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PREFACE

Wigner’s quasi-probability distribution function in phase-space is a special (Weyl-

Wigner) representation of the density matrix. It has been useful in describing transport in

quantum optics; nuclear physics; and quantum computing, decoherence, and chaos. It is

also of importance in signal processing, and the mathematics of algebraic deformation. A re-

markable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged

in the last quarter-century: It furnishes a third, alternative, formulation of quantum me-

chanics, independent of the conventional Hilbert space, or path integral formulations.

In this logically complete and self-standing formulation, one need not choose sides be-

tween coordinate or momentum space. It works in full phase-space, accommodating the

uncertainty principle, and it offers unique insights into the classical limit of quantum the-

ory: The variables (observables) in this formulation are c-number functions in phase space

instead of operators, with the same interpretation as their classical counterparts, but are

composed together in novel algebraic ways.

This volume is a selection of 25 useful papers in the phase-space formulation, with an

introductory overview which provides a trail-map to these papers and an extensive bibliog-

raphy. (Still, the bibliography makes no pretense to exhaustiveness. An up-to-date database

on the large literature of the field, with special emphasis on its mathematical and technical

aspects, may be found in http://idefix.physik.uni-freiburg.de/∼star/en/download.html .)

The overview collects often-used formulas and simple illustrations, suitable for applications

to a broad range of physics problems, as well as teaching. It provides supplementary mate-

rial that may be used for a beginning graduate course in quantum mechanics. D Morrissey is

thanked for helpful comments, and T Curtright expresses his obligation to Ms Diaz-Heimer.

Errata and other updates to the book may be found on-line at

http://server.physics.miami.edu/∼curtright/QMPS

C. K. Zachos, D. B. Fairlie, and T. L. Curtright
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OVERVIEW OF PHASE-SPACE QUANTIZATION

0.1 Introduction

There are at least three logically autonomous alternative paths to quantization. The first is

the standard one utilizing operators in Hilbert space, developed by Heisenberg, Schrödinger,

Dirac, and others in the 1920s. The second one relies on path integrals, and was conceived

by DiracDir33 and constructed by Feynman.

The third one (the bronze medal!) is the phase-space formulation surveyed in this

book. It is based on Wigner’s (1932) quasi-distribution functionWig32 and Weyl’s (1927)

correspondenceWey27 between quantum-mechanical operators in Hilbert space and ordinary

c-number functions in phase space.

The crucial quantum-mechanical composition structure of all such functions, which relies

on the ⋆-product, was fully understood by Groenewold (1946)Gro46, who, together with

Moyal (1949)Moy49 , pulled the entire formulation together. Still, insights on interpretation

and a full appreciation of its conceptual autonomy took some time to mature with the work

of, among others, TakabayasiTak54, BakerBak58, and FairlieFai64.

This complete formulation is based on the Wigner function (WF), which is a quasi-

probability distribution function in phase-space,

f(x, p) =
1

2π

∫

dy ψ∗
(

x− ~

2
y

)

e−iypψ

(

x+
~

2
y

)

. (1)

It is a generating function for all spatial autocorrelation functions of a given quantum-

mechanical wave-function ψ(x). More importantly, it is a special representation of the

density matrix (in the Weyl correspondence, as detailed in Section 0.12).

Alternatively, in a 2n-dimensional phase space, it amounts to

f(x, p) =
1

(2π~)n

∫

dny
〈

x+
y

2

∣

∣

∣
ρ

∣

∣

∣
x− y

2

〉

e−ip·y/~, (2)

where ψ(x) = 〈x|ψ〉 in the density operator ρ,

ρ =

∫

dnz

∫

dnxdnp
∣

∣

∣
x+

z

2

〉

f(x, p) eip·z/~
〈

x− z

2

∣

∣

∣
. (3)

There are several outstanding reviews on the subject: refsHOS84,Tak89,Ber80,BJ84,Lit86,
deA98,Shi79,Tat83,Coh95,KN91,Kub64,DeG74,KW90, Ber77,Lee95,Dah01,Sch02,DHS00,CZ83,Gad95,HH02,
Str57,McD88,Leo97,Sny80,Bal75,BFF78.

Nevertheless, the central conceit of the present overview is that the above input wave-

functions may ultimately be bypassed, since the WFs are determined, in principle, as the

solutions of suitable functional equations in phase space. Connections to the Hilbert space

operator formulation of quantum mechanics may thus be ignored, in principle—even though

they are provided in Section 0.12 for pedagogy and confirmation of the formulation’s equiv-

alence. One might then envision an imaginary world in which this formulation of quantum

mechanics had preceded the conventional Hilbert-space formulation, and its own techniques
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and methods had arisen independently, perhaps out of generalizations of classical mechanics

and statistical mechanics.

It is not only wave-functions that are missing in this formulation. Beyond the ubiq-

uitous (noncommutative, associative, pseudodifferential) operation, the ⋆-product, which

encodes the entire quantum-mechanical action, there are no linear operators. Expectations

of observables and transition amplitudes are phase-space integrals of c-number functions,

weighted by the WF, as in statistical mechanics.

Consequently, even though the WF is not positive-semidefinite (it can be, and usually is

negative in parts of phase-space Wig32), the computation of expectations and the associated

concepts are evocative of classical probability theory, as emphasized by Moyal. Still, telltale

features of quantum mechanics are reflected in the noncommutative multiplication of such

c-number phase-space functions through the ⋆-product, in systematic analogy to operator

multiplication in Hilbert space.

This formulation of quantum mechanics is useful in describing quantum transport

processes in phase space, notably in quantum opticsSch02,Leo97,SM00; nuclear and parti-

cle physicsBak60,SP81,MM84,CC03,BJY 04; condensed matter MMP94,DBB02,KKFR89,BP96,Ram04,
KL01,JBM03; the study of semiclassical limits of mesoscopic systems Imr67,OR57,Sch69,Ber77,
KW87,OM95,MS95,MOT98,V or89,V o78,Wer95,Ara95,Rob93; and the transition to classical statistical

mechanics VMdG61,JD99,F re87,BD98,Dek77,Raj83,HY 96,CV 98,SM00, FLM98,FZ01,Zal03,CKTM07.

Since observables are expressed by virtually common variables in both their quan-

tum and classical configurations, this formulation is the natural language in which to

investigate ‘quantum chaos’ and decoherenceBer77,JN90,Zu91,ZP94,BC99,KZZ02,KJ99,FBA96 ,
Kol96,GH93,CL03,BTU93,Mon94,HP03,OC03 (of utility in, e.g., quantum computingBHP02,MPS02);

and provides crucial intuition in quantum mechanical interference problemsWis97,

molecular Talbot-Lau interferometryNH08, probability flows as negative proba-

bility backflowsBM94,FMS00,BV 90, and measurements of atomic systemsSmi93,Dun95,
Lei96,KPM97,Lvo01,JS02,BHS02,Ber02,Cas91.

The intriguing mathematical structure of the formulation is of relevance to Lie

AlgebrasFFZ89; martingales in turbulenceFan03; and string field theoryBKM03. It has

recently been retrofitted into M-theory and quantum field theory advances linked to

noncommutative geometrySW99,F il96 (for reviews, see Cas00,Har01,DN01,HS02), and matrix

modelsTay01,KS02; these apply spacetime uncertainty principlesPei33,Y o89,JY 98,SST00 reliant

on the ⋆-product. (Transverse spatial dimensions act formally as momenta, and, analo-

gously to quantum mechanics, their uncertainty is increased or decreased inversely to the

uncertainty of a given direction.)

As a significant aside, the WF has extensive practical applications in signal processing,

filtering, and engineering (time-frequency analysis), since time and frequency constitute a

a: World Scientific Copyrighted Material Version of April 21, 2009 8



pair of Fourier-conjugate variables just like the x and p pair of phase spacea.

For simplicity, the formulation will be mostly illustrated for one coordinate

and its conjugate momentum, but generalization to arbitrary-sized phase spaces

is straightforwardBal75,DM86, including infinite-dimensional ones, namely scalar field

theoryDit90,Les84,Na97,CZ99,CPP01,MM94: the respective WFs are simple products of single-

particle WFs.

0.2 The Wigner Function

As already indicated, the quasi-probability measure in phase space is the WF,

f(x, p) =
1

2π

∫

dy ψ∗
(

x− ~

2
y

)

e−iyp ψ

(

x+
~

2
y

)

. (4)

It is obviously normalized,
∫

dpdxf(x, p) = 1. In the classical limit, ~ → 0, it would reduce

to the probability density in coordinate space x, usually highly localized, multiplied by

δ-functions in momentum: the classical limit is “spiky” and certain!

This expression has more x−p symmetry than is apparent, as Fourier transformation to

momentum-space wave-functions yields a completely symmetric expression with the roles

of x and p reversed, and, upon rescaling of the arguments x and p, a symmetric classical

limit.

The WF is also manifestly realb. It is also constrained by the Cauchy-Schwarz inequality

to be bounded, − 2
h ≤ f(x, p) ≤ 2

h . Again, this bound disappears in the spiky classical limit.

Thus, this quantum-mechanical bound precludes a WF which is a perfectly localized delta

function in phase space—the uncertainty principle.

