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Factorization: A Separation of Scales

¢ In heavy-quarkonium decays and hard-scattering produc-
tion, large scales appear:
Both the heavy-quark mass m and pr are much larger
than AQCD-

e Hope: Because of the large scales, asymptotic freedom
will allow us to do perturbation theory.

as(me) ~ 0.25; as(mp) ~ 0.18.
e But there are clearly low-momentum, nonperturbative ef-

fects in the heavy-quarkonium dynamics.

e We wish to separate the short-distance/high-momentum,
perturbative effects from the long-distance/low-momentum,
nonperturbative effects.

e This separation is known as “factorization.”



e Many factorization procedures in particle theory can be
understood simply in terms of effective field theories.

e Examples are
— the operator-product expansion (OPE) for deep-inelastic
scattering, = decays, R(ete™),

— heavy-quark effective theory (HQET) for heavy-light-
meson decays,

— heavy-quarkonium decays.

e Factorization proofs for hadron-hadron induced reactions
require (so far) all-orders perturbative arguments.

e Examples are

— large- Py hadron-hadron scattering,
— Drell-Yan production of lepton pairs,
— heavy-quarkonium production.

e Even in the hadron-hadron case, effective-field theory meth-
ods (SCET) apply to the individual hadrons.



Heavy-Quarkonium: A Multi-Scale Problem

e In analyzing heavy-quarkonium (spectrum, decay rates,
production rates), we would like to separate contributions
at the perturbative scale m from those at smaller, nonper-
turbative scales.

¢ In quarkonium, the next scale below m is heavy-quark mo-
mentum mv ~ 1/ R, where v is the heavy-quark velocity
in the bound state.

— v2 ~ 0.3 for charmonium.
— v? &~ 0.1 for bottomonium.

e The heavy-quark energy mwv*/2 and Aqcp are also im-
portant scales.

e Potential NRQCD (pNRQCD) (Brambilla, Pineda, Soto, Vairo)
separates the scale mv from the smaller scales.

e Here our goal is only to separate the the scale m from the
smaller scales.

e Construct an effective field theory valid at scales mwv and
smaller by integrating out the high-momentum contribu-
tions.



Nonrelativistic QCD (NRQCD)

e Generalization of NRQED (W. E. Caswell, G. P. Lepage).
e The effective theory has a UV cutoff A ~ m.

e For processes with p < A, the effective theory reproduces
full QCD.

e Processes with p > A are not described in the effective
theory, but they affect the coefficients of local interactions.

Gedanken Construction of NRQCD

¢ In the path integrals for the amplitudes in QCD, integrate
out:
all light-quark and gluon modes with p > A,
all the heavy-quark modes with £ — m, |p| > A.

e For the gluon—light-quark sector, the effective action is a
cut-off version of the full action (e.g. lattice) plus “improve-
ment” terms.



e For the heavy-quark sector, carry out a unitary transfor-
mation to diagonalize the interactions in term of the (@ and
Q parts of the Dirac field. For example, in full QCD the
Foldy-Wouthuysen transformation

U — exp[—ivy - D/(2m)|¥

leads to an approximate action

(zp)* —m 4 iDy + 2 0 <w>
X 0 m+iD, — 2 J \x /)’

which is correct up to terms of relative order p*/m?* ~ v,

— 1) is the Pauli spinor field that annihilates a heavy quark.

— x Is the Pauli spinor field that creates a heavy anti-
quark.

e Remove m and any energy shift AE from the Q and Q
energies at zero momentum by transforming the fields by
a phase:

w N e—i(m—l—AE)tw

X — ei(m—l—AE)tX

e In practice, this procedure would be very complicated.

e Instead, write down all possible interactions that are con-
sistent with the symmetries of full QCD.



Symmetries of (NR)QCD

e SU(3) gauge symmetry
Gluon fields enter the effective action only through Dy, D,
E, and B.

e Rotational symmetry
Remaining subgroup of Lorentz symmetry.

e Charge conjugation
¢ — _iO-Z(XT)Ta
x — doa(y’)h.
e Parity

10(75,"“) — ¢(ta—7“),
X(t,’l‘) — —X(t,—’r).

e In addition, impose heavy-quark phase symmetry.
Separate quark and antiquark number conservation.

