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DEFORMATION QUANTIZATION
SUPERINTEGRABILITY AND NAMBU MECHANICS

e Non-commutative geometry describes D-branes in a “magnetic”
field background: different directions of space do not commute,
vy # yx. The technical structure of NC geometry parallels
that of guantization in phase space: y — p, 0 +— A,
Quantum Mechanics’ legacy to M-theory!

An equivalent alternative to Hilbert-space or path-integral quan-
tization.  Logically complete and self-standing (Weyl, Wigner,
Moyal): one need not choose sides—coordinate or momentum space.
It works in full phase space, accommodating the uncertainty
principle. (Reviewed in Zachos, Int ] Mod Phys A17 (2002) 297-316
[hep-th/0110114])

The variables involved (“kernel functions” or “Weyl transforms
of operators”) are c-number functions, like those of the
classical phase-space theory, and have the same interpreta-
tion, although they involve A-corrections (“deformations”).
It is only the detailed algebraic structure of their respective
brackets and composition rules which contrast with the variables of
the classical theory.

e Ordinary multiplication is supplanted by the cornerstone
(Groenewold, 1946)
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In practice, often evaluated through convolution,

f(r)*g(r) = (E>2 /d2u d*v f(r+u)g(r+v) el WV

v

A noncommutative, associative, pseudodifferential operation.
e Encodes the entire quantum mechanical action.
e Its antisymmetrization (commutator) is the Moyal Bracket

(MB {{, }}).

Instead of a wavefunction, one solves for the Wigner Function (WF),
the kernel function of the density matrix, which is a quasi-probability
distribution function in phase-space,

~» Observables and transition amplitudes are phase-space integrals
of kernel functions weighted by the WF, in analogy to statistical
mechanics. 9

f
S {(H 1

e WFs obey quasi-orthonormality and completeness relations;
and, characteristically, nonlocal differential eigenvalue equations
(analogous to Schrodinger’s equation), eg:

ih - ih —
H*fmn =H (l’ + ? ap y P — 5 ar) fmn(«x;p) — En fmn(xap>-

But... WHY BOTHER??

e Can quantize superintegrable systems maximally

—when there would be
operator ordering ambiguities in conventional QM (eg, velocity/
momentum-dependent potentials).
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eg, o-MODELS

{], H} = O’ ~> {{[qn% qu}} = Iqm*qui—thm*]qm —0

(Ash — 0, MB — PB.)

e We find O(h?) corrections in the H,,,s but not the I,,,s.
1

L(g,d) = 59a(q) "¢, o~
8L -b -a ab
Pa= 5z =9 4 ¢ =g"py .~
q
1 a
H(p.q) =39 "papy (= 1L).
- _g;b; _ gbc,a b e
Pa 9 PovPe 9 qq .

eg, S* (Schrodinger, Velo & Wess, Higgs...):
Eliminate z, so ¢' =z,¢>=vy, a,b=1,2.

. h . . . .
pa=qa+qa5=q“+q“(q-p), h=—-u/2=xt+yy.
. ) h  h?
p(l:paq.pj 1e/ qa+qa<_+_2>20
Uu U

The isometries of the manifold generate the conserved integrals of the
motion: three classical invariants

Lz:xpy_ypxa Ly:\/ap.ra Lm:_\/apy°
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PBs close into SO(3),
{an Ly} =L, ) {Lya Lz} = L, 9 {Lza Lx} — Ly .

~»  PBs with the Casimir invariant L - L vanish.
Since H = L - L /2, they are manifested to be time-invariant,

L={L H=0.

Quantize by insertion of xs at strategic points and orderings of the
variables to maintain maximal integrability,

Hz/m — % <L1 * va' + L_(/ x L,{/ + L * L>

in this realization, the algebra is promoted to the
corresponding MB expression without any modification, since
all of its MBs collapse to PBs: all corrections O(h) vanish.
~» these particular invariants are undeformed by quantization,
L=L,,. ~ given associativity for x,

{L-«L, L} =0.

e Quantum correction:

Hyn = H+Z(det g — 3) |
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e Spectrum o R?l(l + 1), the spectrum of the SO(3) Casimir
, for integer .

e Produced algebraically by the identical standard recursive ladder
operations in x space which obtain in the operator formalism Fock

space,
LZ*L+ —L_|_*LZ - hL_|_ y

where L, =L, +1iL,.

Must also bound the x-spectrum of L.: From the real x-square theorem
(TC & CZ),

(LexL— L. L.) = (Ly* Ly + Lyx L,) > 0.

