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« UMER will serve as a low-cost model of high intensity

accelerators
Scaling laws: GeV, kA heavy ions = keV, mA electrons

1 keV 1 MeV 1 GeV 1TeV

"= 2peor2(lcbg)3 ¢’ kaaz
Energy 10-50 keV Circulation time 200 ns
Energy Spread 20 eV Pulse length 20-100 ns
rms Emittance, nor | 0.2-3 um Zero-Current Tune | 7.6
Current range 0.6-100 mA | | Depressed Tune 1.5-6.5




@, Motivation
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 Test a new technique for mapping phase spaces based on
tomography
« Extend it for beams with space charge
e Simulate it:
— Error sensitivities
— Different distributions
— Accuracy of space charge modeling

e Use it on experiments
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Article Beam/Facility | Energy / Current | G. Perveance
McKee et al. 1995 | Duke Mark Il FEL | 44MeV / 0.2A 3.5101
Connolly et al. 2000 | RHIC 100 Gev/u / 1.76A 3.5 1010
Hancock et al. 2000 | CERN PSB 50 MeV /180 mA 2.1 1011

1 GeV
Montag et al. 2002 | RHIC 100 Gev/u / 1.76A 3.5 1010
Yakimenko et al. ATF at BNL 50 MeV/ 100A 1.2 108
2003
Loos et al.2004 DUV-FEL 38 MeV/ 148A 4.0 10
Li H. PhD Dis. 2004 | UMER 10 keV/ 7TmA 1.0 104
Chalut et al. 2005 OK-4 Duke FEL 0.8 GeV/ 20mA 6.1 10-16

For UMER: G. Perveance 10° to 103
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Computed Tomography (CAT Scan) e

 Tomography is the technigue of reconstructing an image
from its projections (1826 Abel, 1917 Radon)

c.t. scanner x-ray tube

!
; B

=

both rotate
around the
patient
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x-ray detector

signals from
detector
—— ;trJ

computer

http://www.dbh.nhs.uk http://universe-review.ca



R
SERST,
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Quad Monitor

 We measure the beam phase space by combining a
simple quadrupole-scan with tomography

McKee et al. 1995



Beam Phase Space Tomography
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Quad Monitor
Beam Real Space Projection Phase Space Projection
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~»-  Beam Phase Space Tomography

180 , . . - . - . ' T
160 |- 7
- /’/ T
@ 140 | / .
o - / -

/

2 120 1
3 i l
o 100f .
& ' | |
Z 8o .
= [ l
S 60| 1
3 - f' '
S sl / |
20 |- / y
i // i
o . .
| _r__ﬂ_———’_! e
20 | 1

| L | ' | ) | 1 |

400 -200 0 200 400

Quad Focusing Strength (m'z)



@ Equations of Motion
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e Single particle equation

X =-K, X+F

linear

+F

Nonlinear

 NoO space charge:

X 6 ge cosk, z —3'”\/_2—89%0
¢ TTC K, 7@ .= where K, =K,
P e kosngk,z  cosk,z BXO@

« Space charge: Calculations are very complicated and
approximations need to be made in order to generate
the transfer matrices.



@ Space Charge Dominated Beams -
Assumptions

e Linear space charge: Calculation of the transfer matrix is
easy.

" 0 . 2K
X =- kx,oX+ Finear +F onlinear :>X =~ (Ko X(X +Y))X

Problem: X and Y vary with z

 No emittance growth. The beam size will be calculated
using the beam envelope equations.

2 . e’
X +k, X - 2K __& =0 Y +k)Y - K =0
X +Y X3 TOXHY Y
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 We simulate the tomography process using the particle-

In-cell code WARP.
Ql Q2 Q3 Generated

beam photos
Beam /

L
\ Phase space

*

HQl? D, }*"IQEE D, qu.é D3§ ) reconstruction
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 Reconstructed phase space by Tomography will be
compared to that generated by WARP.

WARP Tomography
Nonlinear space charge | Linear space charge

Emittance growth Constant emittance
Bends included Bends ignored
Image charge forces Image charge force

ignored




@ Phase Space Tomography -
No Space Charge

e 7=0.3, I=0.6mMA
e Initial beam distribution: Semi-Gaussian

Uniform Gaussian

Direct Tomo Error
WARP (%)
e (dxrms)uym .46 537 1.6

X(2xrmsymm 2.28 2.23 2.2

WARP Tomography Stratakis et al. Physical Review ST - AB (submitted 2006)



o Phase Space Tomography -
No Space Charge

* 2=0.3, 1=0.6mA

 [nitial beam distribution: Semi-Gaussian

¥

Uniform Gaussian

Direct Tomo Error
WARP (%)
g,(4xrms)um 349 523 49

Yi2wrms)mm  3.68 3.46 6.0

WARP Tomography Stratakis et al. Physical Review ST - AB (submitted 2006)
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e ?7=0.72, I=7TmA
e Initial beam distribution: Semi-Gaussian

