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gives

4
tCR=kloge[l+—2} (6.14)
ag

In consideration of the solutions for m=1 and m=3, we may note the
following points about the creep buckling process:

1. Whereas elastic or elasto-plastic buckling corresponds to the ex-
istence of many equilibrium configurations corresponding to loads
beyond the critical, creep buckling is characterized by deflections or
velocities that increase beyond all bounds. ,

2. Creep buckling can occur at a finite time only for a nonlinear creep
law.

3. Creep buckling will occur at any axial compressive load no matter
how small. The pertinent question becomes: Is tcg less than or
greater than the intended design life?

4. Creep buckling will occur only if the column has initial imperfec-
tions. Otherwise an infinite time for creep buckling is obtained from
Eq. (6.14) with a,=0. In practical structures there is always an
Initial imperfection.

5. The critical time depends strongly on the axial load but not so
strongly on the initial shape.

6. Small deflection theory is not really valid near Icg as the deflections
are growing rapidly. We have made the assumption in order to
present the behavior.

7. The Euler load for the instantaneous buckling does not appear in
the above solution because the initial elastic strains were not in-
cluded in the analysis. The Euler load is the instantaneous critical
load of an elastic column.

6.2.2 Tangent Modulus Approach

The column buckling problem may also be solved empirically by the
tangent modulus approach of Shanley [7]. In a consideration of columns
that were loaded beyond the yield prior to buckling he reasoned as
follows: since there are always slight imperfections in construction the
progress of deflection of the column is such that both sides, the concave
and the convex, are always in a state of compression. The process of
loading for several increments is shown in Fig. 6.1. During strain incre-
ments | to 5 in the illustration, the straining is essentially uniform.
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Fig. 6.1 Strain and stress distributions for an inelastic column with small initial imperfec-
tions— tangent modulus model. Courtesy of McGraw-Hill Book Co., Inc., G. Gerard,

Introduction to Stability Theory (1962).

Increment 6 is approaching the critical strain, and axial straining and
bending occur simultaneously. Since there is no reversal of strain on the
convex side, all points lie along the path BAC on the stress-strain curve. By
representing the curve locally at 4 by the tangent modulus the stress
distribution becomes a linear function of the strain, and the critical load of
the column can be obtained in the usual way, as follows, for a simply
supported column with an initial shape w,. In this case the moment
equilibrium equation becomes

2 W 28 = 6.15

;2—+—57(W0+W)—0 ( : )
Here w is the part of the deflection that is caused by bending, E, is the
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tangent modulus, and 7 is the moment of inertia of the column cross-
section. Now assume that the initial shape is given by the Fourier series

we= 3 w"sin% (6.16)

n=]

and assume that the deflection solution is given by the Fourier series

o0
w=3 wnsinn%x (6.17)

n=1

which satisfies the end condition of simple support. If Egs. (6.16) and
(6.17) are substituted into Eq. (6.15), we obtain

§ * Bt (w,+w ) |sin 27X =0 (6.18)
—w,+ ———(w,+w,) [sin — = .
o) SR L

To obtain a nontrivial solution of this for arbitrary values of x we set the
square bracket to zero and find

w

. (6.19)

n*miE I
L,

This solution becomes unbounded when the denominator goes to zero, at a
load

n’niE [
Pocn = —LZ; (620)

The lowest value of this pertains to/n=1
.- 772E,1

Ocr 12

(6.20a)

For the elastic case E,= E and the result is called the Euler load. We have,
however, considered the case where P,/4 exceeds the yield, according to
Shanley’s tangent modulus approach.

To apply this approach to creep we require E, as a function of time. We
have introduced a means of providing this via the isochronous stress-strain
curves in Fig. 1.10. To use these in predicting creep buckling we first
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rearrange Eq. (6.20a)

P,L* o124

E
In? In?

(CR™

(6.20b)

where 0="FPy/A and E,p is the critical tangent modulus. We now say that
the column buckles at ¢ when E, becomes E,.z. The value of E, is
obtained from the load on the column and its geometry by Eq. (6.20b). We
now notice from the isochronous stress-strain curves of Fig. 1.10 that at a
given stress E, decreases with time. Thus we read horizontally at the stress
o of the column and load and at some time we reach a curve with slope
E,cr- This time becomes the critical time for buckling. The approach,
which is graphical, can be somewhat simplified if we accept the power law
in steady creep, that is

'=(—°—)m (6.21)
0(‘
Then the strain is, on integration
e—eo=(l) t (6.22)
0'.'
where g4 is the initial strain at 1=0. The tangent modulus theory uses
do
== 6.23
- (6:23)
Thus if we differentiate Eq. (6.22) we get, for constant ¢,
m—1
de= ﬁ(i’—) tdo (6.24a)
OC OC
from which 2 ;
o
e e 6.24b
A ) (6.24b)
2y
Now Egs. (6.20b) and (6.24b) give
In? 1
Lcr= (6.25)
K aL4 ﬂ(l)m_'
oC OC




