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In consideration of the sorutions for ,n= l and rn:3, we r'ay note thefollowing points about the creep buckkng process:

r' whereas elastic or erasto-prastic buckling corresponds to the ex_istence of many equ'ibrium configurations corresponding to roadsbeyond ,n" "::_t":!-"r"ep buckling is characterized by deflections orvelocities that increase beyond alibounds.
2' 

ff:t 
buckring can occur ar a finire-;;"only for a nonrins4l slss,

3' creep buckling will occur at any axial compressive load no matterhow small. The 
.pertinent quesiion^becomes: Is /.^ less than orgreater than the intended design tife? 

-- -Lr( rvsi

4' creep buckling w'r. o-ccur oniy J-rt. column has initiar imperfec_tions' otherwise an infinite time forcreep buckling is obtained fromEq. (6. 14) with.ao:O. In practical structures there is always aninitial imperfection.
5. The critical ti1e. 

{ege1ds strongly on rhe axial load bur not sostrongly on the initial shape
6' small deflecri"" 

!r."o?-is nct really valid near r.^ as the deflectionsare growing rapidly. we have rnade the u*"iipLo'-io-'ord", topresent the behavior.
7' The Euler road for the instantaneous.buckring does not appear inthe above sorution because tire initiat elastic strains were not in-cruded in the analysis. The Euler toad is the instantaneous criticarload of an elastic column.

6.2.2 Tangent Modutus Approach

The column buckling problem may arso te solved empirically by the
::lg"rt 

modurus approach of Shaniey [7J. In a consideraiion of-corumnsthat were loaded beyond. the yield pritr to buckling he reasoned asfollows: since there are always. stight'imierfections in construction theprogress of defrection of the corumn is su"r, that both sides, the concaveand the convex, are always ln u ,tut.-oi compression. The process ofloading for severar increments is shown in Fig. 6.1. During stiain incre-ments l to 5 in the illustrarion, the straini*ng ir ;;;;;iJv 
*,r.riror-.
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Fb. 6.r Strain and strcss distributions for an inelastic column with small initial impcrfec-

t iom-tangcntmodulusmodel .CounesyofMcGraw-Hi l lBookCo' ' Inc"G'Gerard"
Introduction to Stability Thcory (1962)'

Increment 6 is approaching the critical strain, and axial straining and

bending occur simultaneously. Since there is no reversal of strain on the

"orr.r"* rid", all points lie along the path BAC on the stress-strain curve' By

representing the curve locally at A by the tangent modulus the stress

distribution becomes a linear function of the strain, and the critical load of

the column can be obtained in the usual way, as follows, for a simply

supported column with an initial shape wo' In this case the moment

equilibrium equation becomes

B'

I

I
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tangent modulus, and I is the moment of inertia of the column cross-
section. Now assume that the initial shape is given by the Fourier series

: -  n r x
wo: Z lt,Sln J-

n - l

and assume that the deflection solution is given by the Fourier series

6

s  nnx
w: Z ttu Stn 

--
z -  I

which satisfies the end condition of simple support. If Eqs (6.16) and
(6.17) are substituted into Eq. (6.15), we obtain

(6. t6)

(6 .17)
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(6.20)
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To obtain a nontrivial solution of this for arbitrary values of x we set the
square bracket lo zero and find
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The lowest value of this pertains toff,: I

1 2  E . l
D _t or*- -T

This solution becomes unbounded when the denominator goes to zero, at a
load

Thus

(6.20a)

For the elastic case Et: E and the resurt is caled the Euler load. we have,
however, considered the case where pof A exceeds the yield, according to
Shanley's tangent modulus approach.

To apply this approach to creep we require E, as a function of time. we
have introduced a means of providing this via the isochronous stress-strain
curves in Fig. 1.10. To use these in predicting creep buckling we first
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r the Fourier series
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ort. If Eqs. (6.16) and

feilrange Eq. (6.20a)
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(6.20b)

(6 .21)

(6.22)

(6.23\

(6.zaa)

(6.24b)

(6.25)

where o:Pr/A and 8,.^ is the critical tangent modulus. We now say that
the column buckles at o when E, becomes E,r^. Tlte value of Er.^ is
obtained from the load on the column and its geometry by Eq.(6.20b). We
now notice from the isochronous stress-strain curves of Fig. l.l0 that at a
given stress .8, decreases with time. Thus we read horizontally at the stress
o of the column and load and at some time we reach a curve with slope
E,r^. This time becomes the critical time for buckling. The approach,
which is graphical, can be somewhat simplified if we accept thc power law
in steady creep, that is

T : O (6.r8) d = ( g ) -
\ o .  l

Then the strain is, on integrationvalues of x we set the

(6 . le)

lator goes to zero, at a

(6.20)

