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Factorization: A Separation of Scales

• In heavy-quarkonium decays and hard-scattering produc-

tion, large scales appear:

Both the heavy-quark mass m and pT are much larger

than ΛQCD.

• Hope: Because of the large scales, asymptotic freedom

will allow us to do perturbation theory.

αs(mc) ≈ 0.25; αs(mb) ≈ 0.18.

• But there are clearly low-momentum, nonperturbative ef-

fects in the heavy-quarkonium dynamics.

• We wish to separate the short-distance/high-momentum,

perturbative effects from the long-distance/low-momentum,

nonperturbative effects.

• This separation is known as “factorization.”
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• Many factorization procedures in particle theory can be

understood simply in terms of effective field theories.

• Examples are

– the operator-product expansion (OPE) for deep-inelastic

scattering, τ decays, R(e+e−),

– heavy-quark effective theory (HQET) for heavy-light-

meson decays,

– heavy-quarkonium decays.

• Factorization proofs for hadron-hadron induced reactions

require (so far) all-orders perturbative arguments.

• Examples are

– large-PT hadron-hadron scattering,

– Drell-Yan production of lepton pairs,

– heavy-quarkonium production.

• Even in the hadron-hadron case, effective-field theory meth-

ods (SCET) apply to the individual hadrons.
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Heavy-Quarkonium: A Multi-Scale Problem

• In analyzing heavy-quarkonium (spectrum, decay rates,

production rates), we would like to separate contributions

at the perturbative scale m from those at smaller, nonper-

turbative scales.

• In quarkonium, the next scale below m is heavy-quark mo-

mentum mv ∼ 1/R, where v is the heavy-quark velocity

in the bound state.

– v2 ≈ 0.3 for charmonium.

– v2 ≈ 0.1 for bottomonium.

• The heavy-quark energy mv2/2 and ΛQCD are also im-

portant scales.

• Potential NRQCD (pNRQCD) (Brambilla, Pineda, Soto, Vairo)

separates the scale mv from the smaller scales.

• Here our goal is only to separate the the scale m from the

smaller scales.

• Construct an effective field theory valid at scales mv and

smaller by integrating out the high-momentum contribu-

tions.
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Nonrelativistic QCD (NRQCD)

• Generalization of NRQED (W. E. Caswell, G. P. Lepage).

• The effective theory has a UV cutoff Λ ∼ m.

• For processes with p < Λ, the effective theory reproduces

full QCD.

• Processes with p > Λ are not described in the effective

theory, but they affect the coefficients of local interactions.

Gedanken Construction of NRQCD

• In the path integrals for the amplitudes in QCD, integrate

out:

all light-quark and gluon modes with p > Λ,

all the heavy-quark modes with E −m, |p| > Λ.

• For the gluon–light-quark sector, the effective action is a

cut-off version of the full action (e.g. lattice) plus “improve-

ment” terms.
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• For the heavy-quark sector, carry out a unitary transfor-

mation to diagonalize the interactions in term of the Q and

Q̄ parts of the Dirac field. For example, in full QCD the

Foldy-Wouthuysen transformation

Ψ → exp[−iγ ·D/(2m)]Ψ

leads to an approximate action�
ψ

χ

�† −m + iDt + D2

2m 0

0 m + iDt − D2

2m

!�
ψ

χ

�
,

which is correct up to terms of relative order p2/m2 ∼ v2.

– ψ is the Pauli spinor field that annihilates a heavy quark.

– χ is the Pauli spinor field that creates a heavy anti-

quark.

• Remove m and any energy shift ∆E from the Q and Q̄

energies at zero momentum by transforming the fields by

a phase:

ψ → e
−i(m+∆E)t

ψ

χ → e
i(m+∆E)t

χ.

• In practice, this procedure would be very complicated.

• Instead, write down all possible interactions that are con-

sistent with the symmetries of full QCD.
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Symmetries of (NR)QCD

• SU(3) gauge symmetry

Gluon fields enter the effective action only through D0, D,

E, and B.