The x-genvalues of L., m, are thus bounded, |m| <[ < /(L - xL)/h,
necessitating L_ x f,—_; =0. ~>

LixL xf;=0=(L-*L—L,xL,+hL,)*f,

(L-+L) =Rl +1).
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CHIRAL MODELS (eg, S3)

Geometrical advantages due to chiral structure G ® G.
Vielbeine, gu, = 0;;VV; and ¢®ViVi = 6V,
Dreibeine are either left-invariant, or right-invariant,

(j:)‘/az' _ eiabqu:\/agai’ (:I:)Vai _ zab b:|: \/_5az.

The corresponding right and left conserved charges (left- and right-
invariant, respectively)

R = V"= Hvep, L'= Vit = v,

or linear combinations into Axial and Isospin charges (again linear in
the momenta),

RL R+ L
=Vup=A,

=qxp=1I.

The Ls and the Rs have PBs closing into standard SU(2) ® SU(2), ie,
SU (2) relations within each set, and vanishing between the two sets.

g

HzlL-Lle-R:L.
2 2
The quantum invariants L and R again coincide with the classi-
cal ones, without deformation. Eigenvalues of the relevant Casimir
invariant now j(j + 1), for half-integer ;.

e The symmetric quantum hamiltonian is simpler than for the
2-sphere (and other N-spheres): it can now be also written
geometrically,

qu o %<p(1vaé> (vbl/pb> — % (gabpapb + %aavmabvm>
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e Quantum correction

W ol

(In operator language, for operators rand p), it would appear more
complex: in the Weyl correspondence, the first term, ¢“"()p,p,/2

1 1 3h?

< (Pabog™ (x) + 2pag” ()P + ™ (X)Paps) = §pag“b<x>pb +

while the second term would be the unambiguous.)

e In general,

d , ) d :
iU ZU = VT = Dvep Ty, U = Ovep Ty,
~> The PBs of the Ileft- and right-invariant charges
Byaip, = LTrT;U “%U 1 close to the identical Lie algebras,

{(i)vajpm(:t) ka:pb} _ _Qf]kn (i)vanpa 7

and PB commute with each other,

. = (T, g™'Ty, — finfie)

e N-spheres not as geometrically elegant.

h /1
quH:(lN(N1)>.
8 \u

Spectra proportional to the quadratic Casimir eigenvalues [({ + N —1)
for integer /.
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MAXIMAL SUPERINTEGRABILITY & NAMBU BRACKETS

Extra invariants beyond those required for integrability.

Optimal, elegant accounting through NBs in phase space.

In an N-dimensional space, ~ 2N-dimensional phase space, mo-
tion is confined on the constant surfaces specified by the algebraically
independent integrals of the motion (eg, L, L,, L. for 52.)

~» the phase-space velocity v = (q,p) is always perpendicular to
the 2N-dim phase space gradients V = (J,.0,) of all these
integrals of the motion.

o If there are 2NV — 1 algebraically independent integrals, the phase-
space velocity must be proportional to the cross-product of all those
gradients.

~» Motion fully specified for any phase-space function k(q,p) by a
phase-space Jacobian,
dk
dt
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0.8 8,1/-c 6i1i2"'i2N 8,,;2L7;1...8212NL2N4
@(k, Ll, ey ey L2N—1>

0(q1,p1,Q2, P2y -, AN, DN)
{k7 L17 seey L2]V—1} .

= the
e The proportionality constant is shown to be time-invariant.

Superintegrable systems in phase space cannot avoid being de-
scribed by NBs.

eg, 5%

eg, SV:

dk (—1)(N2_1) 0 (k, Py, Lis, Py, L3, P3,-- -, Py_1, Ly_1 v, Py)
dt P2P3”°PN—1 8($1aplax27p27"'7xNapN)

)

( Pa - \/apa/ fOl‘ a — 17 Ty N/ and La,&—i—l - qapCH-l - qa+1pa’ fOI'
a=1,---,N—1)

In general NBs possess all antisymmetries of Jacobian determinants;
and obey the Leibniz rule,

(KL M), i, for o} = S i o} oM, i o

~» Eg, the hamiltonian is constant,

di _ (L-L
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e The impossibility to antisymmetrize more than 2V indices in 2N-
dimensional phase space,

Eab....c[zej1j2---]2N] — O ,

leads to the (generalized) “Fundamental” Identity (FI),

{f(){fla fm 1, fm}« fm, o EIEERE me 1} + {f’m« f(){fla fm 1, fm, } 1}1 fm, F29 20y f’Zm 1}
+...+ {fm,,- crey mest f(){fl .ffll*l? f‘mel}} — {flﬂ fm,flv fO{fm,,- ferla ,mefl}}-

not the generalization of the Jacobi Identity—more like a conse-
quence of a derivation property.