Respectively, p- or x-projection leads to marginal probability densities: a spacelike

shadow
∫

dp f(x, p) = ρ(x), or else a momentum-space shadow
∫

dxf(x, p) = σ(p). Either is

a bona-fide probability density, being positive semidefinite. But neither can be conditioned

on the other, as the uncertainty principle is fighting back: The WF f(x, p) itself can,

and most often is negative in some small areas of phase-spaceWig32,HOS84,MLD86, as is

illustrated below, a hallmark of QM interference in this language. Such negative features

thus serve to monitor quantum coherence; and their attenuation, respectively, its loss. (In

fact, the only pure state WF which is non-negative is the GaussianHud74, a state of maximum

entropyRaj83.)

aThus, time varying signals are best represented in a WF as time varying spectrograms, analogously to a music score,
i.e. the changing distribution of frequencies is monitored in timedeB67,BBL80,Wok97,QC96,MH97,Coh95,Gro01,F la99 :
even though the description is constrained and redundant, it gives an intuitive picture of the signal that a mere time
profile or frequency spectrogram fails to convey. Applications aboundCGB91,Lou96,MH97 in bioengineering, acoustics,
speech analysis, vision processing, turbulence microstructure analysis, radar imaging, seismic data analysis, and the
monitoring of internal combustion engine-knocking, failing helicopter component vibrations, and so on.
bIn one space dimension, by virtue of non-degeneracy, ψ has the same effect as ψ∗, and f turns out to be p-even; but
this is not a property used here.

a: World Scientific Copyrighted Material Version of April 21, 2009 9



The counter-intuitive “negative probability” aspects of this quasi-probability dis-

tribution have been explored and interpreted Bar45,F ey87,BM94,MLD86 (for a popular

review, see LPM98), and negative probability flows amount to legitimate probabil-

ity backflows in interesting settings BM94. Nevertheless, the WF for atomic sys-

tems can still be measured in the laboratory, albeit indirectly, and reconstructed
Smi93,Dun95,Lei96,KPM97,Lvo01,Lut96,BAD96,BHS02,Ber02,BRWK99,V og89 .

Smoothing f by a filter of size larger than ~ (e.g., convolving with a phase-space Gaus-

sian) results in a positive-semidefinite function, i.e. it may be thought to have been smeared

or blurred to a classicalc distributiondeB67,Car76,Ste80,OW81,Raj83.

It is thus evident that patches in f of uniformly negative value cannot be much larger

than a few ~, since, then, smoothing by an ~-filter would fail to obliterate them. That is,

negative patches are small, a microscopic phenomenon, in general, in some sense shielded

by the uncertainty principle. Monitoring negative WF features and their attenuation in

time affords a measure of decoherence and drift towards a classical stateKJ99.

Among real functions, the WFs comprise a rather small, highly constrained, set. When

is a real function f(x, p) a bona-fide Wigner function of the form (4)? Evidently, when its

Fourier transform (the cross-spectral density) “left-right” factorizes,

f̃(x, y) =

∫

dp eipyf(x, p) = g∗L(x− ~y/2) gR(x+ ~y/2) . (5)

That is,

∂2 ln f̃

∂(x− ~y/2) ∂(x+ ~y/2)
= 0 , (6)

so, for real f , gL = gR.

Nevertheless, as indicated, the WF is a distribution function, after all: it provides

the integration measure in phase space to yield expectation values of observables from

corresponding phase-space c-number functions. Such functions are often familiar classi-

cal quantities; but, in general, they are uniquely associated to suitably ordered operators

through Weyl’s correspondence ruleWey27. Given an operator (in gothic script) ordered in

this prescription,

G(x, p) =
1

(2π)2

∫

dτdσdxdp g(x, p) exp(iτ(p − p) + iσ(x − x)) , (7)

cThis one is called the Husimi distributionTak89,TA99 , and sometimes information scientists examine it on account
of its non-negative feature. Nevertheless, it comes with a substantially heavy price, as it needs to be “dressed”
back to the WF, for all practical purposes, when expectation values are computed with it; i.e., unlike the WF,
it does not serve as an immediate quasi-probability distribution with no further measure (see Section 0.13). The
negative feature of the WF is, in the last analysis, an asset, and not a liability, and provides an efficient description
of “beats”BBL80,Wok97,QC96,MH97,Coh95 , cf. Fig. 1. If, instead, strictly inequivalent (improper) expectation values
were taken with the Husimi distribution without the requisite dressing of Section 0.13, i.e. as though it were a bona-
fide probability distribution, such expectation values would reflect loss of quantum information: they would represent
classically smeared observablesWO87.
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x

p

f

Figure 1. Wigner function of a pair of Gaussian wavepackets centered at x = ±a:

f(x, p; a) = exp(−(x2 + p2))(exp(−a2) cosh(2ax) + cos(2pa))/(π(1 + e−a2

)). (For simplicity, ~ = 1 here. The

corresponding wave-function is ψ (x; a) =
“

exp
“

− (x+ a)2 /2
”

+ exp
`

−(x− a)2/2
´

”

/(π1/4
p

2 + 2e−a2).) Here,

a = 6 is chosen, quite larger than the width of the Gaussians. Note the phase-space interference structure (“beats”)
with negative values in the x region between the two packets where there is no wave-function support—hence vanishing
probability for the presence of the particle. The oscillation frequency in the p-direction is a/π. Thus, it increases with
growing separation a, ultimately smearing away the interference structure.
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the corresponding phase-space function g(x, p) (the Weyl kernel function or the Wigner

transform of the operator) is obtained by

p 7→ p, x 7→ x . (8)

That operator’s expectation value is then given by a “phase-space average” Gro46,Moy49,

〈G〉 =

∫

dxdp f(x, p) g(x, p). (9)

The kernel function g(x, p) is often the unmodified classical observable expression, such

as a conventional Hamiltonian, H = p2/2m + V (x), i.e. the transition from classical me-

chanics is straightforward (“quantization”).

However, the kernel function contains ~ corrections when there are quantum-mechanical

ordering ambiguities in the observables, such as in the kernel of the square of the an-

gular momentum, L · L. This one contains a term −3~
2/2 introduced by the Weyl

orderingShe59,DS82,DS02, beyond the mere classical expression (L2)—and accounts for the

nontrivial angular momentum of the ground-state Bohr orbit.

In such cases (including momentum-dependent potentials), even nontrivial O(~) quan-

tum corrections in the kernel functions (which characterize different operator orderings) can

be produced efficiently without direct, cumbersome consideration of operatorsCZ02,Hie84.

More detailed discussion of the Weyl and alternate correspondence maps is provided in

Sections 0.12 and 0.13.

In this sense, expectation values of the physical observables specified by kernel functions

g(x, p) are computed through integration with the WF, f(x, p), in close analogy to classical

probability theory, except for the non-positive-definiteness of the distribution function. This

operation corresponds to tracing an operator with the density matrix (cf. Section 0.12).

0.3 Solving for the Wigner Function

Given a specification of observables, the next step is to find the relevant WF for a given

Hamiltonian. Can this be done without solving for the Schrödinger wavefunctions ψ, i.e.

not using Schrödinger’s equation directly? Indeed, the functional equations which f satisfies

completely determine it.

Firstly, its dynamical evolution is specified by Moyal’s equation. This is the extension

of Liouville’s theorem of classical mechanics, for a classical Hamiltonian H(x, p), namely

∂tf + {f,H} = 0, to quantum mechanics, in this languageWig32,Moy49:

∂f

∂t
=
H ⋆ f − f ⋆ H

i~
≡ {{H, f}} , (10)

where the ⋆-productGro46 is

⋆ ≡ e
i~
2

(
←

∂ x

→

∂ p−
←

∂ p

→

∂ x) . (11)
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The right-hand side of (10) is dubbed the “Moyal Bracket” (MB), and the quantum

commutator is its Weyl-correspondent (its Weyl transform). It is the essentially unique

one-parameter (~) associative deformation (expansion) of the Poisson Brackets (PB) of

classical mechanicsV ey75,BFF78,FLS76,Ar83,F le90,deW83,BCG97,TD97. Expansion in ~ around 0

reveals that it consists of the Poisson Bracket corrected by terms O(~).

The equation (10) also evokes Heisenberg’s equation of motion for operators, except H

and f here are ordinary “classical” functions, and it is the ⋆-product which now enforces

noncommutativity. This language, then, makes the link between quantum commutators

and Poisson Brackets more transparent.

Since the ⋆-product involves exponentials of derivative operators, it may be evaluated

in practice through translation of function arguments (“Bopp shifts”),

f(x, p) ⋆ g(x, p) = f

(

x+
i~

2

→
∂ p, p−

i~

2

→
∂ x

)

g(x, p). (12)

The equivalent Fourier representation of the ⋆-product isNeu31,Bak58

f ⋆ g =
1

~2π2

∫

dp′dp′′dx′dx′′ f(x′, p′) g(x′′, p′′)

× exp

(−2i

~

(

p(x′ − x′′) + p′(x′′ − x) + p′′(x− x′)
)

)

. (13)

An alternate integral representation of this product isHOS84

f⋆g = (~π)−2

∫

dp′dp′′dx′dx′′ f(x+x′, p+p′) g(x+x′′, p+p′′) exp

(

2i

~

(

x′p′′ − x′′p′
)

)

, (14)

which readily displays noncommutativity and associativity.

⋆-multiplication of c-number phase-space functions is in complete isomorphism to

Hilbert-space operator multiplicationGro46 of the respective Weyl transforms,

A(x, p) B(x, p) =
1

(2π)2

∫

dτdσdxdp (a ⋆ b) exp(iτ(p − p) + iσ(x − x)). (15)

The cyclic phase-space trace is directly seen in the representation (14) to reduce to a plain

product, if there is only one ⋆ involved,
∫

dpdx f ⋆ g =

∫

dpdx fg =

∫

dpdx g ⋆ f. (16)

Moyal’s equation is necessary, but does not suffice to specify the WF for a system. In

the conventional formulation of quantum mechanics, systematic solution of time-dependent

equations is usually predicated on the spectrum of stationary ones. Time-independent pure-

state Wigner functions ⋆-commute with H, but clearly not every function ⋆-commuting with

H can be a bona-fide WF (e.g., any ⋆-function of H will ⋆-commute with H).
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Static WFs obey more powerful functional ⋆-genvalue equationsFai64 (also see
Kun67,Coh76,Dah83),

H(x, p) ⋆ f(x, p) = H

(

x+
i~

2

→
∂ p , p− i~

2

→
∂ x

)

f(x, p)

= f(x, p) ⋆ H(x, p) = E f(x, p) , (17)

where E is the energy eigenvalue of Hψ = Eψ in Hilbert space. These amount to a

complete characterization of the WFsCFZ98. (NB. Observe the ~ → 0 transition to the

classical limit.)