P — e,
X — ewx-



NRQCD Action

e Leading terms in p/m = wv are just the Schrdodinger ac-
tion.

_ ot (ip, 2 P t (ip, D"
Eheavy — lb ZDt+2m ¢+X ZDt X

2m
Dt = 875 —|— ’LgAO
D =0 — igA.
e ¢/ is the Pauli spinor field that annihilates a heavy quark.

e X is the Pauli spinor field that creates a heavy antiquark.
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e To reproduce QCD completely, we would need an infinite
number of interactions. For example,

C
SLuinens = £ |9/ (D — x'(D*)x]
C
+ 55 |¢'(D- 9B~ gE D)y
™m
+ x'(D - gE — gE - D)x]
+ = [zp*(z'D % gE — gE x iD) - ot
8m?
+ x'(iD x gE — gE x iD) - ax]
C
+ o [¢'@B o) — X' (9B o).
™m

e In practice, work to a given precision in v.
e The ¢; are called short-distance coefficients.

— They can be computed in perturbation theory by match-
ing amplitudes in full QCD and NRQCD.

— By design, all of the low-scale physics is contained in
the explicit NRQCD interactions.

— The ¢; contain the effects from momenta > A.

e A plays the role of a factorization scale between the hard
and soft physics.
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Elimination of Time Derivatives in the NRQCD Action

e Use field re-definitions to eliminate higher-order terms in
which D; acts on v or .

e Under variations in W and XT,

~~ T y D2 T ; _ D2
L= oY |i1Diy+— | Y+6x' | iDy —— | x.
2m 2

m

e |f there are terms in the action

W' G(iDy)ep,
XTG/(ZDt)Xa

choose

[
|
<,
Q

5ep!
(5)(T = —XTG/.

The effect is

e Changes amount to use of the equations of motions:
On-shell amplitudes are unaffected.

e Start with terms in the action of lowest order in v and pro-
ceed iteratively through terms of the desired accuracy.
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Matching

e Determine ¢;’s by matching amplitudes on shell.

e Required because of the use of field re-definitions (equa-
tions of motion).

e Convenient because it makes the matching gauge invari-
ant.

e The short-distance coefficients are independent of the QQ
state:
Use free QQ states to do the matching in perturbation
theory.

e Example: tree-level matching of the pole in the heavy-
quark propagator.

Full QCD gives
2 4
/ p p
E: 2—|—m2—m R — _|_
P Q N 2mg 8fm‘22
NRQCD gives
2 4
p p
E=2__¢ .
2m "8m3 +

Fixes m = mg and c¢; = 1.
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Counting Powers of v
e Normalization:
/ Bz () (z) = 1.

e For a bound state of size ~ 1/p,
/d3x ~ 1/p°.

Wl () (z) ~ p’.

e Since the typical wave-function momentum is p,

Vip(x) ~ pp(x).

e Implies that

e Consistency of the equations of motion can be used to
determine the v scaling of other operators.

e Gives the same result as an all-orders perturbative analy-
sis, but valid beyond perturbation theory.

e Specialize to Coulomb gauge.

— We will see that in Coulomb gauge A is small com-
pared with Ay = ¢.

e Lowest-order equation for the quark field:

2m

(iat — g9(x) + V—) P(z) = 0.
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The virial theorem for a bound state implies that

\%& )
O ~ goptp ~ oY~ MUY
™m
e Implies that
2
gy ~ mu”.
e The lowest-order equation for ¢:
Vigd(x) = —g"d!(2)y(2).
e Assume that the gluon field has momentum of order
p = mo.
— True for binding gluons, but not necessarily for others.

— Will consider Fock-state gluons with momentum of or-
der mv? later.

e Implies that

1 2 3 2
gcb(w)Npgp ~ g°p.

e This is consistent with the previous estimate iff
as(mv) ~ g*(mv) ~ v.
e The lowest-order equation for A:
(0 = V)gA = (¢°/m)y' Vi + gV g¢.