• Rotational symmetry

Remaining subgroup of Lorentz symmetry.

• Charge conjugation

ψ → −iσ2(χ
T
)
†
,

χ → iσ2(ψ
T
)
†
.

• Parity

ψ(t, r) → ψ(t,−r),

χ(t, r) → −χ(t,−r).

• In addition, impose heavy-quark phase symmetry.

Separate quark and antiquark number conservation.

ψ → e
iα

ψ,

χ → e
iβ

χ.
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NRQCD Action

• Leading terms in p/m = v are just the Schrödinger ac-

tion.

Lheavy = ψ
†
 

iDt +
D2

2m

!
ψ + χ

†
 

iDt −
D2

2m

!
χ

Dt = ∂t + igA0.

D = ∂ − igA.

• ψ is the Pauli spinor field that annihilates a heavy quark.

• χ is the Pauli spinor field that creates a heavy antiquark.
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• To reproduce QCD completely, we would need an infinite

number of interactions. For example,

δLbilinear =
c1

8m3

h
ψ
†
(D2

)
2
ψ − χ

†
(D2

)
2
χ
i

+
c2

8m2

h
ψ
†
(D · gE− gE ·D)ψ

+ χ
†
(D · gE− gE ·D)χ

i
+

c3

8m2

h
ψ
†
(iD× gE− gE× iD) · σψ

+ χ
†
(iD× gE− gE× iD) · σχ

i
+

c4

2m

h
ψ
†
(gB · σ)ψ − χ

†
(gB · σ)χ

i
.

• In practice, work to a given precision in v.

• The ci are called short-distance coefficients.

– They can be computed in perturbation theory by match-

ing amplitudes in full QCD and NRQCD.

– By design, all of the low-scale physics is contained in

the explicit NRQCD interactions.

– The ci contain the effects from momenta > Λ.

• Λ plays the rôle of a factorization scale between the hard

and soft physics.
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Elimination of Time Derivatives in the NRQCD Action

• Use field re-definitions to eliminate higher-order terms in

which Dt acts on ψ or χ.

• Under variations in ψ† and χ†,

δL ≈ δψ
†
 

iDt +
D2

2m

!
ψ + δχ

†
 

iDt −
D2

2m

!
χ.

• If there are terms in the action

ψ
†
G(iDt)ψ,

χ
†
G
′
(iDt)χ,

choose

δψ
†

= −ψ
†
G,

δχ
†

= −χ
†
G
′
.

The effect is

iDtψ →
 
−D2

2m

!
ψ,

iDtχ →
 

D2

2m

!
χ.

• Changes amount to use of the equations of motions:

On-shell amplitudes are unaffected.

• Start with terms in the action of lowest order in v and pro-

ceed iteratively through terms of the desired accuracy.
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Matching

• Determine ci’s by matching amplitudes on shell.

• Required because of the use of field re-definitions (equa-

tions of motion).

• Convenient because it makes the matching gauge invari-

ant.

• The short-distance coefficients are independent of the QQ̄

state:

Use free QQ̄ states to do the matching in perturbation

theory.

• Example: tree-level matching of the pole in the heavy-

quark propagator.

Full QCD gives

E =
q

p2 + m2
Q −mQ =

p2

2mQ

− p4

8m3
Q

+ · · · .

NRQCD gives

E =
p2

2m
− c1

p4

8m3
+ · · · .

Fixes m = mQ and c1 = 1.
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Counting Powers of v

• Normalization: Z
d

3
x ψ

†
(x)ψ(x) = 1.

• For a bound state of size ∼ 1/p,Z
d

3
x ∼ 1/p

3
.

• Implies that

ψ
†
(x)ψ(x) ∼ p

3
.

• Since the typical wave-function momentum is p,

∇ψ(x) ∼ pψ(x).

• Consistency of the equations of motion can be used to

determine the v scaling of other operators.

• Gives the same result as an all-orders perturbative analy-

sis, but valid beyond perturbation theory.