Closure under PBs of quantities serving as arguments in the NB does
not suffice for a NB to vanish: viz. {L,, L,} = L.. But it is always true
that PBs of conserved integrals are themselves conserved integrals:

d{L., Ly}

dt X {{LaaLb}yLla'“aLQN—l}

must vanish.
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e PBs result from a maximal reduction of NBs, by inserting 2N — 2
phase-space coordinates and summing over them, thereby taking
symplectic traces,

1

ﬁ {L,M, Liyy Piyy - ’xiN—l’piN_l} '

{LvM}: (N

e Fewer traces lead to relations between NBs of maximal rank, 2,
and those of lesser rank, 2k,

1

fk)! {L17 e 7L2k7 Ly Pigy - 7xiN_kapiN_k} .

{Ll’...’L%}: (N

Essentially, {L1,---, Lo;} acts like a Dirac Bracket (DB), up to a nor-
malization {L1, Lo} pp. The fixed additional entries Ls, - - -, Loy in the
NB play the role of the constraints in the DB.

~» DB satisfies the Jacobi Identity.

e By virtue of this symplectic trace, for a general system—not only
a superintegrable one—Hamilton’s equations admit a different NB
expression,

e More elaborate isometries of general manifolds in such models
expected to yield to similar analysis.
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QUANTIZATION of NBs ( )

Undeserved bad reputation, on account of top-down shortcomings.
But, in any case ....
e [t must coincide with Moyal, or standard, quantization for the spe-
cific models above!

Nambu's (1973) proposal (here applied to phase-space), QNBs:
|A, B|, =ih {{A, B}}
A, B,C|, = AxB*xC — AxC*B+B*CxA— BxAxC+C*AxB—CxB%A
A, B,C,D|, = Ax|B,C, D], —B*|C, D, A].+C*|D, A, B], —D%[A, B,C|, =
= A, Bl, x [C, D], + [A,C|. * [D, B, + [A, D], % | B, C]«
+|C, D], % [A, Bl, + [D, Bl, % |A,Cl, + [B,Cls x [A, D], .

, but no Leibniz property or FI, .
Only a subjective shortcoming, dependent on the specific application
context! Quantization is consistent.

Objectively, for S,

& — {{k, Hyn}} = 55 [k, Lx, Ly, L],

a derivation. ~» Here, in phase space, Leibniz and FI hold,
. Good h — 0 limit.

NB. For constant A, thus dA/dt = 0, [A, B,C, D], = 0 holds iden-
tically, in contrast to the 3-argument QNB. Thus, no debilitating
constraint among the arguments B, C, D is imposed; the inconsis-
tency identified originally is a feature of odd-argument QNBs, and
does not restrict the even-argument QNBs of phase space.
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e By contrast, one might try to define a quantized Nambu
bracket {{,,,}}, by taking x-products of the phase-space gradi-
ents that appear in the classical NB and applying Jordan’s trick of
all such products, at the expense of making the
algebra non-associative. (Also fails to grant all 3 wishes of mathe-
maticians: antisymmetry, Leibniz rule, and FI).
But it moreover does not give the correct quantum equations of
motion.

e More generic situation, eg for S, N > 2: the QNBs provide the cor-
rect quantization rule, but need not satisfy the naive Leibniz prop-
erty (and FI) for consistency, as they are not necessarily plain deriva-
tions, but time derivatives are entwined inside strings of invariants.
Eg, for S?,

[k, P, Li3, P, Log, P3), = 3il°(Pox{{k, Hyp }} +{{k, Hy 15 P3)+Q(O(R?)).

~»
d
[/{, Pl, L12, PQ, L23, Pg]* = 3Zh3%(P2 * k + k% PQ) + Q(O(fﬁ))

The right hand side is not an unadorned derivation on &
~> does not impose a Leibniz rule on the left hand side.
(Other consistencey constraints are more suitable and are satisfied.)

o [hep-th/0212267] Quantum NBs are consistent
and describe the quantum behavior of superintegrable systems equiv-
alently to standard hamiltonian quantization. All reputed inconsis-
tencies have been addressing unsuitable (and untenable) conditions.
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