Lemma 0.1 For real functions f(x, p), the Wigner form (4) for pure static eigenstates is

equivalent to compliance with the ⋆-genvalue equations (17) (ℜ and ℑ parts).

Proof

H(x, p) ⋆ f(x, p) =

=
1

2π

(

(p − i
~

2

→
∂ x)

2/2m+ V (x)

)
∫

dy e−iy(p+i
~

2

←

∂ x)ψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy

(

(p− i
~

2

→
∂ x)

2/2m+ V (x+
~

2
y)

)

e−iypψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy e−iyp
(

(i
→
∂ y +i

~

2

→
∂ x)

2/2m+ V (x+
~

2
y)

)

ψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy e−iypψ∗(x− ~

2
y) E ψ(x+

~

2
y)

= E f(x, p). (18)

Action of the effective differential operators on ψ∗ turns out to be null.

Symmetrically,

f ⋆ H =

=
1

2π

∫

dy e−iyp
(

− 1

2m
(
→
∂ y −

~

2

→
∂ x)

2 + V (x− ~

2
y)

)

ψ∗(x− ~

2
y) ψ(x+

~

2
y)

= E f(x, p), (19)

where the action on ψ is now trivial.

Conversely, the pair of ⋆-eigenvalue equations dictate, for f(x, p) =
∫

dy e−iypf̃(x, y) ,
∫

dy e−iyp
(

− 1

2m
(
→
∂ y ±

~

2

→
∂ x)

2 + V (x± ~

2
y) − E

)

f̃(x, y) = 0. (20)

Hence, Real solutions of (17) must be of the form

f =
∫

dy e−iypψ∗(x− ~

2y)ψ(x+ ~

2y)/2π, such that Hψ = Eψ.

The eqs (17) lead to spectral properties for WFsFai64,CFZ98, as in the Hilbert space

formulation. For instance, projective orthogonality of the ⋆-genfunctions follows from asso-

ciativity, which allows evaluation in two alternate groupings:

f ⋆ H ⋆ g = Ef f ⋆ g = Eg f ⋆ g. (21)
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Thus, for Eg 6= Ef , it is necessary that

f ⋆ g = 0. (22)

Moreover, precluding degeneracy (which can be treated separately), choosing f = g above

yields,

f ⋆ H ⋆ f = Ef f ⋆ f = H ⋆ f ⋆ f, (23)

and hence f ⋆ f must be the stargenfunction in question,

f ⋆ f ∝ f. (24)

Pure state fs then ⋆-project onto their space. In general, it can be shownTak54,CFZ98 that,

for a pure state,

fa ⋆ fb =
1

h
δa,b fa . (25)

The normalization mattersTak54: despite linearity of the equations, it prevents naive super-

position of solutions. (Quantum mechanical interference works differently here, in compor-

tance with conventional density-matrix formalism.)

By virtue of (16), for different ⋆-genfunctions, the above dictates that

∫

dpdx fg = 0. (26)

Consequently, unless there is zero overlap for all such WFs, at least one of the two must go

negative someplace to offset the positive overlap HOS84,Coh95—an illustration of the feature

of negative values. This feature is an asset and not a liability.

Further note that integrating (17) yields the expectation of the energy,

∫

H(x, p)f(x, p) dxdp = E

∫

f dxdp = E. (27)

N.B. Likewised, integrating the above projective condition yields

∫

dxdp f2 =
1

h
, (28)

that is the overlap increases to a divergent result in the classical limit, as the WFs grow

increasingly spiky.

dThis discussion applies to proper WFs, corresponding to pure states’ density matrices. E.g., a sum of two WFs is not
a pure state in general, and does not satisfy the condition (6). For such generalizations, the impurity isGro46 1−h〈f〉 =
R

dxdp (f − hf2) ≥ 0, where the inequality is only saturated into an equality for a pure state. For instance, for
w ≡ (fa + fb)/2 with fa ⋆ fb = 0, the impurity is nonvanishing,

R

dxdp (w − hw2) = 1/2. A pure state affords a
maximum of information, while the impurity is a measure of lack of informationF an57,Tak54—it is the dominant term
in the expansion of the quantum entropy around a pure stateBra94.
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0.4 The Uncertainty Principle

In classical (non-negative) probability distribution theory, expectation values of non-

negative functions are likewise non-negative, and thus result in standard constraint inequal-

ities for the constituent pieces of such functions, such as, e.g., moments of the variables.

But it was just discussed that, for WFs which go negative for an arbitrary function g, the

expectation 〈|g|2〉 need not be ≥ 0. This can be easily illustrated by choosing the support

of g to lie mostly in those (small) regions of phase-space where the WF f is negative.

Still, such constraints are not lost for WFs. It turns out they are replaced by

Lemma 0.2

〈g∗ ⋆ g〉 ≥ 0. (29)

In Hilbert space operator formalism, this relation would correspond to the positivity of

the norm. This expression is non-negative because it involves a real non-negative integrand

for a pure state WF satisfying the above projective conditione,
∫

dpdx(g∗⋆g)f = h

∫

dxdp(g∗⋆g)(f ⋆f) = h

∫

dxdp(f ⋆g∗)⋆(g⋆f) = h

∫

dxdp|g⋆f |2. (30)

To produce Heisenberg’s uncertainty relationCZ01, one only need choose

g = a+ bx+ cp, (31)

for arbitrary complex coefficients a, b, c. The resulting positive semi-definite quadratic form

is then

a∗a+b∗b〈x⋆x〉+c∗c〈p⋆p〉+(a∗b+b∗a)〈x〉+(a∗c+c∗a)〈p〉+c∗b〈p⋆x〉+b∗c〈x⋆p〉 ≥ 0 , (32)

for any a, b, c. The eigenvalues of the corresponding matrix are then non-negative, and thus

so must be its determinant. Given

x ⋆ x = x2, p ⋆ p = p2, p ⋆ x = px− i~/2 , x ⋆ p = px+ i~/2 , (33)

and the usual

(∆x)2 ≡ 〈(x− 〈x〉)2〉, (∆p)2 ≡ 〈(p− 〈p〉)2〉, (34)

this condition on the 3 × 3 matrix determinant amounts to

(∆x)2 (∆p)2 ≥ ~
2/4 +

(

〈(x− 〈x〉)(p − 〈p〉)〉
)2
, (35)

and hence

∆x ∆p ≥ ~

2
. (36)

The ~ entered into the moments’ constraint through the action of the ⋆-product CZ01.

eSimilarly, if f1 and f2 are pure state WFs, the transition probability (|
R

dxψ∗
1
(x)ψ2(x)|2) between the respective

states is also non-negativeOW81 , manifestly by the same argumentCZ01, providing for a non-negative phase-space
overlap,

R

dpdxf1f2 = (2π~)2
R

dxdp |f1 ⋆ f2|2 ≥ 0.
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More general choices of g likewise lead to diverse expectations’ inequalities in phase

space; e.g., in 6-dimensional phase space, the uncertainty for g = a + bLx + cLy requires

l(l + 1) ≥ m(m+ 1), and hence l ≥ m, and so forthCZ01,CZ02. For a more extensive formal

discussion of moments, cf. NO86.

0.5 Ehrenfest’s Theorem

Moyal’s equation (10),

∂f

∂t
= {{H, f}} , (37)

serves to prove Ehrenfest’s theorem for expectation values.

For any phase-space function k(x, p) with no explicit time-dependence,

d〈k〉
dt

=

∫

dxdp
∂f

∂t
k

=
1

i~

∫

dxdp (H ⋆ f − f ⋆ H) ⋆ k

=

∫

dxdp f{{k,H}} = 〈{{k,H}}〉 . (38)

(Any convective time-dependence,
∫

dxdp (ẋ∂x (fk) + ṗ ∂p(fk)), amounts to an ignorable

surface term,
∫

dxdp (∂x(ẋfk) + ∂p(ṗfk)), by the x, p equations of motion.)

Note the ostensible sign difference between the correspondent to Heisenberg’s equation,

dk

dt
= {{k,H}} , (39)

and Moyal’s equation above. The x, p equations of motion in such a Heisenberg picture,

then, reduce to the classical ones of Hamilton, ẋ = ∂pH, ṗ = −∂xH.

Moyal Moy49 stressed that his eponymous quantum evolution equation (10) contrasts to

Liouville’s theorem for classical phase-space densities,

dfcl
dt

=
∂fcl
∂t

+ ẋ ∂xfcl + ṗ ∂pfcl = 0 . (40)

Specifically, unlike its classical counterpart, in general, f does not flow like an incompressible

fluid in phase space.

For an arbitrary region Ω about some representative point in phase space,

d

dt

∫

Ω
dxdp f =

∫

Ω
dxdp

(

∂f

∂t
+ ∂x(ẋf) + ∂p(ṗf)

)

=

∫

Ω
dxdp ({{H, f}} − {H, f}) 6= 0 . (41)

That is, the phase-space region does not conserve in time the number of points swarm-

ing about the representative point: points diffuse away, in general, without maintaining

the density of the quantum quasi-probability fluid; and, conversely, they are not prevented
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from coming together, in contrast to deterministic flow behavior. Still, for infinite Ω encom-

passing the entire phase space, both surface terms above vanish to yield a time-invariant

normalization for the WF.

The O(~2) higher momentum derivatives of the WF present in the MB (but absent in

the PB—higher space derivatives probing nonlinearity in the potential) modify the Liouville

flow into characteristic quantum configurationsKZZ02,FBA96,ZP94.

