C K Zachos Crib Notes on Campbell-Baker-Hausdorff expansions (©1999 1

Crib Notes on Campbell-Baker-Hausdorff expansions

Cosmas Zachos

High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815, USA
zachos@anl.gov

Consider/introduce auxiliary scaling parameter t, for counting powers, ultimately set to t = 1.
For matrices, operators, etc, A and B,

ot AptB = LZ(LAB)

Based on Lemmata 1,2, and 3, below,

1 1
7 = ln(etAetB) — (etAetB _ 1) _ E(et‘Aet‘B _ 1)2+ 5(et‘Aei}B _1)3+ L

is evaluated recursively [1] through algorithms in Applications 1,2,3,...,

t2 £ t
Z=tA+B)+=[A, Bl + 7 ([[4,B], B] + A, [4, B]]) + 5 [[[B,A], A], B
£ £
—g (14, Bl B], B], B] + [[[[B, A], A], Al A]) + 2 ([[[[A, B], B], Bl A] + [[[[B, A], A], A], B])
5
—1%0([[[[14, B, B], A], B] + [[[[B, A, A], B], A]) +---

e Powers of t higher than the first have coefficients which are always commutators: Lie polynomials—
they are in the Lie Algebra. (Campbell, 1897; Poincaré, 1899. Structures Lie’s converse (third
fundamental) theorem: exponentiation of the algebra yields the simply connected group.) A con-
cise proof of this was discovered by Eichler (1968). In follows that trIn(e?e?) = trA + trB.

e Z(t,A,B) = —Z(—t,B,A), whence even powers of t are A — B antisymmetric, while odd
ones are symmetric.

e Thompson representation: Z(t,A,B) = ( “W AW + etWBe’tW>, where W
and W are in the Lie Algebra (A4, B, and commutators), and W(t, A, B) = W(—t,B,A) = 48 4 ...

e Zassenhaus expansion:

el (A+B) — oA otB , [AB] e3 5 (2[B,[A4,B))+[A,[A,B])) e*%([[[A,B]/A]/A]+3[[[A,BLA]/B]+3[[[A,B]/B]/B}) e

Example: gt(a+f/(x)) = e_f(x)etaef(x) = eta ef(x)_f(x_t) = etaetf/( )e 2lf”( )eslfm( )g 4lf/m( x) .

o Triple formula:

V() = ptAtBtA

e e
so that V(t, A, B) is an even function of t, V(t) = V(—t). Evaluated by, e.g., Application 1:
12
V:2A+B+g[(A+B),[B,A]]+~~~

Note the duality between B and —V.
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e Lie group commutator: efdetBete1B = eU.

U(t, A B) = —U(t,B, A)
I 4

= t*[A, B] + S [(A+B),[A Bl + 7 ([[[B,A], Al Bl/2+ [(A+ B), [(A+B), [AB]l]) - -

Lemma 1: (Duhamel’s formula)
1
(Sezz/ ds 1792 57 52
0

for any matrix (noncommutative) Z. E.g., § = % .
Provable directly from the finite N definition of the exponential, and then N — co.
Alternative proof: Consider A as the operator § acting on everything to its right.

d

d_s (est A esZ) — e—sZ [A, Z] esZ,,

then integrate by fol ds to obtain

1
e SN — A= / ds e 5% [A, Z] €2,
0

hence 1
(A, e7] = se* :/ ds e179)72 67 o7,
0
Lemma 2 (Hadamard formula): e’Be A =elA B=B+[A B+ 4[A[AB]]+---
Proof: Note left commutation [A, B] = Ad(A) B acts on B like a derivative operator—obeys

operator Leibniz’ chain rule. For a parameter s,

% <€SA B e—sA) — [A , esA B e—sA} ,

so f = e’ B e~/ satisfies
df
YA
dS [ ’f]’
with B.C. (0) = B. In turn, this is formally solved by the series ins, f(s) = el4 £(0).

