM−zref uncertainties are almost
fully correlated, as can be seen in Fig. D.1. Hence, we have de-
cided to report only an “average” 9 × 9 matrix, valid for each
SNLS field, instead of the full 21 × 21 matrix.

Finally, there is a last set of (systematic) uncertainties, which
affects only the calibrated fluxes derived from the tertiary stan-
dard magnitudes: the errors related to the measurement of the
SED of BD +17 4708, including the repeatability of the STIS
measurements, and the absolute calibration of the STIS instru-
ment. These uncertainties are discussed in Sect. 12. The associ-
ated covariance matrix is reported in Table D.3.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=20
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=21
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Table D.1. Full covariance matrix of the BD +17 4708 MegaCam and Landolt magnitude uncertainties. See Sect. 10 for details.

VBD +17 4708 = 10−6 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12.3128 6.7600 6.7600 6.7600 7.8753 7.8753 6.7600 6.7600 6.7600
25.6028 6.7600 6.7600 6.7600 6.7600 6.7600 7.7698 6.7600

13.4847 8.4173 6.7600 6.7600 6.7600 6.7600 8.4500
324.4808 6.7600 6.7600 6.7600 6.7600 8.4500

13.4200 9.0100 6.7600 6.7600 6.7600
9.0100 6.7600 6.7600 6.7600

6.7600 6.7600 6.7600
7.9700 6.7600

8.4500

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gref

rref

iref

zref

Uref

Bref

Vref

Rref

Iref

Table D.2. Final covariance matrix of the uncertainties affecting (1) the differences between the tertiary MegaCam magnitudes and the MegaCam
magnitudes of BD +17 4708 and (2) the Landolt magnitudes of BD +17 4708.

Vfinal = 10−6 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21.2013 6.7600 6.7600 6.7600 −7.8753 −7.8753 −6.7600 −6.7600 −6.7600
34.0033 6.7600 6.7600 −6.7600 −6.7600 −6.7600 −7.7698 −6.7600

50.5137 8.4173 −6.7600 −6.7600 −6.7600 −6.7600 −8.4500
345.0753 −6.7600 −6.7600 −6.7600 −6.7600 −8.4500

13.4200 9.0100 6.7600 6.7600 6.7600
9.0100 6.7600 6.7600 6.7600

6.7600 6.7600 6.7600
7.9700 6.7600

8.4500

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gM − gref

rM − rref

iM − iref

zM − zref

Uref

Bref

Vref

Rref

Iref

Table D.3. Covariance matrix of the uncertainties affecting the synthetic instrumental magnitudes of BD +17 4708.

VSEDBD+17 = 10−6 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.2760 1.1170 −2.0222 −6.1807 6.2336 6.0589 3.2774 0.6793 −3.2182
8.9793 7.8773 9.9974 2.3035 1.7390 3.6392 8.9824 8.3187

14.2570 23.3526 −3.5755 −2.5778 1.7173 8.8588 16.9508
46.0064 −9.7314 −7.8124 0.5591 11.9371 29.7526

11.0517 8.4008 3.6545 1.4931 −5.4785
7.5107 3.6710 1.1458 −4.1358

3.2572 3.4286 1.3518
9.1231 9.6018

20.7291

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gref

rref

iref

zref

Uref

Bref

Vref

Rref

Iref

Appendix E: Tertiary catalogs

The tertiary catalogs built for the SNLS fields D1−D4 are listed
in Tables 19−22 respectively.

They include the uM band calibrated magnitudes, derived as
discussed in the previous section. For each star, we report the
Local Natural Magnitudes, along with the δk(x) grid coefficient
at the focal plane position where the star was observed. The
Uniform Magnitudes can then be derived using the approximate
formulas:

u|x0 = u|x − δkuug(x) × (u|x − g|x)

g|x0 = g|x − δkggr(x) × (g|x − r|x)

r|x0 = r|x − δkrri(x) × (r|x − i|x)

i|x0 = i|x − δkiri(x) × (r|x − i|x)

z|x0 = z|x − δkziz(x) × (z|x − i|x). (E.1)

Indeed, the error resulting from using the local color: δk(x) ×
col|x instead of the color at the focal plane reference location:
δk(x) × col|x0 , as requested by the grid definition, is smaller
than 0.001 mag.

Appendix F: Calibration of the uM-band data

The DEEP survey uM-band data have also been analyzed.
This calibration is less robust however, given the difficulties

inherent to the calibration of near-UV data, and also given the
small number of uM-band epochs. Indeed, the uM-band dataset
not being formally part of the SNLS dataset, and the exposures
are not time sequenced. In this section, we list the main results
obtained on the uM-band data.

The uniformity studies described in Sect. 6 have also been
performed on the uM-band data. Figure F.1 presents one of the
δzp(x) and δk(x) maps obtained in semester 2005B. We note that
the uM-band filter seems to be much more uniform than the other
band filters. Also there seem to be sharp passband variations be-
tween the various CCDs. This is due to the fact that the blue
edge of the MegaCam uM-band is determined by the CCD quan-
tum efficiencies.