0.6 Illustration: the Harmonic Oscillator

To illustrate the formalism on a simple prototype problem, one may look at the harmonic

oscillator. In the spirit of this picture, in fact, one can eschew solving the Schrödinger

problem and plugging the wavefunctions into (4); instead, for H = (p2 + x2)/2 (with

m = 1, ω = 1), one may solve (17) directly,
(

(

x+
i~

2
∂p

)2

+

(

p− i~

2
∂x

)2

− 2E

)

f(x, p) = 0. (42)

For this Hamiltonian, then, the equation has collapsed to two simple Partial Differential

Equations.

The first one, the Imaginary part,

(x∂p − p∂x)f = 0, (43)

restricts f to depend on only one variable, the scalar in phase space,

z ≡ 4

~
H =

2

~
(x2 + p2) .

Thus the second one, the Real part, is a simple Ordinary Differential Equation,
(

z

4
− z∂2

z − ∂z −
E

~

)

f(z) = 0. (44)

Setting f(z) = exp(−z/2)L(z) yields Laguerre’s equation,
(

z∂2
z + (1 − z)∂z +

E

~
− 1

2

)

L(z) = 0. (45)

It is solved by Laguerre polynomials,

Ln =
1

n!
ez ∂nz (e−zzn) , (46)

for n = E/~ − 1/2 = 0, 1, 2, ..., so the ⋆-gen-Wigner-functions areGro46

fn =
(−1)n

π~
e−2H/~ Ln

(

4H

~

)

;

L0 = 1, L1 = 1 − 4H

~
, L2 =

8H2

~2
− 8H

~
+ 1 , ... (47)

But for the Gaussian ground state, they all have zeros and go negative.
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Figure 2. The oscillator WF for the 3rd excited state. Note the negative values.
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These functions become spiky in the classical limit ~ → 0; e.g., the ground state Gaus-

sian f0 goes to a δ-function. Their sum provides a resolution of the identityMoy49,
∑

n

fn =
1

h
. (48)

Note that the quantum energy variance is

〈H ⋆ H〉 − 〈H〉2 = (〈H2〉 − 〈H〉2) − ~
2

4
,

vanishing for all ⋆-genstates; while the naive star-less variance on the right-hand side is thus

larger than that, ~
2/4, and would groundlessly suggest broader dispersion.

(For the rest of this section, set ~ = 1, for algebraic simplicity.)

Figure 3. Section of the WF for the first excited state. Note the negative values.

Dirac’s Hamiltonian factorization method for the alternate algebraic solution of the same

problem carries through intact, with ⋆-multiplication supplanting operator multiplication.

That is to say,

H =
1

2
(x− ip) ⋆ (x+ ip) +

1

2
. (49)

This motivates definition of raising and lowering functions (not operators)

a ≡ 1√
2
(x+ ip), a† ≡ a∗ =

1√
2
(x− ip), (50)
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where

a ⋆ a† − a† ⋆ a = 1 . (51)

The annihilation functions ⋆-annihilate the ⋆-Fock vacuum,

a ⋆ f0 =
1√
2
(x+ ip) ⋆ e−(x2+p2) = 0 . (52)

Thus, the associativity of the ⋆-product permits the customary ladder spectrum

generationCFZ98. The ⋆-genstates for H ⋆ f = f ⋆ H are then

fn =
1

n!
(a†⋆)n f0 (⋆a)n . (53)

They are manifestly real, like the Gaussian ground state, and left-right symmetric; it is

easy to see they are ⋆-orthogonal for different eigenvalues. Likewise, they can be seen by

the evident algebraic normal ordering to project to themselves, since the Gaussian ground

state does, f0 ⋆ f0 = f0/h.

The corresponding coherent state WFs HKN88,Sch88,CUZ01,Har01,DG80 are likewise anal-

ogous to the conventional formulation, amounting to this ground state with a displacement

in the phase-space origin.

This type of analysis carries over well to a broader class of problemsCFZ98 with “essen-

tially isospectral” pairs of partner potentials, connected with each other through Darboux

transformations relying on Witten superpotentials W (cf. the Pöschl-Teller potentialAnt01).

It closely parallels the standard differential operator structure of the recursive technique.

That is, the pairs of related potentials and corresponding ⋆-genstate Wigner functions are

constructed recursivelyCFZ98 through ladder operations analogous to the algebraic method

outlined above for the oscillator.

Beyond such recursive potentials, examples of further simple systems where the

⋆-genvalue equations can be solved on first principles include the linear potential
GM80,CFZ98,TZM96, the exponential interaction Liouville potentials, and their supersym-

metric Morse generalizations CFZ98. (Also see Fra00,DS82,CH86,HL99,KL94).

Further systems may be handled through the Chebyshev-polynomial numerical tech-

niques of ref HMS98.

First principles phase-space solution of the Hydrogen atom is less than straightforward

and complete. The reader is referred to BFF78,Bon84,DS82,CH87 for significant partial results.

Algebraic methods of generating spectra of quantum integrable models are described in

ref CZ02.

0.7 Time Evolution

Moyal’s equation (10) is formally solved by virtue of associative combinatoric operations

completely analogous to Hilbert space quantum mechanics, through definition of a ⋆-unitary
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evolution operator, a “⋆-exponential”Imr67,GLS68,BFF78

U⋆(x, p; t) = e
itH/~
⋆ ≡ 1 + (it/~)H(x, p) +

(it/~)2

2!
H ⋆ H +

(it/~)3

3!
H ⋆ H ⋆H + ..., (54)

for arbitrary Hamiltonians. The solution to Moyal’s equation, given the WF at t = 0, then,

is

f(x, p; t) = U−1
⋆ (x, p; t) ⋆ f(x, p; 0) ⋆ U⋆(x, p; t). (55)

In general, just like any ⋆-function of H, the ⋆-exponential (54) resolves spectrally Bon84,

exp⋆

(

it

~
H

)

= exp⋆

(

it

~
H

)

⋆ 1 = exp⋆

(

it

~
H

)

⋆ 2π~

∑

n

fn = 2π~

∑

n

eitEn/~fn . (56)

(Of course, for t = 0, the obvious identity resolution is recovered.) In turn, any particular

⋆-genfunction is projected out formally by
∫

dt exp⋆

(

it

~
(H − Em)

)

= (2π~)2
∑

n

δ(En − Em)fn ∝ fm , (57)

which is manifestly seen to be a ⋆-function.

For oscillator ⋆-genfunctions, the ⋆-exponential (56) is directly seen to sum to

exp⋆

(

itH

~

)

=

(

cos(
t

2
)

)−1

exp

(

2i

~
H tan(

t

2
)

)

, (58)

which is, to say, just a GaussianBM49,Imr67,BFF78 in phase spacef .

N.B. This ⋆-exponential (56) for the oscillator may be evaluated alternativelyBFF78

without explicit knowledge of the ⋆-genfunctions fn summed above. Instead, for (54),

U(H, t) ≡ exp⋆(itH/~), Laguerre’s equation emerges again,

∂tU =
i

~
H ⋆ U = i

(

H

~
− ~

4
(∂H +H∂2

H)

)

U ,

and is solved by (58). One may then read off the fns in (56) as the Fourier coefficients of

U .

For the variables x and p, in the Heisenberg picture, the evolution equations collapse to

mere classical trajectories for the oscillator,

dx

dt
=
x ⋆ H −H ⋆ x

i~
= ∂pH = p , (59)

dp

dt
=
p ⋆ H −H ⋆ p

i~
= −∂xH = −x , (60)

f As an application, note that the celebrated hyperbolic tangent ⋆-composition law of Gaussians follows trivially, since
these amount to ⋆-exponentials with additive time intervals, exp⋆(tf) ⋆ exp⋆(Tf) = exp⋆((t + T )f),BF F78. That is,

exp
“

−
a

~
(x2 + p2)

”

⋆ exp

„

−
b

~
(x2 + p2)

«

=
1

1 + ab
exp

„

−
a+ b

~(1 + ab)
(x2 + p2)

«

.
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where the concluding member of these two equations only hold for the oscillator. Thus, for

the oscillator,

x(t) = x cos t+ p sin t, p(t) = p cos t− x sin t. (61)

As a consequence, for the oscillator, the functional form of the Wigner function is

preserved along classical phase-space trajectoriesGro46,

f(x, p; t) = f(x cos t− p sin t, p cos t+ x sin t; 0). (62)

Any oscillator WF configuration rotates uniformly on the phase plane around the origin,

essentially classically, (cf. Fig. 4), even though it provides a complete quantum mechanical

descriptionGro46,BM49,W ig32,Les84,CZ99,ZC99.

Naturally, this rigid rotation in phase-space preserves areas, and thus automatically

illustrates the uncertainty principle. By contrast, in general, in the conventional formulation

of quantum mechanics, this result is deprived of intuitive import, or, at the very least,

simplicity: upon integration in x (or p) to yield usual marginal probability densities, the

rotation induces apparent complicated shape variations of the oscillating probability density

profile, such as wavepacket spreading (as evident in the shadow projections on the x and p

axes of Fig. 4 ).

Only when (as is the case for coherent statesSch88,CUZ01,HSD95,Sam00) a Wigner function

configuration has an additional axial x− p symmetry around its own center, will it possess

an invariant profile upon this rotation, and hence a shape-invariant oscillating probability

densityZC99.

In Dirac’s interaction representation, a more complicated interaction Hamiltonian su-

perposed on the oscillator one, leads to shape changes of the WF configurations placed on

the above “turntable”, and serves to generalize to scalar field theoryCZ99.

0.8 Non-diagonal Wigner Functions

More generally, to represent all operators on phase-space in a selected basis, one looks

at the Weyl-correspondents of arbitrary |a〉 〈b|, referred to as non-diagonal WFs Gro46.

These enable investigation of interference phenomena and the transition amplitudes in the

formulation of quantum mechanical perturbation theory BM49,WO88,CUZ01.