If we assume that the momentum of A is ~ p, this implies
that

1 (g, 2\2 3
gA(z) = — | =—=p +p(mv")" | ~ mu
P m
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e gA is smaller than g¢ by a factor v.

e If we again assume that ¢ and A have momenta of order

p, it follows immediately that

2 3

gE =~ —Vg¢p ~ m-v",

gB =~ V X gANm2v4.

Operator Estimate
Ol v

0 (mw)*?
X (mv)*/?
D, (acting on 1) or ) mu?
D (acting on ) or x) mu
gE m2v?
gB m2v?
go (in Coulomb gauge) |  muv?
gA (in Coulomb gauge)| muv®
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Heavy-Quark Spin Symmetry

e The velocity-scaling rules tell us that, in the action, the
leading spin-flip terms

W' (gB- o) — x'(gB-o)x

are suppressed by v? compared with the leading non-spin-
flip terms

[ D’ [ D’
(e 1D+ — ) ¥ + X 1Dy — — | x.
2m 2m

e Up to corrections of order v*:

— The spin parts of wave functions factor from the non-
spin parts.
— If two quarkonium states are related by a spin flip, their

energies and the non-spin parts of their wave functions
are the same.

e This leads to relations between matrix elements of oper-
ators in quarkonium states that are related by a spin flip.
(Examples later.)
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Probability to Emit a Gluon from a Quarkonium State
e The leading non-spin-flip heavy-quark—spatial-gluon
vertex [from T (D?/2m) in the action]:

ig(2p + k)i

2m

gu.

p is the heavy-quark momentum, which is of order mwv.

k is the gluon momentum, which can be of order mwv or

mv2.

e The heavy-quark propagator:

) 1

E+k—(p+k?/(2m) Kk

E is the heavy-quark energy, which is of order mv?.

e Amplitude to emit a gluon that doesn't flip the spin:
~ gv/k.

e The probability is (amplitude)? x phase space:

3k [ gv\°? 9 9 v? for k ~ mu;
Pron-i N/— -] ~T9v 2 2
P 2k k ve for k ~ mo-.

We assume that g*(mv) ~ v and g*(muv?) ~ v°.
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e The leading spin-flip heavy-quark—spatial-gluon vertex
[from ¢ (go - B/2m) in the action]:

k

geijkjor ~ g—.
m

e The propagator is still ~ 1/k.

e The amplitude to emit a gluon that flips the spin:
~ (gk/m)/k ~ g/m.
e The probability to emit a gluon that flips the spin:
Pﬂip N /ﬂ <£>2 N g°k? N {’Uz for k ~ mv;2
2k \'m m? v for k ~ mov~.

e Conclusion:

— Emission of a gluon that doesn't flip the spin costs a
factor v in probability.

— Emission of a gluon that flips the spin costs a factor v°
in probability.

e This result can probably be proven to all orders in pertur-
bation theory.
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Fock-State Expansion

e The QQ Fock state |QQ) is leading in .
— It has the quantum numbers of the quarkonium.

e There are subleading Fock states such as

QQRg), |QQgg), |QQqq).

— In the subleading Fock states, the QQ pair can have
different spin, orbital-angular momentum, and color than
the quarkonium.

e The subleading Fock states are suppressed by a probabil-
ity factor

— v* for each gluon that doesn'’t flip the spin,

— v® for each gluon that flips the spin.

e The Fock-state expansion is sometimes expressed loosely
as a statement about amplitudes:

[quarkonium) = A,5|QQ) + Ape,|QQY)
+A064g|RQQII) + ApGe| QR + - - ..

But it is really a statement about probabilities (the squares
of amplitudes integrated over phase space).
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Space-Time Picture of Heavy-Quarkonium Annihilation

e The points A(C') and B(D) are within ~ 1/m of each
other.

— Emission of a hard gluon puts the Q or Q into a highly
virtual state.

