
Structure Loaded Vacuum Laser-Driven Particle 
Acceleration Experiments at SLAC

R.L. Byer1, E. Colby2, B. Cowan2, R. Ischebeck2, M. Lincoln2, 
C. Mcguiness2, R. Noble2 ,T. Plettner1, C.M. Sears2, R.H. Siemann2, 

J.E. Spencer2 , D. Walz2

1   Stanford University
2    ARDB group , SLAC

2006 Advanced Accelerator Conference  
Lake Geneva, Michigan, July 14 2006

“…the LEAP – E163 experiment”

Principal investigators: R.L. Byer and R.H. Siemann



About this talk

This talk will cover

1. A brief overview about our research and objectives

2. A brief summary of the proof-of-principle demonstration 
for laser-driven particle acceleration in a semi-infinite 
vacuum space

3. A description of the continuation of experiments with 
laser-driven particle acceleration in a semi-infinite 
vacuum space.

4. An overview of the buncher-accelerator two-stage 
experiment

5. A narrative of the work on photonic bandgap
microstructures for laser acceleration



Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

I. Crossed laser beams in a structure loaded vacuum
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Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

I. Crossed laser beams in a structure loaded vacuum

Y.C. Huang, et al, Appl. 
Phys. Lett. 68 (6) (1996) 

753.

1995: proposed 1 GeV/m structure

• possible to fabricate
• could be powered with 

tabletop lasers 



Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

I. Crossed laser beams in a structure loaded vacuum
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1997-2002: the single-cell x-laser beam accelerator experiment



Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

II. Single laser beam semi-infinite vacuum acceleration
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2004: The successful proof-of-principle demonstration



Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

III. Further semi-infinite vacuum acceleration experiments
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Test of laser acceleration as an inverse-radiation process
Test of different boundary conditions

• oblique orientation
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Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

IV. The buncher-accelerator two-stage experiment at λ=800 nm 

optical 
buncher

optical
accelerator

compressor 
chicane

laser



Overview of our research

“LEAP”  = Laser – Electron Accelerator Project

To investigate and develop structure loaded vacuum laser-
driven particle acceleration concepts 

Our primary objective:

Our main research directions

V. Ongoing work on photonic bandgap accelerator structures 
Initial stage of research and development

Field in a hollow core fiber A 3-D PBG structure Dispersion graph of trapped modes Fiber accelerator test setup



About this talk
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1. A brief overview about our research and objectives

2. A brief summary of the proof-of-principle 
demonstration for laser-driven particle acceleration 
in a semi-infinite vacuum space

3. A description of the continuation of experiments with 
laser-driven particle acceleration in a semi-infinite 
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The proof-of-principle experiment
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The proof-of-principle experiment

Laser pulse energy: ~ ½ mJ
FWHM laser spot size: 50 μm
FWHM laser pulse: 2.0 psec

Xing angle for ITR: 16 mrad
Xing angle for IFEL:       5 mrad

electron
beam

30 MeV ~ 2 psec 

5 mm

16 mm

• coarse timing of the laser with respect to the electron beam from a Cerenkov cell singal
• two distinct operation modes:  ITR  and  IFEL
• laser and electron beams cannot be simultaneously aligned for both the IFEL and the tape 
• IFEL and ITR timing conditions are almost identical (within few psec)
• the IFEL produces a larger and easier to detect signal
• once correct laser timing is found laser beam is re-aligned for ITR operation

Important features

IFEL

Tape
boundary

Cerenkov 
cell

electron
beam

streak 
camera10 cm

Schematic of the setup



The proof-of-principle experiment
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cell lens
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electron beam

Birdseye view of the setup



The proof-of-principle experiment

LEAP
area

kicker
collimator

slits
FEL

wiggler
superconducting

accelerator structures

amplified laserBeam Energy ~30 MeV
Telectron ~2 psec
Charge per bunch    ~5 pC
Energy spread ~20 keV
λlaser 800 nm
Elaser 1 mJ/pulse 

SCA beam parameters

Commercial, tabletop 
amplified sub-psec
mJ/pulse laser sources

The SCA-FEL facility



The proof-of-principle experiment

z

boundary
α zα

This confirms:
1. The Lawson-Woodward Theorem
2. No interaction from the IFEL

The effect of the boundary



The proof-of-principle experiment
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The proof-of-principle experiment
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The dependence on the laser electric field polarization

T. Plettner, R.L. Byer, E. Colby, B. Cowan, C.M.S. Sears, J. E. Spencer, R.H. Siemann, “Proof-of-principle experiment for laser-driven 
acceleration of relativistic electrons in a semi-infinite vacuum”, Phys. Rev. ST Accel. Beams 8, 121301 (2005)



IFEL Experiments at λ=800 nm

Cross-correlation in time Observation of harmonic interaction

(graduate student C. M. Sears)
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Further semi-infinite vacuum 
acceleration experiments

A set of experiments that complement the initial proof-of-principle demonstration

• infinite flat boundary:  very simple geometry

• ideal setting for a set of physics tests of laser-particle interaction

• direct test of the concept of laser-acceleration as an inverse-radiation process

r r r r
E dx E E dslaser

P
laser rad

S

⋅ = ⋅∫ ∫
?