Fig. 8.14 Geometry and finite element breakup for circular plate test [14]. Courtesy of the Oak Ridge National Laboratory.
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Fig. 8.15 Comparison of measured and predicted load-deflection response of circular plate.
Numbered points correspond to points in the load history of Fig. 8.13 [14]. Courtesy of the
Oak Ridge National Laboratory.

value of the center deflection was 0.11 in. The hold time periods shown in
Fig. 8.14 were each nominally 144 hours and the plate deflection went
from zero to maximum and back down in 30 sec. each.

The plate test was analyzed by Clinard et al. [14] using the finite element
program, PLACRE [15]. The specimen and its finite element breakup are
shown in Fig. 8.14. The model consisted of 784 three-node axisymmetric,
triangular ring elements. Fig. 8.15 compares the calculated and the mea-
sured loads that were required to produce the short time central deflection
changes. Fig. 8.16 compares the calculated and predicted load response
during the two hold periods in the cycle. The agreement between the
calculated and measured results is good. Fig. 8.16, in particular, demon-
strates the adequacy of using the creep law for relaxation analysis, as
discussed in Chapter 2.

8.4.6 Creep Buckling of an Axlally Compressed Cylindrical Shell

In Chapter 6 we applied the methods that were described to the creep
buckling tests of axially loaded shells carried out by Samuelson [21]. One
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Fig. 8.16 Comparison of measured and predicted load-time response for circular plate.

Numbered points correspond to points in the load history of Fig. 8.13 [14]. Courtesy of the
Oak Ridge National Laboratory.

of these tests was analyzed by Stone and Nickell [22] with the finite
element program, MARC, to which we referred in Section 8.3.2. In
particular, they considered the case with radius to thickness ratio of 32 and
applied axial stress equal to 12.1 kg/mm?, which is included in Table 6.1
of Chapter 6. We may recall that the buckling time measured was 7.2
hours and there were several predictions based on the methods of Chapter
6 given as 11.5, 10.5, 9.12, and 8.30 hours.

In the finite element runs the creep was assumed to be stationary with a
steady creep law

§€=4.4(10710)5¢

Two methods were used as follows, the details of which are beyond the
scope of the text. The first is a step by step method:

1. Apply the external load to the shell and solve the time independent
elasto-static problem.
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2. Begin to march in time for creep analysis, as described earlier in this
chapter. :

3. Stop the creep analysis at some time, .

4. Allow a small additional time increment for creep, At.

5. Solve the resulting eigenvalue problem for the eigenvalue A of the
load and the eigenfunction ¢.

6. Calculate the critical time from the formula

tcr=t+A At

Stone and Nickell [22] applied this approach to a model that was made up
of twenty elements along the length of the shell and three elements in the
thickness direction. The assembly was analyzed for one hour of creep and
the critical time was found to be 69.5 hours compared to the measured
value of 7.2 hours. Next, the model was changed to 50 axial shell elements
and again allowed to creep for one hour. The critical time was now
reduced to 19.7 hours. This is still above the experimental value of 7.2
hours and all of the approximate values from Table 6.1.

Next, it was postulated that plasticity was occurring in the regions near
the shell supports. The resulting behavior was analyzed by marching in
time until the structural stiffness became non-positive definite. This gave a
result of 9.56 hours, at which time a plastic hinge formed at one of the
edges. The remaining differences, compared to the measured value of 7.2,
were attributed to the presence of imperfections in the shell and inaccu-
racies in ignoring the transient creep behavior. Now, however, the finite
element result is within the range of the approximate results obtained by
the methods of Chapter 6.

It appears, therefore, that the approximate methods are to be preferred
because of their relative simplicity and accuracy. As pointed out by Stone
and Nickell [22], and by Dhalla and Gallagher [9]; Targe deflection creep
m%ﬁmﬂw@mmumg in this

el NN—— e~ i s N

8.4.7 Creep of a Rotating Gas Turbine Seal Ring

In gas turbine construction there is a seal ring located in the vicinity of the
point of attachment between the blades and the disc. The purpose of the
seal ring is to contain cooling air while keeping out the hot gases that
impinge on this general area. The assembly is shown in Fig. 8.17. As
shown, the ring sits on a shoulder against which it is driven by the
centrifugal force produced by rotation at 12,000 rpm. The highest tempera-
ture occurs at the outer tip of the ring. It is desired to maintain the shape
of the ring so as to preserve the seal during operation of the turbine.