— Virtuality ~ m implies propagation over distance
~ 1/m.

e A and C are within 1 /m of each other.

— Somewhat surprising since the outgoing gluons (jets)
are on shell.
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— But the energies/momenta of the jets are large and the
gluons are exactly on shell.

x The squared amplitude is insensitive to changes of
external momentum of order m.

x The Fourier transform has support over a distance
of order 1/m.

— Classically, can trace the final-state jets back to the an-
nihilation vertex.

— In gquantum mechanics, there is an uncertainty of
~ 1/p ~ 1/m in the location of the vertex.
e Soft final-state interactions could spoil this argument.
— The gluon could propagate a long distance in an arbi-
trary direction before the jet emerges.

— Soft divergences cancel by the KLN thm. for inclusive
processes.
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QQ Annihilation in NRQCD

e The size of the annihilation vertexis ~ 1/m ~ 1/A.

e In NRQCD the annihilation is represented by local 4-fermion
interactions.

e The finite size of the annihilation vertex is taken into ac-
count by including operators of higher order in v.

e Because of annihilation, probability is not conserved in
NRQCD.

— The coefficient of the 4-fermion interaction f, has an
imaginary part.

e The annihilation rate is given by the NRQCD factorization
formula, which follows from the optical theorem:

2 Im f,(A)
mdn—4

I'H —LH) = > (H|O,(A)|H).

n

23



e Determine the f,, by matching annihilation amplitudes (on-
shell) between full QCD and NRQCD.

— The f, are short-distance coefficients.

— The matching can be done perturbatively.

e All of the nonperturbative physics is in matrix elements of
the 4-fermion operators in the quarkonium state.
— Analogous to parton distributions.
— Calculate on the lattice or determine from experiments.

— Heavy-quark spin symmetry and vacuum-saturation ap-
proximation allow application to more than one decay
process.
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e Annihilation operators of dimension 6:

O1(*So) = ¥Ixx",

0:(>°s1) = ¢lox - x'oy,
Os(*So) = T x x'T,
(98(351) — v,bTO'TaX : XTa'Taw,b.

e The QQ pair can annihilate in a color-octet or a color-
singlet.

e The color-octet matrix element is proportional to the prob-
ability to find a QQg Fock state.

— Suppressed by powers of v, but can be important for
P-wave quarkonium decay.

— The decay operators that connect to the leading Fock
state may also be suppressed by powers of v.

e If we drop all of the color-octet contributions and retain
only the color-singlet contribution that is leading in v, then
we have the color-singlet model.

e In contrast, NRQCD factorization for decays is a rigorous
consequence of QCD in the limit m > Aqcp.

e Because of uncanceled IR divergences, the color-singlet
model is inconsistent in the treatment of P-wave states.
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Application of the Heavy-Quark Spin Symmetry

e The heavy-quark spin symmetry gives relations between
matrix elements for quarkonium states that are related by

a spin flip.

e Examples for color-singlet matrix elements:

($|O1CS)Y) = (| O1(*So)|ne),
<XcJ‘Ol(3PJ)|XcJ> = <hc‘01(1P1)|hc>, J=20,1,2.

e Examples for color-octet matrix elements:
(Xes10s(°S1)|Xes) = (he|Os(*So)|he), J =0,1,2.

e These relations hold up to corrections of order v2.
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Vacuum-Saturation Approximation

e For a color-singlet operator O,,, insert a complete set of
intermediate states in an operator matrix element:

(H|Ou|H) = > (H| kx| X ) (X |x kntp| H).

e Retain only the vacuum intermediate state:

(H|O,|H)Y =~ (H|¢'w]x]0)(0|x k3| H).

e The leading color-singlet intermediate state contains two
gluons.

— Suppressed as (v?)? = v”.

— Therefore, the vacuum-saturation approximation for color-
singlet operators holds up to corrections of order v*.

e The matrix elements that appears in EM decays are iden-
tical to the vacuum-saturation expressions.

