Problem 1

Let’s take spherical coordinates, with the z-axis pointing towards the di-
rection of 5 and the x-axis pointing towards the direction of the acceleration.
Then, we obtain

dP ¢ 1 cos? ¢ sin? (1)
dQ ~ 4me |(1—Bcosh)? (1 — Bcosh)iy?

Let’s integrate the above expression over 6. For that one has to complete
the squares and express

B cos® 0 = [(1 — BcosB)? —2(1 — Beosh) + 1] (2)
With this trick, it is trivial to demonstrate that
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Moreover,
1
dcosh——F——— = —27* 4
/ €08 (1 — Bcosh)? 7 @)
Therefore,

/ dco dP q27462 [2 — cos? ¢§} (5)
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The emission of energy is maximal along the plane y-z, perpendicular to the
direction of the acceleration, and is minimized along the plane x-z.
Integrating the above expression over d¢, one obtains
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Problem 2
We start with the non-relativistic approximation
dP q> S
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s =L lx (i x f (7)



Here ¥ = Za cos wgt, and
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where € is the angle between the Z and n. The time average is very simple,
since

T T
/0 cos® wot = 5 (10)
Then,
dP 2,2, .4
(5) = S sin (1)
where the brackets denote time average. Integrating over  one obtains
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(b) This time 7 = R(& coswot + §sinwet), while f = —w27/c. Expressing
things in spherical coordinates we get

. 4R2
nx (hx B = Wocz [1 — sin® @(cos ¢ cos wyt + sin ¢ sin wot)] (13)
Hence,
dP  QuwiR? . )
0= I [1 — sin® 0 cos” (wot — (;5)] (14)
Using the fact that the ime average < cos?(wot — ¢) > = 0.5, we get
dP QPwiR? 9
—)=—0 0 15
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Observe that radiation is maximal along the z-axis. Finally, integrating over
f an ¢ we get
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Problem 3.

a) We know from class that the total radiation power is given by

25 '
P=—— (17)
3¢
The acceleration of the particle is equal to Rw?%, where
B
wp = 4— (18)
yme
Thus,
2¢°y* Rwiy
P=—_-—= 19
Now, putting wp = v/R and solving for R, we get
yemu
R= 20
- (20)
and using the relation between v/c and v, we get that
2 4
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R? = 25 (v*=1) (21)
Thus,
2¢'B*(y* — 1)
PHt)="—"—"1r—"~ 22
() =20 (22)
b) From point (a) we have that
2¢*B*(v? — 1
By = —dE = 2207 =1) 4 (23)
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where E is the energy of the particle. But E = ymc?, so dE = mc?dy.

Hence, A

v(t) d 2¢*B? t
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If ¥ > 1 during the time interval above, then we can approximate the left
hand integrand by 1/72. Thus,

3m3c® [ 1 1
po 20 C - (25)
2¢'B* \y(t) ~(t=0)
¢) In the non-relativistic limit, ¥ ~ 1 and then
Y -1l=+1)r-1)=2>n-1) (26)

Again, the left-hand integral is trivial and reduces to

%m @)__11) (27)

But, defining the kinetic energy K = E — mc?

K = (y — 1)mc? (28)
Hence,
K 4¢* Bt
n{—)=_"2—-"° 29
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4¢*B*t
d) The acceleration in this case is such that (dvy/dt = 0)
20232 (i1 2
0 q°B°B?sin“f
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where 0 is the angle between the velocity and the magnetic field. Using the
general expressio for P(t') for acceleration perpendicular to the velocity, we
get 4p2 2
~ 2¢°P;B
P(t) - 3m4c5 (32)
where Pr = ymuwsin @ is the transverse momentum with respect to the mag-
netic field.



Now, the particle moves in a changing magnetic field, since the dipole
field is not constant. However, assuming that the field changes slowly, we
may use the adiabatic invariant described in section 12.5 of Jackson. Namely,

P2
e (3)
is an adiabatic invariant. Thus, we can write
2q* P 1% 3
P(t,) - 3m4c5 <§ B (34)

and conclude that during the trajectory of the particle, it radiates with a
power P(t') proportional to the third power of B.

Problem 4.

The generic expression of P is
2¢° 7 2\2 932

The general relation between the acceleration and the Force may be obtained

by the relation:
d(myi)

F= 36
pn (36)
and remembering that the variation of the energy of the particle,
dmyc? =
= Fi 37
p” i (37)
Therefore, after some simple algera
di 1 |~ @(Fa)
—=—|F - 38
dt  mry [ c? (38)
Therefore,
i = i F?— 11+ ? (Fu) (39)
while
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Finally, putting everything together we get

2¢%y°
3m?2c3

pP=

[F? — (Fin)?] (41)
For the case at hand, the force is just the lorentz force given by
F=q(E+ix B) (42)

and then, the result of the excercise is obvious.
b) To express the energy radiated in terms of a Lorentz invariant, one just
has to remember that one can relate the Lorentz Force to the four vector
dP* S 2 = o
—— =qF"U, =~ (un, q(E+Bx B)) (43)
dr
where
P* = meU* (44)

The result of the excercise is then obvious, and just reduces to a Lorentz
contraction.