-‘{ b
Uniform Gaussian

Direct Tomo Error
WARP (%)
g (4xrms)um 14.5 134 7.6

X(2xrms)mm 1,88 1.72 8.5

Tomography WARP Stratakis et al. Physical Review ST - AB (submitted 2006)



@ Phase Space Tomography - With
e Extreme Space Charge

e 7=0.90, =24 mA
e Initial beam distribution: Semi-Gaussian

Direct Tomo Error
WARP (%)
e (dxrms)um 28.8 244 152

X(2xrms)ymm 2.38 2.62 9.2

Tomography
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Distributions
?=0.72 , I=7mA (space charge)

Initial Distribution: Five Beamlet
e Highly non-uniform distribution

Direct Tomo Error
WARP (%0)
g (dxrms)um 19.0 176 7.5

X(2xrms)mm 2.39 226 54

Tomography can be used to map the phase
space of complex multi-beamlet distributions

WARP Tomography



,fﬁfhase Space Tomography - Experiments @&
in UMER

Beam photos were
collected with the aid
of phosphor screen which

Beam photo |
sl intercept the beam

capture




@ Phase Space Tomography -
e Experiments in UMER

 Phase space reconstruction of a low current beam
(?=0.30) along the injector line

4XxRMS emittance:
e, =5.820.1mm
e = 6.8+ 0.1nm

Stratakis et al. Physical Review ST - AB (submitted 2006)



Conclusions

We designed a simple, portable technique to map the
beam phase space based on tomography.

Tomography accurately reproduces the beam phase
space predicted by WARP simulations for both emittance
and space charge dominated beams

Tomography can be used to map the phase space of
more complex, non-equilibrium distributions

First experiments with tomography in UMER have been
completed
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Computed Tomography (CAT scan)

e Radon Transform

We can recover an object in n-dimensional space from
projections onto (n-1)-dimensional space.

P,()= o f(x,y)ds or
(?'t)line
¥ ¥

P.(t) = O Oyoxdyf (X, y)d(t- 30?)

U U

U U U — : -
j and X=XI+VY]

where X =cosqi+snq




Tomography Algorithm

 Fourier Slice Theorem

Fourier transform of a parallel projection is equal to a slice
of the two-dimensional Fourier transform of the original

object.

! S, (W) = ¢g '*™P, (t)at

——-

¥ ¥

F(u,v) = ¢ Oaxdyf (x,y)e 12t
VAR,

space domain frequency domain

Kak and Slaney, Principles of Computerized Tomographic Imaging



Tomography Algorithm

 Knowledge of the F(u,v) the object function f(x,y) can be
recovered by using the inverse Fourier Transform

¥ ¥

« f(xy) = ) OdudvF (u,v)e e
VR,

frequency domaln

Kak and Slaney, Principles of Computerized Tomographic Imaging



Filtered Backprojection Algorithm (FBA)

NP 7 =

|deal éﬁéﬁon Sliéé_'?ﬁéarem V(/e]g_ht]ng
« A simple weighting in the frequency domain is used to

take is projection and estimate a pie-shaped wedge of
the object's Fourier transform.

« We multiply the value of the Fourier transform of the
projection of the projection and multiply it by the width of
the wedge at that frequency

* Apply inverse Fourier Transform of the filtered
projections



Backprojection Algorithm

fix, ¥)= E, 5: Fu, v)el2 ws+er) dy dy

flx, y)= E:r E: F(w, B)giinwixcosb+ysindly dyw dg,

fo v)=| [j:sﬂ{wﬂmeﬂm a:fw] .
(%, ¥)=\" Qs(x cos b+ sin 8) db
il

Q=" Syw)lw|es dw.



Beam Phase Space Tomography
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Quad Monitor

 We can reconstruct the beam phase space distribution using
Its projections in real space.

C(x) = QAX,y)dy = gn(x, x)dx
« Variation of the quadrupole lens strength rotates the

distribution in phase space generating a number of
Independent projections on the screen.

 There Is a simple scaling equation that relates these profiles to
the radon transform of the phase space.

tanq:L
ae(o ad, T, 6,0 T,
exﬂ eTle %on S:\/T112+T122

C. B. McKee, P. G. O'Shea, J.M. Madey, NIMPR, 1995