— Gives additional predictive power.
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Relation to the Bethe-Salpeter Wave Function

e Example: the Bethe-Salpeter wave function (Coulomb gauge)
for the n. is

1

S (O (/2 @/ 2) e

\Ijnc(w) —

— The factor 1/+/2 N, takes into account the sum over
the spin and color degrees of freedom in the normal-
ization condition.

e Therefore, the wave function at the origin is related to the
vacuum-saturation approximation for the NRQCD matrix
element:

1
Vne(0) = —= (Olx ¥ ne).
e Similarly, for the J /4,
1
Vs (0) € = == (0l o] T/ (€),

where € is the polarization vector of the J /.
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Examples of Matching in Annihilation Decay

n. Decay

e Atleading orderin v, n. annihilation decay proceeds through
a color-singlet matrix element:

2 Im fi(*S
0n — L) = 2L 00,0 ).

O1(*So) = ¥ix x"p.

e That is, we have the color-singlet-model result.

e Determine Im f;(*Sy) by matching NRQCD and full QCD
matrix elements in QQ states.

e At leading order in o, a QQ pair in a 'Sy color-singlet
state decays into two gluons. The matching condition is

I (0) lg B _
& qu}nf 210G (150)|01(*50)| Q@1 (150))®

= T91QQ:(*Ss) — g9)].

— With a suitable normalization of the states,

(QQ1("S0)|01(150)|QQ1("Se))” = 1.
— Therefore,

2 Imf{” (*S,)

m?2

= 19QAQ('Sy) — gg).
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e At next-to-leading order in o4, the matching condition for a
QQ pair in a color-singlet ' S, state is

ZImff”< So)

(QQ1(1S50)|01(150)1QQ:1 (*Sp)) ¥
_|_2 Im f" ( So)

(QQ1(1S0)|O1(*50) QA1 (*So)) Y
= f“”[@@( So) — 999] + TV [QQ1("So) — gg]
+11Q0Q:1 (" S0) — qqg].
e We wish to solve for Im fl(l)(lso).

e (QQ1('S))|01(*S0)|QQ1(*S0)) ™ contains one-loop cor-
rections that don’'t change the color of the initial or final

QQ pair:

The gluon connects to only the initial @ or Q or the final Q

or Q.
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. f<0_>[QQ1(1SO) — ggg] contains real corrections to
QQ:1(*So) — gg.

— Its logarithmic IR and collinear divergences are can-
celed by similar divergences from virtual corrections in

YA ("So) — gg].
o IM[QQ:(1Sy) — gg] contains virtual corrections to

QQ1('So) — gg.

— Its logarithmic IR and collinear divergences are can-
celed by real corrections in T'(0)[QQ1(*So) — ggg]
and T [QQ1 (" So) — qag].

— It also contains a power infrared divergence that is as-
sociated with exchange of a Coulomb gluon between
the initial or final QQ pair.

l

_‘
W-—-

|

I
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e I'OTQQ1(*Sy) — qgg] is the Born process for
QQ1('So) — qay.

— The gluon is emitted from the Q or Q (C parity).

— It contains collinear divergences that are canceled by
collinear divergences in the virtual corrections in

f(l)[QC_Ql(lSo) — g9].
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e NRQCD reproduces full QCD at small momenta.

— The loop correction to the color-singlet matrix element
cancels the power IR divergence in

f‘(1)[QQ1(150) — gg].

e 1

-

l

|
Ay

I

i

i
’U\/’T\/\/\J‘

|

Interpretation: The Coulomb-gluon correction is absorbed
into a re-definition of the QQ wave function.

e Therefore, Im fl(l)(lso) is IR finite.
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X c0 Decay

e At leading order in v, x. decay proceeds through both
color-singlet and color-octet QQ) states:

I P
I'(xco — LH) = ? m£4( o) (Xc0| 01 Po) | xc0)
2 Im S
T2 ol 050 xeo)
1 — —
O\(P) = 5 ¢'(=4D - o)xx' (=D - o)

0s(’S1) = P'aT% - x'aT .
° (’)1(3P0) connects to the leading x .o Fock state, but has

two derivatives, which become two powers of v.