• Specialize to Coulomb gauge.

– We will see that in Coulomb gauge A is small com-

pared with A0 ≡ φ.

• Lowest-order equation for the quark field: 
i∂t − gφ(x) +

∇2

2m

!
ψ(x) = 0.
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The virial theorem for a bound state implies that

∂tψ ∼ gφψ ∼ ∇2

2m
ψ ∼ mv

2
ψ.

• Implies that

gφ ∼ mv
2
.

• The lowest-order equation for φ:

∇2
gφ(x) = −g

2
ψ
†
(x)ψ(x).

• Assume that the gluon field has momentum of order

p = mv.

– True for binding gluons, but not necessarily for others.

– Will consider Fock-state gluons with momentum of or-

der mv2 later.

• Implies that

gφ(x) ∼ 1

p2
g

2
p

3 ∼ g
2
p.

• This is consistent with the previous estimate iff

αs(mv) ∼ g
2
(mv) ∼ v.

• The lowest-order equation for A:

(∂
2
t −∇2

)gA = (g
2
/m)ψ

†∇ψ + gφ∇gφ.

If we assume that the momentum of A is∼ p, this implies

that

gA(x) =
1

p2

 
g2

m
p

4
+ p(mv

2
)
2

!
∼ mv

3
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• gA is smaller than gφ by a factor v.

• If we again assume that φ and A have momenta of order

p, it follows immediately that

gE ≈ −∇gφ ∼ m
2
v

3
,

gB ≈ ∇× gA ∼ m
2
v

4
.

Operator Estimate
αs v

ψ (mv)3/2

χ (mv)3/2

Dt (acting on ψ or χ) mv2

D (acting on ψ or χ) mv

gE m2v3

gB m2v4

gφ (in Coulomb gauge) mv2

gA (in Coulomb gauge) mv3
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Heavy-Quark Spin Symmetry

• The velocity-scaling rules tell us that, in the action, the

leading spin-flip terms

ψ
†
(gB · σ)ψ − χ

†
(gB · σ)χ

are suppressed by v2 compared with the leading non-spin-

flip terms

ψ
†
 

iDt +
D2

2m

!
ψ + χ

†
 

iDt −
D2

2m

!
χ.

• Up to corrections of order v2:

– The spin parts of wave functions factor from the non-

spin parts.

– If two quarkonium states are related by a spin flip, their

energies and the non-spin parts of their wave functions

are the same.

• This leads to relations between matrix elements of oper-

ators in quarkonium states that are related by a spin flip.

(Examples later.)
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Probability to Emit a Gluon from a Quarkonium State

• The leading non-spin-flip heavy-quark–spatial-gluon

vertex [from ψ†(D2/2m)ψ in the action]:

ig(2p + k)i

2m
∼ gv.

p is the heavy-quark momentum, which is of order mv.

k is the gluon momentum, which can be of order mv or

mv2.

• The heavy-quark propagator:

i

E + k − (p + k)2/(2m)
∼ 1

k
.

E is the heavy-quark energy, which is of order mv2.

• Amplitude to emit a gluon that doesn’t flip the spin:

∼ gv/k.

• The probability is (amplitude)2 × phase space:

Pnon-flip ∼
Z

d3k

2k

�
gv

k

�2

∼ g
2
v

2 ∼
(

v3 for k ∼ mv;

v2 for k ∼ mv2.

We assume that g2(mv) ∼ v and g2(mv2) ∼ v0.
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• The leading spin-flip heavy-quark–spatial-gluon vertex

[from ψ†(gσ · B/2m)ψ in the action]:

gεijlkjσl ∼ g
k

m
.

• The propagator is still ∼ 1/k.

• The amplitude to emit a gluon that flips the spin:

∼ (gk/m)/k ∼ g/m.

• The probability to emit a gluon that flips the spin:

Pflip ∼
Z

d3k

2k

�
g

m

�2

∼ g2k2

m2
∼
(

v3 for k ∼ mv;

v4 for k ∼ mv2.