Both the diagonal and the non-diagonal WFs are represented in (2), by replacing ρ

→ |ψa〉〈ψb|,

fba(x, p) ≡
1

2π

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

ψa

〉 〈

ψb

∣

∣

∣

∣

x− ~

2
y

〉

=
1

2π

∫

dye−iypψ∗b

(

x− ~

2
y

)

ψa

(

x+
~

2
y

)

= f∗ab(x, p)

= ψa(x) ⋆ δ(p) ⋆ ψ
∗
b (x) , (63)

The representation on the last line is due to Bra94 and lends itself to a more compact and

elegant proof of Lemma 0.1.
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t

p

x
Figure 4. Time evolution of generic WF configurations driven by an oscillator Hamiltonian. The t-arrow indicates the
rotation sense of x and p, and so, for fixed x and p axes, the WF shoebox configurations rotate rigidly in the opposite
direction, clockwise. (The sharp angles of the WFs in the illustration are actually unphysical, and were only chosen
to monitor their “spreading wavepacket” projections more conspicuously.) These x and p-projections (shadows) are
meant to be intensity profiles on those axes, but are expanded on the plane to aid visualization. The circular figure
represents a coherent state, a Gaussian displaced off the origin, which projects on either axis identically at all times,
thus without shape alteration of its wavepacket through time evolution.
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Just as pure-state diagonal WFs obey a projection condition, so too the non-diagonals.

For wave functions which are orthonormal for discrete state labels,
∫

dxψ∗a(x)ψb(x) = δab,

the transition amplitude collapses to

∫

dxdp fab (x, p) = δab . (64)

To perform spectral operations analogous to those of Hilbert space, it is useful to note that

these WFs are ⋆-orthogonalFai64

(2π~) fba ⋆ fdc = δbcfda , (65)

as well as completeMoy49 for integrable functions on phase space,

(2π~)
∑

a,b

fab (x1, p1) fba (x2, p2) = δ (x1 − x2) δ (p1 − p2) . (66)

For example, for the SHO in one dimension, non-diagonal WFs are

fkn =
1√
n!k!

(a∗⋆)n f0 (⋆a)k , f0 =
1

π~
e−(x

2+p2)/~ , (67)

(cf. coherent states CUZ01,Sch88,DG80). The f0n are readily identifiableGLS68, up to a phase-

space Gaussian (f0), with the analytic Bargmann representation of wavefunctions: note

that

(a∗⋆)n f0 = f0 (2a∗)n,

mere functions free of operators, where a∗ = a†, amounts to Bargmann’s variable z. (Also

note the limit Ln0 = 1 below.)

Explicitly, in terms of associated Laguerre polynomials, these areGro46,BM49,Fai64

fkn =

√

k!

n!
ei(k−n) arctan(p/x) (−1)k

π~

(

x2 + p2

~/2

)(n−k)/2

Ln−kk

(

x2 + p2

~/2

)

e−(x
2+p2)/~. (68)

These SHO non-diagonal WFs are direct solutions to Fai64

H ⋆ fkn = En fkn , fkn ⋆ H = Ek fkn . (69)

The resulting energy ⋆-genvalue conditions are
(

En − 1
2

)

/~ = n, an integer; and
(

Ek − 1
2

)

/~ = k, also an integer.

The general spectral theory of WFs is covered in BFF78,FM91,Lie90,BDW99,CUZ01.

0.9 Stationary Perturbation Theory

Given the spectral properties summarized, the phase-space perturbation formalism

is self-contained, and it need not make reference to the Hilbert-space treatment
BM49,WO88,CUZ01,SS02,MS96.

For a perturbed Hamiltonian,

H (x, p) = H0(x, p) + λ H1(x, p) , (70)
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seek a formal series solution,

fn (x, p) =
∞
∑

k=0

λkf (k)
n (x, p), En =

∞
∑

k=0

λkE(k)
n , (71)

of the left-right-⋆-genvalue equations (17), H ⋆ fn = Enfn = fn ⋆ H.

Matching powers of λ in the eigenvalue equationCUZ01,

E(0)
n =

∫

dxdp f (0)
n (x, p) H0(x, p), E(1)

n =

∫

dxdp f (0)
n (x, p) H1(x, p), (72)

f (1)
n (x, p) =

∑

k 6=n

f
(0)
kn (x, p)

E
(0)
n − E

(0)
k

∫

dXdP f
(0)
nk (X,P ) H1 (X,P )

+
∑

k 6=n

f
(0)
nk (x, p)

E
(0)
n − E

(0)
k

∫

dXdP f
(0)
kn (X,P ) H1 (X,P ) . (73)

Example. Consider all polynomial perturbations of the harmonic oscillator in a unified

treatment, by choosing

H1 = eγx+δp = eγx+δp⋆ =
(

eγx ⋆ eδp
)

eiγδ/2 =
(

eδp ⋆ eγx
)

e−iγδ/2 , (74)

to evaluate a generating function for all the first-order corrections to the energiesCUZ01,

E(1)(s) ≡
∞
∑

n=0

snE(1)
n =

∫

dxdp
∞
∑

n=0

snf (0)
n H1 , (75)

hence

E(1)
n =

1

n!

dn

dsn
E(1)(s)

∣

∣

∣

∣

s=0

. (76)

From the spectral resolution (56) and the explicit form of the ⋆-exponential of the

oscillator Hamiltonian (58) (with eit → s and E
(0)
n =

(

n+ 1
2

)

~), it follows that

∞
∑

n=0

snf (0)
n =

1

π~(1 + s)
exp

(

x2 + p2

~

s− 1

s+ 1

)

, (77)

and hence

E(1) (s) =
1

π~ (1 + s)

∫

dxdp eγx+δp exp

(

−x
2 + p2

~

1 − s

1 + s

)

=
1

1 − s
exp

(

~

4

(

γ2 + δ2
) 1 + s

1 − s

)

. (78)

E.g., specifically,

E
(1)
0 = exp

(

~

4

(

γ2 + δ2
)

)

, E
(1)
1 =

(

1 +
~

2

(

γ2 + δ2
)

)

E
(1)
0 ,

E
(1)
2 =

(

1 + ~
(

γ2 + δ2
)

+
~

2

8

(

γ2 + δ2
)2
)

E
(1)
0 , (79)
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and so on. All the first order corrections to the energies are even functions of the parameters:

only even functions of x and p can contribute to first-order shifts in the oscillator energies.

First-order corrections to the WFs may be similarly calculated using generating func-

tions for non-diagonal WFs. Higher order corrections are straightforward but tedious.

Degenerate perturbation theory also admits an autonomous formulation in phase-space,

equivalent to Hilbert space and path-integral treatments.

0.10 Propagators

Time evolution of general WFs beyond the above treatment is discussed at length in refs
BM49,Tak54,Ber75,GM80,CUZ01,BR93,Wo82,Wo02,FM03,TW03.

A further application of the spectral techniques outlined is the computation of the WF

time-evolution operator from the propagator for wave functions, which is given as a bilinear

sum of energy eigenfunctions,

G(x,X; t) =
∑

a

ψa(x) e
−iEat/~ψ∗a(X) ≡ exp

(

iAeff (x,X; t)
)

, (80)

as it may be thought of as an exponentiated effective action. (Henceforth in this section,

take ~ = 1).

This leads directly to a similar bilinear double sum for the WF time-transformation

kernel Moy49,

T (x, p;X,P ; t) = 2π
∑

a,b

fba(x, p) e
−i(Ea−Eb)t fab(X,P ) . (81)

Defining a “big star” operation as a ⋆-product for the upper-case (initial) phase-space

variables,

⋆ ≡ e
i~
2

(
←

∂X

→

∂ P−
←

∂ P

→

∂X) , (82)

it follows that

T (x, p;X,P ; t)⋆fdc(X,P ) =
∑

b

fbc(x, p) e
−i(Ec−Eb)t fdb(X,P ) , (83)

hence, cf. (55),
∫

dXdP T (x, p;X,P ; t)fdc(X,P ) = fdc(x, p)e
−i(Ec−Ed)t = U−1

⋆ ⋆fdc(x, p; 0)⋆U⋆ = fdc(x, p; t).

(84)

Example. For a free particle of unit mass in one dimension, H = p2/2, WFs propagate

according to

Tfree (x, p;X,P ; t)

=
1

2π

∫

dk

∫

dq ei(k−q)x δ

(

p− 1

2
(k + q)

)

e−i(q
2−k2)t/2 e−i(k−q)X δ

(

P − 1

2
(k + q)

)

= δ (x−X − Pt) δ (p− P ) , (85)
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amounting to “classical” free motion,

f(x, p; t) = f(x− pt, p; 0) . (86)

0.11 Canonical Transformations

Canonical transformations (x, p) 7→ (X(x, p), P (x, p)) preserve the phase-space volume

(area) element (again, take ~ = 1) through a trivial Jacobian,

dXdP = dxdp {X,P} , (87)

i.e., they preserve Poisson Brackets

{u, v}xp ≡
∂u

∂x

∂v

∂p
− ∂u

∂p

∂v

∂x
, (88)

{X,P}xp = 1, {x, p}XP = 1. (89)

Upon quantization, the c-number function Hamiltonian transforms “classically”,

H(X,P ) ≡ H(x, p), like a scalar. Does the ⋆-product remain invariant under this transfor-

mation?

Yes, for linear canonical transformationsHKN88, but clearly not for general canonical

transformations. Still, things can be put right, by devising general covariant transformation

rules for the ⋆-productCFZ98: The WF transforms in comportance with Dirac’s quantum

canonical transformation theoryDir33.