e Os(*S;) has no derivatives, but it connects to the QQg
Fock state, which is suppressed by two powers of v in the
probability.

e Therefore, both matrix elements are of the same order in

V.
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e At leading order in a;, a QQ pair in a color-singlet > P,
state decays into two gluons. The matching condition is

I (0) 3P B B
& m];{ﬁ( ) QG ()0 P)|QG (R ©

= T9QQ.CPRy) — gg).

e At leading order in a5, a QQ pair in a color-octet ® S; state
decays through a virtual gluon into a light gg pair. The
matching condition is

m £{0) 3 ~ ~
I L0 10Qu(51) 10451 1QQs(C51)

= 19QQs(*S1) — qq).

e Again, the QQ states can be normalized so that the matrix
elements are unity.

e Then, we have for the short-distance coefficients

2 Im £V Py)

i = 171QQ:(*Py) — g9,
m
(0) SS . _
2 Im f84( 1) — 1O [QQs(gsl) — qq].

m
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e At next-to-leading order in o4, the matching condition for a
QQ pair in a color-singlet ® P, state is

2 I f1 Cr) (QQ1(CP)) |01 P)|1QQ1L (P Py)) ¥

2 Im ff0>(3po)
+ 4
m

(0) /3
2 Im St
| f8 ( )

(QQ:1(°P0)|01(° Po)|QQu (* Py)) ™V

(QQ1(Py)|0s(*S1)|QQ:1(* Py))yY
=1 [QQ1( Py) — gg4g] + TV [QQ *Po) — gg]
+191QQ.CPy) — qag).
e We wish to solve for Im fl(l)(3P0).

¢ (QQ1(*Py)|01(3Py)|QQ1(3Py)) ™ contains one-loop cor-
rections that don’t change the color of the initial or final

QQ pair:

The gluon connects to only the initial @ or Q or the final Q

or Q.
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e (QQ1(3Py)|0s(351)|QQ1(3Py)) ™" contains one-loop cor-
rections that put the initial and final QQ pairs in ®S; color-
octet states:

The gluon connects the initial QQ or Q to the final Q or Q.
It carries off one unit of orbital angular momentum.

e I'1QQ.(®*Py) — ggg] contains real corrections to
QQ1(’Py) — gg.

— Its logarithmic IR and collinear divergences are can-
celed by similar divergences from virtual corrections in

rVQQ1(Py) — gg].
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e I'V[QQ:1(®Py) — gg] contains virtual corrections to
QQ:1(°Py) — gg.

— Its logarithmic IR and collinear divergences are can-
celed by real corrections in T'(0)[QQ:1(3Py) — ggg]
and I'V[QQ1 (*Py) — qqy].

— It also contains a power infrared divergence that is as-
sociated with exchange of a Coulomb gluon between
the initial or final QQ pair.

i

_‘
wv;vw-——

|

I
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e I'V1QQ:1(®Py) — qqg] is the Born process for
QQ1(*Ry) — qqg.

— The gluon is emitted from the Q or Q (C parity).

— It contains collinear divergences that are canceled by
collinear divergences in the virtual corrections in

rQQ(PPy) — ggl.
— After all cancellations among full-QCD processes, it
still contains a logarithmic infrared divergence.

x This was a long-standing puzzle in the color-singlet
model.
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e NRQCD reproduces full QCD at small momenta.

— The loop correction to the color-singlet matrix element
cancels the power IR divergence in

TYQQ1(P) — gyl

i
I

NN !
I -
|

’u\n?'vw
|

Interpretation: The Coulomb-gluon correction is absorbed
into a re-definition of the QQ wave function.

-

— The loop correction to the color-octet matrix element
cancels the logarithmic IR divergence in

rQQ:(*Py) — qdg].

20 =~ X

Interpretation: The real gluon is part of the QQ g Fock
state when its momentum is less than A. Otherwise, it
contributes to the short-distance coefficient.
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e Therefore, Im fl(l)(3P0) is IR finite.