• Conclusion:

– Emission of a gluon that doesn’t flip the spin costs a

factor v2 in probability.

– Emission of a gluon that flips the spin costs a factor v3

in probability.

• This result can probably be proven to all orders in pertur-

bation theory.
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Fock-State Expansion

• The QQ̄ Fock state |QQ̄〉 is leading in v.

– It has the quantum numbers of the quarkonium.

• There are subleading Fock states such as

|QQ̄g〉, |QQ̄gg〉, |QQ̄qq〉.
– In the subleading Fock states, the QQ̄ pair can have

different spin, orbital-angular momentum, and color than

the quarkonium.

• The subleading Fock states are suppressed by a probabil-

ity factor

– v2 for each gluon that doesn’t flip the spin,

– v3 for each gluon that flips the spin.

• The Fock-state expansion is sometimes expressed loosely

as a statement about amplitudes:

|quarkonium〉 = AQQ̄|QQ̄〉+ AQQ̄g|QQ̄g〉
+AQQ̄gg|QQ̄gg〉+ AQQ̄qq|QQ̄qq〉+ . . . .

But it is really a statement about probabilities (the squares

of amplitudes integrated over phase space).
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Space-Time Picture of Heavy-Quarkonium Annihilation

• The points A(C) and B(D) are within ∼ 1/m of each

other.

– Emission of a hard gluon puts the Q or Q̄ into a highly

virtual state.

– Virtuality ∼ m implies propagation over distance

∼ 1/m.

• A and C are within 1/m of each other.

– Somewhat surprising since the outgoing gluons (jets)

are on shell.
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– But the energies/momenta of the jets are large and the

gluons are exactly on shell.

∗ The squared amplitude is insensitive to changes of

external momentum of order m.

∗ The Fourier transform has support over a distance

of order 1/m.

– Classically, can trace the final-state jets back to the an-

nihilation vertex.

– In quantum mechanics, there is an uncertainty of

∼ 1/p ∼ 1/m in the location of the vertex.

• Soft final-state interactions could spoil this argument.

– The gluon could propagate a long distance in an arbi-

trary direction before the jet emerges.

– Soft divergences cancel by the KLN thm. for inclusive

processes.
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QQ̄ Annihilation in NRQCD

• The size of the annihilation vertex is ∼ 1/m ∼ 1/Λ.

• In NRQCD the annihilation is represented by local 4-fermion

interactions.

• The finite size of the annihilation vertex is taken into ac-

count by including operators of higher order in v.

• Because of annihilation, probability is not conserved in

NRQCD.

– The coefficient of the 4-fermion interaction fn has an

imaginary part.

• The annihilation rate is given by the NRQCD factorization

formula, which follows from the optical theorem:

Γ(H → LH) =
X

n

2 Im fn(Λ)

mdn−4
〈H|On(Λ)|H〉.
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• Determine the fn by matching annihilation amplitudes (on-

shell) between full QCD and NRQCD.

– The fn are short-distance coefficients.

– The matching can be done perturbatively.

• All of the nonperturbative physics is in matrix elements of

the 4-fermion operators in the quarkonium state.

– Analogous to parton distributions.

– Calculate on the lattice or determine from experiments.

– Heavy-quark spin symmetry and vacuum-saturation ap-

proximation allow application to more than one decay

process.
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• Annihilation operators of dimension 6:

O1(
1
S0) = ψ

†
χ χ

†
ψ,

O1(
3
S1) = ψ

†
σχ · χ†σψ,

O8(
1
S0) = ψ

†
T

a
χ χ

†
T

a
ψ,

O8(
3
S1) = ψ

†
σT

a
χ · χ†σT

a
ψ.

• The QQ̄ pair can annihilate in a color-octet or a color-

singlet.

• The color-octet matrix element is proportional to the prob-

ability to find a QQ̄g Fock state.

– Suppressed by powers of v, but can be important for

P -wave quarkonium decay.

– The decay operators that connect to the leading Fock

state may also be suppressed by powers of v.