The uM-band Landolt observations have been analyzed with
the same procedure as the one described in this paper. The
Landolt-to-MegaCam color transformations were modeled us-
ing a piecewise-linear function, with a break at (U − B)0 ∼ 0.4:

uADU|x0 = U − ku × (X − 1) + αu × (U − B)

if U − B < (U − B)0

uADU|x0 = U − ku × (X − 1) + αu × (U − B)0

+ βu × [(U − B) − (U − B)0]

if U − B > (U − B)0.
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Fig. F.1. uM -band grid maps. As can be seen, the uM filter seems more uniform than the other band filters. Sharp variations can be observed in the
δk(x) maps. This is due to the fact that the blue edge of the uM -filter is determined by the quantum efficiency of each CCD. Hence, the passband
variations.

(a) uM − gM vs.gM − rM (b) uM − gM vs.gM − rM (profile)

Fig. F.2. Left: uM−gM versus gM−rM color−color plot of the tertiary standards. Right: a zoom on the 0.4 < uM−gM < 1.5 region of the color−color
plot, after subtraction of the mean slope. We see that the uM − gM colors of the three D1−D3 fields agree within one percent. The origin of the
systematic shift which affect the D4 colors is not clearly identified.

We found:

αu = −0.2450± 0.0108

βu = −0.2787± 0.0070

ku = −0.0758± 0.0087. (F.1)

The zero-points determined along with the global parameters αu,
βu and ku were applied to the tertiary instrumental magnitudes
which where then averaged to give final calibrated magnitudes.
Due to the smaller number of epochs, the night selection was
much less robust. We just remove the “pathological nights” that
display an absorption larger than 0.1 mag.

Figure F.2 presents the uM − gM versus gM − rM color−color
diagram for all four SNLS fields. As can be seen, the uM − gM
colors of the three D1−D3 fields agree within one percent. On
the other hand, the stellar locus of the D4 field is about 4% away
from that of the other fields. The reason for this is not clear yet.
In particular, D4 is affected by the same Galactic absorption as,
for exampled, D1 (E(B − V) ∼ 0.027 for both). Note that we
observe the same phenomenon – although much weaker – on the
rM − iM vs. gM − rM diagram (Fig. 17).

The uM-band magnitudes determined in this section can be
retrieved in electronic form at the CDS10. Aside from the main
catalogs, described in the previous section, we have released
similar catalogs containing the subset of tertiary standards with
uM-band magnitudes.

As for the main catalogs, we report the Local Natural
Magnitudes of each star. The flux interpretation of those
magnitudes relies on the MegaCam uM-band magnitude of
BD +17 4708, which can be derived as described in Sect. 10.
Using the color transformations determine above, we can
compute a first order estimate of the uM-band magnitude of
BD +17 4708:

uBD +17 4708 = 9.7688± 0.0027 + ΔuM .

This estimate should be corrected by an offset Δu, which would
account for the fact that the actual uM-band magnitude of
BD +17 4708 which would be observed by MegaCam does not
necessarily follow exactly the linear Landolt-to-MegaCam color

10 http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/999

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=22
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912446&pdf_id=23
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law. Such an offset may be computed using synthetic photome-
try of BD +17 4708 as described in Sect. 10. However, given the
fact that we have not extensively tested the instrument and the
Mauna Kea atmospheric extinction in the uM-band, we prefer
not to publish any number.

Clearly, the uM-band calibration of the CFHTLS survey will
be considerably improved by (1) adding more epochs and (2) ob-
serving a set of fundamental standards directly with MegaCam.
This is the goal of the MAPC program, already discussed in this
paper.

Appendix G: MegaCam-to-SDSS color
transformations

Two CFHTLS DEEP fields, D2 and D3 were also observed
by the SDSS collaboration. While the intercalibration of the
MegaCam and SDSS surveys deserves its own paper, it is pos-
sible to use the observations of D2 and D3 to derive the color
transformations between the SDSS and MegaCam magnitudes.
We used the SDSS DR6 catalogs and determined the color trans-
formations between the SDSS and MegaCam transformations at
the focal plane center. We found the color transformations to be
linear, and equal to:

u|x0 − uSDSS = −0.211(±0.004)× (uSDSS − gSDSS) + Δzpu

g|x0 − gSDSS = −0.155(±0.003)× (gSDSS − rSDSS) + Δzpg
r|x0 − rSDSS = −0.030(±0.004)× (rSDSS − iSDSS) + Δzpr

i|x0 − iSDSS = −0.102(±0.005)× (rSDSS − iSDSS) + Δzpi

z|x0 − zSDSS = +0.036(±0.008)× (iSDSS − zSDSS) + Δzpz. (G.1)

As one can expect, there are non-zero offsets between the SDSS
2.5-m and the SNLS system (Δu ∼ −0.56, Δg ∼ +0.11, Δr ∼
−0.14, Δi ∼ −0.32 and Δz ∼ −0.43). The precise measurement
of these offsets along with the associated uncertainties will be
the subject of a later paper.
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