Alternatively, it can be proved by induction in powers of s,

o Al

A direct consequence follows, eAeBe—4 = B+HABI+Z[A[ABI+ and hence the braiding relation,
9 g

eAeB — pBTIABI+5[A[AB]+ ,A
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These two lemmata lead to

Lemma 3 (Campbell-Poincaré fundamental identity):

elz -1

(6e%) e™% = 7z

0z,

or equivalently,

02 = e[Z[Z_ 1 <((5ez) eiz) ’

where the fraction is the celebrated generating function of the Bernoulli numbers.
Other equivalent forms are,
1-— 67[Z ez} -1

[z z]

e 256t =

etc. So suitable choices for simple ée?s lead to determination of §Z and hence Z.

Application Algorithm 1. (Poincaré. Readily exhibits Z construction out of nested
commutators, and applied mathematicians and Lie Group textbooks like it, cf. [2], but clumsy
computationally).

Set now eZ(t) = ¢Ae!B. For 6Z = 9;Z = Z' in Lemma 3, note that

1—e (2
_ L, L !
B=e¢ “de” = 7 Z,
hence z
r_ _ V4
Z_l_eﬁ3_¢@ ) B,
where ( )
_ xInx = (1—x)"
plx) = x—1 _1_11;171(11—1—1) '

(NB. (e ¥) =Y "0 anl—;:, for the Bernoulli numbers B, (1): By =1, By = %, B, = %, By = —

Since, from Lemma 2, elZ = el4¢t[B, this reads

Z'(t) =y (e[Aet[B> B,

and so one may integrate over t from Z(0) = A, to finally obtain

Z(1)=A+ (/01 dt <e[Aet[B>) B.

It is manifest that all subleading terms to A + B are commutators, so Z is in the Lie Algebra.

This is essentially an algorithm to produce the series by judicious power expansion of ¢ and its
arguments. For example, if only the term linear in B is sought (e.g.[3]), trivially, then,

[A

Z=A+ypeE?B+0OB)=A+———
1—e 4

B+ O(B?),
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where all expansion coefficients are simply related to the Bernoulli numbers as above.

Corollary: If O(B?) terms vanish, e.g. by virtue of special relations such as [A,B] = sB, it
follows that Z = A + ——5B = A + P(e®)B.

Taking inverses and rescaling yields a braiding relation, eAe? = ¢(®P$)B ¢4, Thus, the group
commutator amounts to just edeBeAe B = o€ —1)B,

Similarly, for A = td, B = f(x) — f(x —t) = (1 —exp(—[A))f(x), so tha
[B,[A,[A,B]]] = ..., this exact expansion collapses to just Z = A+ [A, f(x)
example employed for the above Zassenhaus expansion.

Application Algorithm 2. By virtue of its mechanical recursiveness, this one is favored by
phycisists, e.g. [4]. Set e?() = e!4¢!B. Operate both sides by § = 9;, and multiply by e~% on the
right. By Lemmata 3, and 2,

el -1

Z 7 = A+elAB

Now, setting

(o]

7= Zt”Zn,

n=1

the Z,s can be solved for recursively in the power of #"~! components of this eqn, so
Z1=A+B = Z, — Z3 —
Manifestly, again, for n > 1, each Z, is a function of commutators only.

e Z(t,A,B) = —Z(—t,B,A), = even powers of t are A — B antisymmetric, while odd ones
are symmetric.

Application Algorithm 3. (Hausdorff, cf [5]. Most systematic as a power expansion in A or B.)

Consider the replacement operators

Kl _(nd

which act on functions of A and B to successively replace each occurrence of A by JA, to first
order, preserving the orderings, in accord with Leibniz’s rule. Seek a symmetry of Z(A, B), upon
infinitesimal dilation of B, 6B = €B, i.e. find A = —eD(A, B) s.t., to O(€?),

Z(A,B) = Z(A — €D, B+ €B) + O(€?),

so that
edeB = eA~eDeBTEB — A1 _ee™45,e) (1 + €B)el 4 O(€?).

So, evaluating d4¢” by Lemma 3, one has to O(€?),

1—e A

A D = B,
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whence
[A

b= 1—e A

B.

Consequently, 0Z = 64 Z 4 6pZ = 0 amounts to

(o) on) 2= (o3) 2

The Lh.side raises the power of B, so the eqn may be solved recursively in each term Z, of O(B")

in Z, [
1 A 0
Zy = — ——— B | — ) Z,_
= (5 8) 57) 2
that is, [
A
O 4 1 1_6_[AB 4

etc, as in Application 1.
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