In conventional quantum mechanics, for classical canonical transformations generated

by Fcl(x,X),

p =
∂Fcl(x,X)

∂x
, P = −∂Fcl(x,X)

∂X
, (90)

the energy eigenfunctions transform in a generalization of the “representation-changing”

Fourier transformDir33,

ψE(x) = NE

∫

dX eiF (x,X) ΨE(X) . (91)

(In this expression, the generating function F may contain ~ correctionsBCT82 to the clas-

sical one, in general—but for several simple quantum mechanical systems it manages not

toCG92,DG02.) HenceCFZ98, there is a transformation functional for WFs, T (x, p;X,P ),

such that

f(x, p) =

∫

dXdP T (x, p;X,P )⋆F(X,P ) =

∫

dXdP T (x, p;X,P ) F(X,P ) , (92)

where

T (x, p;X,P ) (93)

=
|N |2
2π

∫

dY dy exp

(

−iyp+ iPY − iF ∗(x− y

2
,X − Y

2
) + iF (x+

y

2
,X +

Y

2
)

)

.
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Moreover, it can be shown thatCFZ98,

H(x, p) ⋆ T (x, p;X,P ) = T (x, p;X,P )⋆ H(X,P ). (94)

That is, if F satisfies a ⋆−genvalue equation, then f satisfies a ⋆-genvalue equation with

the same eigenvalue, and vice versa. This proves useful in constructing WFs for simple

systems which can be trivialized classically through canonical transformations.

A thorough discussion of MB automorphisms may start from ref BCW02. (Also see
Hie82,DKM88,GR94,DV 97,Hak99,KL99,DP01.)

Time evolution is a canonical transformation Dir33, with the generator’s role played by

the effective action A of the previous section, incorporating quantum corrections to both

phases and normalizations; it connects initial wave functions to those at a final time.

Example. For the linear potential, with

H = p2 + x , (95)

wave function evolution is determined by the propagator

exp (iAlin(x,X; t)) =
1√
4πit

exp

(

i (x−X)2

4t
− i (x+X) t

2
− it3

12

)

. (96)

T then evaluates to

Tlin (x, p;X,P ; t)

=
1

2π

∫

dY dy exp

(

−iyp+ iPY − iA∗lin(x− y

2
,X − Y

2
; t) + iAlin(x+

y

2
,X +

Y

2
; t)

)

=
1

8π2t

∫

dY dy exp

(

−iyp+ iPY − it

2
(y + Y ) +

i

2t
(x−X)(y − Y )

)

=
1

2t
δ

(

p+
t

2
− x−X

2t

)

δ

(

P − t

2
− x−X

2t

)

= δ (p+ t− P ) δ
(

x− 2tp− t2 −X
)

= δ (x−X − (p+ P ) t) δ (P − p− t) . (97)

The δ-functions enforce exactly the classical motion for a mass= 1/2 particle subject to

a negative constant force of unit magnitude (acceleration = −2). Thus the WF evolves

“classically” as

f(x, p; t) = f(x− 2pt− t2, p + t ; 0). (98)

NB. Time-independence follows for f(x, p; 0) being any function of the energy variable,

since x+ p2 = x− 2pt− t2 + (p+ t)2.

The evolution kernel T propagates an arbitrary WF through just

f(x, p; t) =

∫

dXdP T (x, p;X,P ; t) f(X,P ; 0) . (99)

The underlying phase-space structure, however, is more evident if one of the wave-function

propagators is given in coordinate space, and the other in momentum space. Then the
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path integral expressions for the two propagators can be combined into a single phase-space

path integral. For every time increment, phase space is integrated over to produce the new

Wigner function from its immediate ancestor. The result is

T (x, p;X,P ; t) (100)

=
1

π2

∫

dx1dp1

∫

dx2dp2e
2i(x−x1)(p−p1)e−ix1p1 〈x1; t|x2; 0〉 〈p1; t|p2; 0〉∗ eix2p2e−2i(X−x2)(P−p2),

where 〈x1; t |x2; 0〉 and 〈p1; t |p2; 0〉 are the path integral expressions in coordinate space,

and in momentum space. Blending these x and p path integrals gives a genuine path

integral over phase space Ber80,DK85. For a direct connection of U⋆ to this integral, see

refSha79,Lea68,Sam00.

0.12 The Weyl Correspondence

This section summarizes the bridge and equivalence of phase-space quantization to the

conventional operator formulation of quantum mechanics in Hilbert space. The Weyl cor-

respondence merely provides a change of representation between phase space and Hilbert

space. In itself, it does not map (commutative) classical mechanics to (non-commutative)

quantum mechanics (“quantization”), as Weyl had originally hoped. But it makes the de-

formation map at the heart of quantization easier to grasp, now defined within a common

representation, and thus more intuitive.

WeylWey27 introduced an association rule mapping invertibly c-number phase-space

functions g(x, p) (called phase-space kernels) to operators G in a given ordering prescription.

Specifically, p 7→ p, x 7→ x, and, in general,

G(x, p) =
1

(2π)2

∫

dτdσdxdp g(x, p) exp
(

iτ(p − p) + iσ(x − x)
)

. (101)

The eponymous ordering prescription requires that an arbitrary operator, regarded as a

power series in x and p, be first ordered in a completely symmetrized expression in x and p,

by use of Heisenberg’s commutation relations, [x, p] = i~.

A term with m powers of p and n powers of x is obtained from the coefficient of τmσn

in the expansion of (τp + σx)m+n, which serves as a generating function of Weyl-ordered

polynomialsGF91. It is evident how the map yields a Weyl-ordered operator from a polyno-

mial phase-space kernel. It includes every possible ordering with multiplicity one, e.g.,

6p2x2 7→ p2x2 + x2p2 + pxpx + px2p + xpxp + xp2x . (102)

In generalMcC32,

pmxn 7→ 1

2n

n
∑

r=0

(

n

r

)

xrpmxn−r =
1

2m

m
∑

s=0

(

m

s

)

psxnpm−s. (103)

Phase-space constants map to the constant multiplying 1l, the identity in Hilbert space.
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In this correspondence scheme, then,

h TrG =

∫

dxdp g . (104)

ConverselyDir30,Gro46,Kub64,Lea68,HOS84, the c-number phase-space kernels g(x, p) of

Weyl-ordered operators G(x, p) are specified by p 7→ p, x 7→ x, or, more precisely, by the

“Wigner map”,

g(x, p) =
~

2π

∫

dτdσ ei(τp+σx)Tr
(

e−i(τp+σx)G
)

= ~

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

G(x, p)

∣

∣

∣

∣

x− ~

2
y

〉

, (105)

since the above trace reduces to
∫

dz eiτσ~/2〈z|e−iσxe−iτpG|z〉 =

∫

dzeiσ(τ~/2−z)〈z − ~τ |G|z〉. (106)

Equivalently,

〈x|G|y〉 =

∫

dp

2π~
exp

(

ip
(x− y)

~

)

g

(

x+ y

2
, p

)

.

Thus, the density matrix |ψ〉〈ψ|/h inserted in this expressionMoy49 yields the hermitean

generalization of the Wigner function (63) encountered,

fab(x, p) ≡
1

2π

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

ψb

〉 〈

ψa

∣

∣

∣

∣

x− ~

2
y

〉

=
1

2π

∫

dye−iypψ∗a

(

x− ~

2
y

)

ψb

(

x+
~

2
y

)

= f∗ba(x, p) , (107)

where the ψa(x)s are (ortho-)normalized solutions of a Schrödinger problem. (WignerWig32

mainly considered the diagonal elements of the pure-state density matrix, denoted above as

fm ≡ fmm.) As a consequence, matrix elements of operators, i.e., traces of them with the

density matrix, are produced through mere phase-space integralsMoy49,

〈ψm|G|ψn〉 =

∫

dxdp g(x, p)fmn(x, p), (108)

and thus expectation values follow for m = n, as utilized throughout in this overview.

Hence,

〈ψm| exp i(σx + τp)|ψm〉 =

∫

dxdp fm(x, p) exp i(σx+ τp), (109)

the celebrated moment-generating functionalMoy49 of the Wigner distribution.

Products of Weyl-ordered operators are not necessarily Weyl-ordered, but may be eas-

ily reordered into unique Weyl-ordered operators through the degenerate Campbell-Baker-

Hausdorff identity. In a study of the uniqueness of the Schrödinger representation, von
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NeumannNeu31 adumbrated the composition rule of kernel functions in such operator prod-

ucts, appreciating that Weyl’s correspondence was in fact a homomorphism. (Effectively,

he arrived at the Fourier space convolution representation of the star product below.)

Finally, GroenewoldGro46 neatly worked out in detail how the kernel functions f and

g of two operators F and G must compose to yield the kernel (the Wigner map image,

sometimes called the “Weyl symbol”) of F G,

F G = 1
(2π)4

∫

dξdηdξ′dη′dx′dx′′dp′dp′′f(x′, p′)g(x′′, p′′)

× exp i(ξ(p − p′) + η(x − x′)) exp i(ξ′(p − p′′) + η′(x − x′′)) =

=
1

(2π)4

∫

dξdηdξ′dη′dx′dx′′dp′dp′′f(x′, p′)g(x′′, p′′) exp i
(

(ξ + ξ′)p + (η + η′)x
)

× exp i

(

−ξp′ − ηx′ − ξ′p′′ − η′x′′ +
~

2
(ξη′ − ηξ′)

)

. (110)

Changing integration variables to

ξ′ ≡ 2

~
(x− x′), ξ ≡ τ − 2

~
(x− x′), η′ ≡ 2

~
(p′ − p), η ≡ σ − 2

~
(p′ − p), (111)

reduces the above integral to the fundamental isomorphism,

Theorem 0.1

F G =
1

(2π)2

∫

dτdσdxdp exp i
(

τ(p − p) + σ(x − x)
)

(f ⋆ g)(x, p), (112)

where f ⋆ g is the expression (13).

Noncommutative operator multiplication Wigner-transforms to ⋆-multiplication.