(6.20a)

Euler load. We have,
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ep buckling we first

€-e0:  ( t )  ,

where eo is the initial strain at l:0. The tangent modulus theory uses

- d oz t :  
E

Thus if we differentiate Eq. (6.22) we get, for constant /,

a , : r ( 9 \ ^ - '  , d o
o c \ o c  I

- d o l
p . : :'  d e  m (  o \ ^ - l

, " \ " )  
,

from which

Now Eqs. (6.20b) and (6.24b) give
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Fl8" &15 comparison of mcasurcd and prcdicted load-dcflcction rqrourc of circular platc.Numbcrcd poiats corrcspond to points in thc road hisrory of Fig. g.r3 [14]. councsy of thcOa& Ridgc National taboratorv.

value of the cenrer deflection was 0.1 I in. The hold time periods shown in
Fig. 8.14 were each nominally 144 hours and the plate deflection went
from zero to maximum and back down in 30 sec. each.

The plate test was anaryzed by clinard et al. [14]using the finite erement
p-rograq PLACRE [15]. The specimen and irs finite eliment breakup are
showu in Fig- 8.14. The model consisred of 7g4 three-node axisymmetric,
triangular ring elements. Fig. 8.15 compares the calculated anjthe mea-
sured loads that were required to produce the short time central deflection
changes. Fig- 8.16 compares the calculated and predicted load response
during the two hold periods in the cycre. The agreement between the
calculated and measured results is good. Fig. g.16, in particurar, demon-
strates the adequacy of using the creep law for relaxation analysis, as
discussed in Chapter 2.

8.4.6 creep Buckilng of an Axraily compressed cyilndrrcar sherl

In chapter 6 we applied the methods that were described to the creep
buckling tests of axiaily roaded shells carried out by samuelson 1ii1. or,"
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of these tests was analyzed by Stone and Nickell t22l with the finite
element program, MARC, to which we referred in Section g.3.2. In
particular, they considered the case witl radius to thickness ratio of 32 and
applied axial stress equal to l2.l kg/mmz, which is included in Table 6.1
of chapter 6. we may recall that the buckling time measured was 7.2
hours and there were several predictions based on the methods of chapter
6 given as 11.5, 10.5, 9.12, and 8.30 hours.

In the finite element runs the creep was assumed to be stationary with a
steady creep law

ic:4.4( l0- ro)o"5.8

Two methods were used as follows, the details of which are beyond the
scope of the text. The first is a step by step method:

I' Apply the external load to the shell and solve the time independent
elasto-static problem.
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2' Begin to march in time for creep anarysis, as described earlier in thischapter.
3. Stop the creep analysis at some time. r.
4. Allow a small additional time increment for creep, Al.
5' Solve the resulting-eigenvalue problem for the eigenvalue A of the

load and the eigenfunction g.
6. Calculate the critical time from the formula

t c R = r + I  A t

Stone and Nickell [22] applied this approach to a model that was made up
of twenty elements along the length of the shell and three elements in the
thickness direction. The assembly was analyzed for one hour of creep and
the critical time was found to be 69.5 hours compared to the measured
value of 7.2 hours. Next, the model was changed to50 axial shell elements
and again allowed to creep for one hour. The critical time was now
reduced to 19J hours. This is still above the experimental value of i.Z
hours and all of the approximate values from Table 6.1.

Next" it was postulated that plasticity was occurring in the regions near
the shell supports. The resulting behavior was analyzed by mirching in
time until the structural stiffness became non-positive definiie. This gave a
result of 9'56 hours, at which time a plastic hinge formed at one of the
edges. The remaining differences, compared to the measured value of 7.2,
were attributed to the presence of imperfections in the shell and inaccu_
racies in ignoring the transienr creep behavior. Now, however, the finite
element result is within the range of the approximate results obtained by
the methods of Chapter 6.

It appears, therefore, that the approximate methods are to be preferred
because of their relative simplicity and accuracy. As pointed out ty Stone
and liicke[ [22], and by Dhaila and Gallagher t@
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E.4.7 Creep ot a RotaUng Gas Turblne Seal Rlng

In gas turbine construction there is a seal ring located in the vicinity of the
point of attachment between the blades and the disc. The purpor" of the
seal ring is to contain cooling air while keeping out the irot'gases that
impinge on this general area. The assembly is-shown in Figlg.l7. As
shown, the ring sits on a shoulder against which it is driven by the
centrifugal force produced by rotation at 12,000 rpm. The highest tempera-
ture occurs at the outer tip of the ring. It is desired to mainiain the shape
of the ring so as to preserve the seal during operation of the turbine.