¢ In the color-singlet model, the color-octet matrix element is
absent, and the short-distance coefficient contains a loga-
rithmic IR divergence.

e This inconsistency in the color-singlet model was the orig-
inal motivation for the development of the NRQCD factor-
ization formalism.

e There is a similar matching condition for a QQ pair in a
color-octet >S; state that can be used to determine
Im fél)(?)sl)-
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Inclusive Quarkonium Production

e We would like to apply NRQCD methods to heavy-quarkonium
production processes.

e The probability for a QQ pair to evolve into a heavy quarko-
nium can be calculated as a vacuum-matrix element in
NRQCD:

(0|0, |0)
— (O]x Rt (Z H+ X)(H + Xl)Wf‘é/nXIO)-

e This is the matrix element of a four-fermion operator, but
with a projection onto an intermediate state of the quarko-
nium H plus anything.
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e The production matrix elements are the crossed versions
of quarkonium decay matrix elements.

— Only the color-singlet production and decay matrix ele-
ments are simply related by the vacuum-saturation ap-
proximation.

— Replace X with the vacuum in the color-singlet pro-
duction matrix elements:

(010710) = (0|x rntp|H) (H| K. x|0).

These are same amplitudes that appear in the decay
matrix elements in the vacuum-saturation approxima-
tion.

e In order to prove that the operator is a local product of
four heavy-quark operators, we have to establish that the
QQ production process occurs at short distances (of order

1/mor1/pr).
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e To establish the short-distance nature of the production
process and to prove factorization, we must show that

— soft and collinear divergences cancel or can be ab-
sorbed into parton distributions, fragmentation functions,
or NRQCD matrix elements (short-distance process);

— spectator interactions cancel or can be absorbed into
parton distributions fragmentation functions, or NRQCD
matrix elements (topological factorization).

e There is an existing technology for demonstrating this to
all orders in perturbation theory.
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Jet Production at Large pr

e The simple parton model is complicated in QCD by addi-
tional gluon exchanges, possibly involving spectator quarks.

e Many years ago, the technology was developed for deal-
ing with the gluon exchanges to all orders in perturbation
theory for sufficiently inclusive processes
(Collins, Soper, Sterman; GTB; many others).
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e Result at leading order in 1/p7:

— Soft gluons factor completely from the original diagram.

— Collinear gluons factor into separate contributions for
each beam or jet direction.

— Initial-state collinear contributions factor into PDF’s.

— Factored soft and final-state collinear contributions can-
cel by unitarity.

— The remaining hard contributions involve only active
partons and can be calculated in QCD perturbation
theory.

— The cross section is a convolution of PDF’s with per-
turbatively calculable partonic cross sections.

— Corrections to this result:

« Order A/ p7 in the unpolarized case,
+ Order Aqcp/pr in the polarized case.
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Inclusive Single-Particle Production at Large pr

e Radiated soft gluons and/or light quarks turn the final-state
parton into a light hadron.

e The cross section is no longer completely inclusive, so the
unitarity cancellation of contributions from gluons collinear
to the final hadron fails.
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e These collinear contributions are factored into the frag-
mentation function for the parton to become a hadron.

e The cross section is a convolution of PDF’s and the frag-
mentation function with a perturbatively calculable partonic
Cross section.

e Corrections to this result:

— Order A¢,.,/p7 in the unpolarized case,

— Order Aqcp/pr in the polarized case.
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Inclusive Heavy-Quarkonium Production at Large pr

e A detailed proof does not exist for this case.
(Qiu, Sterman, work in progress)

e |t seems likely that the standard technology can be applied
to prove factorization.

e Again, the cross section is no longer completely inclusive,
so the unitarity cancellation of contributions from gluons
collinear to the quarkonium fails.

e These collinear contributions are soft contributions in the
quarkonium CM frame.

e They are factored into the NRQCD matrix element.
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e Best guess for corrections to this result:

— order A%, /p7 (Not mg,/p7) in the unpolarized case,

— order Aqcp/pr (not mg/pr) in the polarized case.

e |t is not known if there is a factorization formula at small
pr-

— If there is factorization, it would likely hold only in lead-
ing order in v (Qiu, Sterman):
The Bloch-Nordsieck IR cancellation fails in order v
(Doria, Frenkel, Taylor; Di'Lieto, Gendron, Halliday, Sachra-
jda).