The ⋆-product thus defines the transition from classical to quantum mechanics. In fact,

the failure of Weyl-ordered operators to close under multiplication may be stood on its

head Bra02, to define a Weyl-symmetrizing operator product, which is commutative and

constitutes the Weyl transform of fg instead of the noncommutative f ⋆ g. (For example,

2x ⋆ p = 2xp+ i~ 7→ 2xp = xp + px + i~.

The classical piece of 2x ⋆ p maps to the Weyl-symmetrization of the operator product,

2xp 7→ xp + px.) One may then solve for the PB in terms of the MB, and, through the

Weyl correspondence, reformulate Classical Mechanics in Hilbert space as a deformation of

Quantum Mechanics, instead of the other way around Bra02.

Arbitrary operators G(x, p) consisting of operators x and p, in various orderings, but

with the same classical limit, could be imagined rearranged by use of Heisenberg commuta-

tions to canonical completely symmetrized Weyl-ordered forms, in general with O(~) terms

generated in the process. Each one might then be inverse-transformed uniquely to its Weyl-

correspondent c-number kernel function g in phase space. (In practiceKub64, there is the
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above more direct Wigner transform formula (105), which bypasses any need for an actual

rearrangement.) Thus, operators differing from each other by different orderings of their xs

and ps Wigner-map to kernel functions g coinciding with each other at O(~0), but different

at O(~), in general.

Hence, in phase-space quantization, a survey of all alternate operator orderings in a

problem with such ambiguities amounts to a survey of the “quantum correction” O(~)

pieces of the respective kernel functions, i.e. the Wigner transforms of those operators, and

their study is systematized and expedited. Choice-of-ordering problems then reduce to

purely ⋆-product algebraic ones, as the resulting preferred orderings are specified through

particular deformations in the c-number kernel expressions resulting from the particular

solution in phase spaceCZ02.

0.13 Alternate Rules of Association

The Weyl correspondence rule (101) is not unique: there are a host of alternate equivalent

association rules which specify corresponding representations. All these representations

with equivalent formalisms are typified by characteristic quasi-distribution functions and

⋆-products, all inter-convertible among themselves. They have been surveyed comparatively

and organized in Lee95,BJ84, on the basis of seminal classification work by Cohen Coh66,Coh76,

and are favored by virtue of their different characteristic properties in varying applications.

For example, instead of the symmetric operator exp(iτp + iσx) underlying the Weyl

transform, one might posit, instead Lee95,HOS84, antistandard ordering,

exp(iτp) exp(iσx) = exp(iτp + iσx)w(τ, σ), (113)

with w = exp(i~τσ/2), which specifies the Kirkwood-Rihaczek prescriptionKir33; or else

standard ordering (momenta to the right), w = exp(−i~τσ/2) on the right-hand-side of

the above, for the Mehta prescription, also utilized by MoyalMoy49 ; or their (real) average,

w = cos(~τσ/2) for the (older) Rivier prescription Ter37; or normal and antinormal orderings

for the Glauber-Sudarshan prescriptions, generalizing to w = exp(~

4 (τ2+σ2)) for the Husimi

prescription Hus40,Tak89; or w = sin(~τσ/2)/(~τσ/2), for the Born-Jordan prescription; and

so on.

The corresponding quasi-distribution functions in each representation can be obtained

systematically as convolution transforms of each otherCoh76,Lee95,HOS84; and, likewise, the

kernel function observables are convolution “dressings” of each other, as are their ⋆-products
Dun88,AW70,Ber75.

Example. For instance, the Husimi distribution follows from a “Gaussian smoothing”

invertible linear conversion map WO87,Tak89,Lee95 of the WF,

f
H

= T (f) = exp

(

~

4
(∂2
x + ∂2

p)

)

f (114)

=
1

π~

∫

dx′dp′ exp

(

−(x′ − x)2 + (p′ − p)2)

~

)

f(x′, p′),
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and likewise for the observables, the same operators G in this alternate ordering, so that

〈G〉 =

∫

dxdp g(x, p) exp

(

−~

4
(∂2
x + ∂2

p)

)

f
H

=

∫

dxdp g
H
e~(
←

∂ x

→

∂ x+
←

∂ p

→

∂ p)/2 f
H
.(115)

That is, expectation values of observables now entail equivalence conversion dress-

ings of the respective kernel functions and a corresponding isomorph ⋆-product
Ba79,OW81,V or89,Tak89,Zac00,

⊛ = exp

(

~

2
(
←
∂ x
→
∂ x +

←
∂ p
→
∂ p)

)

⋆ = exp

(

~

2
(
←
∂ x −i

←
∂ p)(

→
∂ x +i

→
∂ p)

)

,

cf. (120) below. Evidently, however, this one now cannot be simply dropped inside integrals,

quite unlike the case of the WF (16).

For this reason, distributions such as this Husimi distribution (which is actually pos-

itive semi-definite deB67,Car76,OW81,Ste80) cannot be automatically thought of as bona-fide

probability distributions.

This is often dramatized as the failure of the Husimi distribution fH to yield the cor-

rect x- or p-marginal probabilities, upon integration by p or x, respectivelyOW81,HOS84.

Since phase-space integrals are thus complicated by conversion dressing convolutions, they

preclude direct applications of the Schwarz inequality and the standard inequality-based

moment-constraining techniques of probability theory, as well as routine completeness

and orthonormality based functional analytic operations. (Ignoring the above equivalence

dressings and, instead, simply treating the Husimi distribution as an ordinary probabil-

ity distribution in evaluating expectation values, nevertheless, results in loss of quantum

information—effectively “coarse-graining” to a classical limit, and thereby increasing the

entropyBra94.)

Similar caveats also apply to more recent symplectic tomographic representations
MMT96,MMM01,Leo97, which are also positive semi-definite, but also do not constitute con-

ventional probability distributions.

Exercise. One may work out Moyal’s inter-relationsMoy49,Coh66,Coh76 between the Weyl-

ordering kernel functions and the standard-ordering correspondents; as well as the re-

spective dressing relations between the proper ⋆-productsLee95, in analogy to the fore-

going example for the Husimi prescription. The w = exp(−i~τσ/2) mentioned dictates

a dressing of kernels, gs = T (g) ≡ exp(−i~∂x∂p/2) g(x, p), and of ⋆-products by (120)

below. Abstracting the Weyl map functional of Section (0.12), for generic Hilbert-space

variables z and phase-space variables z, the Weyl map compacts to an integral func-

tional kernelKub64, G(z) =
∫

dz∆(z, z)g(z), and the inverse (Wigner) map to g(z) =

hTr(∆(z, z)G(z)), where hTr∆(z, z)∆(z, z′) = δ2(z − z′),
∫

dz∆(z, z) =
∫

dz∆(z, z) = 1l, and

hTr∆ = hTr∆ = 1. The ⋆-product is thus a convolution in the integral representation,

f ⋆ g =
∫

dz′dz′′f(z′)g(z′′)(h Tr∆(z, z)∆(z, z′)∆(z, z′′)). The dressing of these functionals is

then ∆s(z, z) = T−1(z)∆(z, z), so that both prescriptions yield the same operator G, when

gs(z) = T (z)g(z) and ∆s = T∆. More abstractly then, the integral kernel for ⊛ amounts

to hTr(T (z)∆(z, z)T−1(z′)∆(z, z′)T−1(z′′)∆(z, z′′)).
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0.14 The Groenewold-van Hove Theorem and the

Uniqueness of MBs and ⋆-products

Groenewold’s correspondence principle theoremGro46 (to which van Hove’s extension to all

association rules is often attachedvH51) points out that, in general, there is no invertible

linear map from all functions of phase space f(x, p), g(x, p), ..., to hermitean operators in

Hilbert space Q(f), Q(g), ..., such that the PB structure is preserved,

Q({f, g}) =
1

i~

[

Q(f),Q(g)
]

, (116)

as utilized in Dirac’s heuristics.

Instead, the Weyl correspondence map (101) from functions to ordered operators,

W(f) ≡ 1

(2π)2

∫

dτdσdxdp f (x, p) exp(iτ(p − p) + iσ(x − x)), (117)

specifies the ⋆-product in (112), W(f ⋆ g) = W(f) W(g), and thus the MB Lie algebra,

W({{f, g}}) =
1

i~

[

W(f),W(g)
]

. (118)

It is the MB, then, instead of the PB, which maps invertibly to the quantum commuta-

tor. That is to say, the “deformation” involved in phase-space quantization is nontrivial: the

quantum (observable) functions, in general, need not coincide with the classical onesGro46,

and often involve O(~) corrections, as extensively illustrated in, e.g., refs CZ02,DS02,CH86;

also see Got99. For example, as was already pointed out, the Wigner transform of the square

of the angular momentum L ·L turns out to be L2−3~
2/2, significantly for the ground-state

Bohr orbit She59,DS82,DS02.

Groenewold’s celebrated counterexample noted that the vanishing PB expression

{x3, p3} +
1

12
{{p2, x3}, {x2, p3}} = 0

is anomalous upon implementation of Dirac’s proposal to substitute commutators of

Q(x),Q(p), ..., for PBs. Indeed, that substitution, or equivalent substitution of MBs for

PBs, yields a Groenewold anomaly, −3~
2, for this specific expression.

An alternate abstract operator realization of the above MB Lie algebra in phase space

(as opposed to the Hilbert space one, W(f)) linearly isFFZ89,CFZm98

K(f) = f ⋆ . (119)

Realized on a toroidal phase space, upon a formal identification ~ 7→ 2π/N , this realization

of the MB Lie algebra leads to the Lie algebra of SU(N) FFZ89, by means of Sylvester’s

clock-and-shift matricesSyl82. For generic ~, it may be thought of as a generalization of

SU(N) for continuous N . This allows for taking the limit N → ∞ to thus contract to the

PB algebra.
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Essentially (up to isomorphism), the MB algebra is the unique (Lie) one-

parameter deformation (expansion) of the Poisson Bracket algebraV ey75,BFF78,FLS76,Ar83

F le90,deW83,BCG97,TD97, a uniqueness extending to the (associative) star product. Isomor-

phism allows for dressing transformations of the variables (kernel functions and WFs, as

in section 0.13 on alternate orderings), through linear maps f 7→ T (f), which leads to

cohomologically equivalent star-product variants, i.e.Ba79,V or89,BFF78,

T (f ⋆ g) = T (f) ⊛ T (g). (120)

Consequently, the ⋆-MB algebra is isomorphic to the algebra of ⊛-MB.