• test of Inverse-transition radiation picture versus electric field path integral picture

o laser-electron-boundary angular dependence

o boundary type:  transparent, reflective, absorptive, rough

• test of rare situations not applicable to this equivalence picture

1. M. Xie, Proceedings of the 2003 Particle Accelerator Conference (2003)

2. Z. Huang, G. Stupakov and M. Zolotorev , “Calculation and Optimization of Laser Acceleration in Vacuum”, Phys. Rev. 
Special Topics - Accelerators and Beams, Vol. 7,  011302 (2004)



Further semi-infinite vacuum 
acceleration experiments

The Path Integral Method (PIM)
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The mechanical work of the driving field on a charged particle is simply the 
path integral of its corresponding force
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Further semi-infinite vacuum 
acceleration experiments

The Inverse (Transition) Radiation Picture (ITR) 
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Planar infinite conductive boundaries at arbitrary orientations
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Further semi-infinite vacuum 
acceleration experiments

T. Plettner, “Analysis of Laser-Driven Particle Acceleration from Planar Infinite Conductive Boundaries”, SLAC-PUB-11637 (2006)
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Experiment setup and expected dependence on laser crossing angle
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Further semi-infinite vacuum 
acceleration experiments
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Further semi-infinite vacuum 
acceleration experiments

Non-reflective black boundary
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Further semi-infinite vacuum 
acceleration experiments

Summary of expected results with single-boundary experiments 
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(graduate student C. M. Sears)
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Photonic bandgap accelerator 
microstructure  experiments

The Blaze Photonics  HC-1550-02 fiber for laser-driven particle acceleration

Parameter value 
Structure impedance  1=CZ Ω 
Damage factor 11.0=FD  
Laser wavelength 6.1=λ  μm 
Laser pulse energy 1 μJ 
Laser pulse duration 1 psec 
Laser group velocity β ~ 0.6 
Expected gradient 0.6 GeV/m 
Structure length 0.5 mm 
Energy gain 0.3 MeV 

 

Modeling and studies 
with  commercial 

software packages

Proposed parameters 
for a laser-driven 

particle acceleration 
experiment with a PBG 

hollow core fiber

R.H. Siemann, 
R. Noble, et. al

X.E. Lin, “Photonic band gap fiber accelerator”, Phys. Rev. ST Accel. Beams 4, 051301 (2001) 



Photonic bandgap accelerator 
microstructure  experiments

HeNe laser

step plate
(vertical)

step plate
(horizontal)

polarizer

λ/2

beamsplitter

θ

HeNe laser

step plate
(vertical)

step plate
(horizontal)

polarizer

λ/2

beamsplitter

θ

The generation of a TEM01* donut mode

Simple optical tests with HeNe lasers

(graduate student  M. Lincoln)

(graduate student P. Lu)

Free-space to fiber coupling tests



Photonic bandgap accelerator 
microstructure  experiments

Focusing of the electron beam into the PBG structure Experiment setup

(graduate student  C. M Sears)

(J.E. Spencer)

(R. Ischebeck)



Photonic bandgap accelerator 
microstructure  experiments

The Woodpile 3-dimensional photonic bandgap structure
( graduate student B. Cowan)

 
Waveguide Planar defect

 e-

• EM field modeling work 
• particle beam transport
• parameter optimization

• nanofabrication steps
• laser damage threshold measurements

Present work



Where all these experiments will 
take place

Status of the facility
• construction of the experiment hall
• installation of the E163 control room
• commissioning of the laser system
• installation and commissioning of the RF gun

The new E163 
experiment hall

The NLCTA

new 
RF 
gun

RF gun

X-band 
structure

Chicane
• compressor
•energy filter

X-band 
structures

7 MeV 60MeV

300MeV

interaction 
chamber

spectrometer

Ti:sapphire
laser systemx3

800 nm266 nm

NLCTA tunnel experiment
hall

E. Colby
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