— Since m is now the large scale, there are probably vi-
olations of factorization of order A?,.,/m® (unpolar-
ized) and Aqcp/m (polarized).

e The cross section can be written as a sum of products of
NRQCD matrix elements and “short-distance” coefficients:

o) = 3 T8 10l ()[0),

n

e The “short-distance” coefficients F;,(A) are essentially the
process-dependent partonic cross sections to make a QQ
pair convolved with the parton distributions.

— They have an expansion in powers of a.
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e The sum over matrix elements is an expansion in powers
of v.
In practice, truncate it at a finite order.

e The operator matrix elements are universal (process inde-
pendent).
Universality gives NRQCD factorization much of its predic-
tive power.

e Choose the NRQCD cutoff A (NRQCD factorization scale)
large enough so that mv < A < m, but as(A) << 1.
— Gluons with k£ < m are included in the matrix element.
— Gluons with k& > m are part of the short-distance co-
efficients and are treated perturbatively.

e NRQCD factorization relies on NRQCD and hard-scattering
factorization.
Comparisons with experiment test both.
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e An important feature of NRQCD factorization:

Quarkonium production occurs through color-octet, as well
as color-singlet, QQ states.

e If we drop all of the color-octet contributions, then we have
the color-singlet model (CSM).

e In contrast, NRQCD factorization for production is not a
model.

— Sometimes erroneously called “the color-octet model.”

— Believed to be a rigorous consequence of QCD in the

limit m, pr > Aqcp.

e Because of uncanceled IR divergences, the color-singlet

model is inconsistent in the treatment of production of P-
wave states.
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Gluon Radiation in Production Matrix Elements

e As in decays
— Emission of a gluon that doesn't flip the spin costs v?
in probability;
— Emission of a gluon that flips the spin costs v* in prob-
ability.
e In quarkonium production, emission of gluons from pro-
duced QQ pairs can be important
— if the production operators with the quantum numbers
of the quarkonium are suppressed by powers of v,

— if production of a QQ state with the quantum numbers
of the quarkonium is kinematically suppressed.
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e A common misconception: color-octet production proceeds
through a higher Fock state.

— In leading color-octet production, the gluons that neu-
tralize the color are in the final state, not the initial state.

e The higher Fock-state process requires the production of
gluons that are nearly collinear to the QQ pair:

e It is suppressed by additional powers of v.
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Summary

e Quarkonia are multi-scale systems.
e The effective field theory NRQCD can be used to separate
— short-distance perturbative scales with momenta of or-
der m and higher,
— long-distance non-perturbative scales with momenta less

than m.

e NRQCD is constructed by integrating out the high-momentum
modes in QCD.

e The NRQCD action is an expansion in powers of the heavy-
quark—antiquark relative velocity v.

¢ Inclusive quarkonium decay and production rates are given
in NRQCD as a sum of matrix elements of local four-fermion
operators times short-distance coefficients.

— The coefficients can be calculated in perturbation the-
ory by matching amplitudes in full QCD with those in
NRQCD.

— The sum over matrix elements is an expansion in pow-
ers of v that, in practice, is truncated.

e The NRQCD factorization formula for production relies on
both NRQCD and hard-scattering factorization.
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e Production and decay proceed through color-octet, as well
as color-singlet QQ channels.

e The heavy-quark spin symmetry and the vacuum-saturation
approximation can be used to obtain approximate relations
between matrix elements of NRQCD four-fermion opera-
tors.

e Only color-singlet production and decay matrix elements
are simply related.

e Matrix elements of production operators are universal (pro-
cess independent).

e The NRQCD factorization formulas for decay and produc-
tion are not models, but are consequences of QCD in the

limits m, pr > Aqcp.
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