Computational features of ⋆-products are discussed in refs
BFF78,Han84,RO92,Zac00,EGV 89,V o78,An97,Bra94.

0.15 Omitted Miscellany

Phase-space quantization extends in several interesting directions which are not covered in

such a summary introduction.

The systematic generalization of the ⋆-product to arbitrary non-flat Poisson manifolds
Kon97, is a culmination of extensions to general symplectic and Kähler geometries Fed94,Kis01,

and varied symplectic contexts Ber75,RT00,CPP02,BGL01.

For further work on curved spaces, cf. APW02,BF81,PT99. For extensive reviews of

mathematical issues, cf. Fol89,Hor79,Wo98,AW70. For a connection to the theory of modular

forms, see Raj02.

For WFs on discrete phase spaces (finite-state systems), see, among others,
Woo87,KP94,OBB95,ACW98,RA99,RG00,BHP02,MPS02.

Spin is treated in ref Str57,V G89,AW00; and forays into a relativistic formulation in LSU02

(also see refCS75,Ran66).

Inclusion of Electromagnetic fields and gauge invariance is treated in refs
Kub64,Mue99,LF94,LF01,JV S87,ZC99,KO00. Subtleties of Berry’s phase in phase space are ad-

dressed in ref Sam00.
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Selected Papers

0.16 Brief Historical Outline

The decisive contributors to the development of the formulation are Hermann Weyl (1885-

1955), Eugene Wigner (1902-1995), Hilbrand Groenewold (1910-1996), and Jose Moyal

(1910-1998). The bulk of the theory is implicit in Groenewold’s and Moyal’s seminal papers.

But this has been a slow story of emerging connections and chains of ever sharper

reformulations. Confidence in the autonomy of the formulation accreted slowly. As a

result, attribution of critical milestones cannot avoid subjectivity: it cannot automatically

highlight merely the earliest occurrence of a construct, unless that has also been conclusive

enough to yield an “indefinite stay against confusion” about the logical structure of the

formulation.

H Weyl (1927)Wey27 introduces the correspondence of “Weyl-ordered” operators to

phase-space (c-number) kernel functions. The correspondence is based on Weyl’s formula-

tion of the Heisenberg group, appreciated through a discrete QM application of Sylvester’s

(1883)Syl82 clock and shift matrices. The correspondence is proposed as a general quanti-

zation prescription, unsuccessfully, since it fails, e.g., with angular momentum.

J von Neumann (1931)Neu31, in a technical aside off a study of the uniqueness of

Schrödinger’s representation, based on Weyl’s above Heisenberg group formulation, it in-

cludes a Fourier transform version of the ⋆-product. This then promotes Weyl’s corre-

spondence rule to full isomorphism between Weyl-ordered operator multiplication and ⋆-

convolution of kernel functions. Nevertheless, this result is not properly appreciated in von

Neumann’s celebrated own book on the Foundations of QM.

E Wigner (1932)Wig32 introduces the eponymous phase-space distribution function con-

trolling quantum mechanical diffusive flow in phase space. It specifies the time evolution of

this function and applies it to quantum statistical mechanics. (Actually, Dirac (1930)Dir30

has already considered a formally identical construct for the electron density in a multi-

electron Thomas-Fermi atom, but interprets negative values as a failure of the semiclassical

approximation, and dismisses the full quantum object.)

H Groenewold (1946)Gro46, a seminal but somewhat unappreciated paper, is based on

Groenewold’s thesis work. It achieves full understanding of the Weyl correspondence as

an invertible transform, rather than as a consistent quantization rule. It produces the WF

as the phase-space (Weyl) kernel of the density matrix. It reinvents and streamlines von

Neumann’s construct into the standard ⋆-product, in a systematic exploration of the iso-

morphism between Weyl-ordered operator products and their kernel function compositions.

It thus demonstrates how Poisson Brackets contrast crucially to quantum commutators—

“Groenewold’s Theorem”. By way of illustration, it further works out the harmonic oscil-

lator WF.

J Moyal (1949)Moy49 amounts to a grand synthesis: It establishes an independent formu-

lation of quantum mechanics in phase space. It systematically studies all expectation values
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of Weyl-ordered operators, and identifies the Fourier transform of their moment-generating

function (their characteristic function) to the Wigner Function. It further interprets the

subtlety of the “negative probability” formalism and reconciles it with the uncertainty prin-

ciple and the diffusion of the probability fluid. Not least, it recasts the time evolution of the

Wigner Function through a deformation of the Poisson Bracket into the Moyal Bracket (the

commutator of ⋆-products, i.e., the Wigner transform of the Heisenberg commutator), and

thus opens up the way for a systematic study of the semiclassical limit. Before publication,

Dirac contrasts this work favorably to his own ideas on functional integration, in Bohr’s

FestschriftDir45, despite private reservations and lengthy arguments with Moyal.

M Bartlett and J Moyal (1949) BM49 applies this language to calculate propagators and

transition probabilities for oscillators perturbed by time-dependent potentials.

T Takabayasi (1954)Tak54 investigates the fundamental projective normalization condi-

tion for pure state Wigner functions, and exploits Groenewold’s link to the conventional

density matrix formulation. It further illuminates the diffusion of wavepackets.

G Baker (1958)Bak58 (Baker’s thesis paper) envisions the logical autonomy of the formu-

lation, predicated on the projective normalization condition as a basic postulate. It resolves

measurement subtleties in the correspondence principle and appreciates the significance of

the anticommutator of the ⋆-product as well, thus shifting emphasis to the ⋆-product itself,

over and above its commutator.

D Fairlie (1964)Fai64 (also see Kun67,Coh76,Dah83) explores the time-independent coun-

terpart to Moyal’s evolution equation, which involves the ⋆-product, beyond mere Moyal

Bracket equations, and derives (instead of postulating) the projective orthonormality con-

ditions for the resulting Wigner functions. These now allow for a unique and full solution of

the quantum system, in principle (without any reference to the conventional Hilbert-space

formulation). Autonomy of the formulation is fully recognized.

R Kubo (1964)Kub64 elegantly reviews, in modern notation, the representation change

between Hilbert space and phase space—although in ostensible ignorance of Weyl’s and

Groenewold’s specific papers. It applies the phase-space picture to the description of elec-

trons in a uniform magnetic field, initiating gauge-invariant formulations and pioneering

“noncommutative geometry” applications to diamagnetism and the Hall effect.

N Cartwright (1976)Car76 notes that the WF smoothed by a phase-space Gaussian as

wide or wider than the minimum uncertainty packet is positive-semidefinite. Actually, the

result goes further back to at least de Bruijn (1967)deB67 .

M Berry (1977)Ber77 elucidates the subtleties of the semiclassical limit, ergodicity, inte-

grability, and the singularity structure of Wigner function evolution.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer (1978)BFF78 ana-

lyzes systematically the deformation structure and the uniqueness of the formulation, with

special emphasis on spectral theory, and consolidates it mathematically. It provides explicit

illustrative solutions to standard problems and utilizes influential technical tools, such as
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the ⋆-exponential (already known in Imr67,GLS68).

A Royer (1977)Roy77 interprets WFs as the expectation value of the operator effecting

reflections in phase space. (Further see refs Kub64,Gro76,BV 94.)

G Garćıa-Calderón and M Moshinsky (1980)GM80 implements the transition from

Hilbert space to phase space to extend classical propagators and canonical transforma-

tions to quantum ones in phase space. (The most conclusive work to date is ref BCW02.

Further see HKN88,Hie82,DKM88,CFZ98,DV 97,GR94,Hak99,KL99,DP01.)

J Dahl and M Springborg (1982)DS82 initiates a thorough treatment of the hydrogen and

other simple atoms in phase space, albeit not from first principles—the WFs are evaluated

in terms of Schrödinger wave-functions.

M De Wilde and P Lecomte (1983)deW83 consolidates the deformation theory of ⋆-

products and MBs on general real symplectic manifolds, analyzes their cohomology struc-

ture, and confirms the absence of obstructions.

M Hillery, R O’Connell, M Scully, and E Wigner (1984)HOS84 has done yeoman service

to the physics community as the classic introduction to phase-space quantization and the

Wigner function.

Y Kim and E Wigner (1990)KW90 is a classic pedagogical discussion of the spread of

wavepackets in phase space, uncertainty-preserving transformations, coherent and squeezed

states.

B Fedosov (1994)Fed94 initiates an influential geometrical construction of the ⋆-product

on all symplectic manifolds.

T Curtright, D Fairlie, and C Zachos (1998)CFZ98 illustrates more directly the equiv-

alence of the time-independent ⋆-genvalue problem to the Hilbert space formulation, and

hence its logical autonomy; formulates Darboux isospectral systems in phase space; works

out the covariant transformation rule for general nonlinear canonical transformations (with

reliance on the classic work of P Dirac (1933)Dir33); and thus furnishes explicit solutions

of practical problems on first principles, without recourse to the Hilbert space formulation.

Efficient techniques for perturbation theory are based on generating functions for complete

sets of Wigner functions in T Curtright, T Uematsu, and C Zachos (2001)CUZ01. A self-

contained derivation of the uncertainty principle in phase space is given in T Curtright and

C Zachos (2001)CZ01.

M Hug, C Menke, and W Schleich (1998)HMS98 introduce and exemplify techniques for

numerical solution of ⋆-equations on a basis of Chebyshev polynomials.
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