• If we drop all of the color-octet contributions and retain

only the color-singlet contribution that is leading in v, then

we have the color-singlet model.

• In contrast, NRQCD factorization for decays is a rigorous

consequence of QCD in the limit m À ΛQCD.

• Because of uncanceled IR divergences, the color-singlet

model is inconsistent in the treatment of P -wave states.

25



Application of the Heavy-Quark Spin Symmetry

• The heavy-quark spin symmetry gives relations between

matrix elements for quarkonium states that are related by

a spin flip.

• Examples for color-singlet matrix elements:

〈ψ|O1(
3
S1)|ψ〉 = 〈ηc|O1(

1
S0)|ηc〉,

〈χcJ|O1(
3
PJ)|χcJ〉 = 〈hc|O1(

1
P1)|hc〉, J = 0, 1, 2.

• Examples for color-octet matrix elements:

〈χcJ|O8(
3
S1)|χcJ〉 = 〈hc|O8(

1
S0)|hc〉, J = 0, 1, 2.

• These relations hold up to corrections of order v2.
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Vacuum-Saturation Approximation

• For a color-singlet operator On, insert a complete set of

intermediate states in an operator matrix element:

〈H|On|H〉 =
X
X

〈H|ψ†
κ
′
nχ|X〉〈X|χ†κnψ|H〉.

• Retain only the vacuum intermediate state:

〈H|On|H〉 ≈ 〈H|ψ†
κ
′
nχ|0〉〈0|χ†κnψ|H〉.

• The leading color-singlet intermediate state contains two

gluons.

– Suppressed as (v2)2 = v4.

– Therefore, the vacuum-saturation approximation for color-

singlet operators holds up to corrections of order v4.

• The matrix elements that appears in EM decays are iden-

tical to the vacuum-saturation expressions.

– Gives additional predictive power.
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Relation to the Bethe-Salpeter Wave Function

• Example: the Bethe-Salpeter wave function (Coulomb gauge)

for the ηc is

Ψηc(x) =
1√
2Nc

〈0|χ†(−x/2)ψ(x/2)|ηc〉.

– The factor 1/
√

2Nc takes into account the sum over

the spin and color degrees of freedom in the normal-

ization condition.

• Therefore, the wave function at the origin is related to the

vacuum-saturation approximation for the NRQCD matrix

element:

Ψηc(0) =
1√
2Nc

〈0|χ†ψ|ηc〉.

• Similarly, for the J/ψ,

ΨJ/ψ(0) ε =
1√
2Nc

〈0|χ†σψ|J/ψ(ε)〉,

where ε is the polarization vector of the J/ψ.
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Examples of Matching in Annihilation Decay

ηc Decay

• At leading order in v, ηc annihilation decay proceeds through

a color-singlet matrix element:

Γ(ηc → LH) =
2 Im f1(

1S0)

m2
〈ηc|O1(

1
S0)|ηc〉.

O1(
1
S0) = ψ

†
χ χ

†
ψ.

• That is, we have the color-singlet-model result.

• Determine Imf1(
1S0) by matching NRQCD and full QCD

matrix elements in QQ̄ states.

• At leading order in αs, a QQ̄ pair in a 1S0 color-singlet

state decays into two gluons. The matching condition is

2 Imf
(0)
1 (1S0)

m2
〈QQ̄1(

1
S0)|O1(

1
S0)|QQ̄1(

1
S0)〉(0)

= Γ̂
(0)

[QQ̄1(
1
S0) → gg)].

.

– With a suitable normalization of the states,

〈QQ̄1(
1
S0)|O1(

1
S0)|QQ̄1(

1
S0)〉(0) = 1.

– Therefore,

2 Imf
(0)
1 (1S0)

m2
= Γ̂

(0)
[QQ̄(

1
S0) → gg].
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• At next-to-leading order in αs, the matching condition for a

QQ̄ pair in a color-singlet 1S0 state is

2 Im f
(1)
1 (1S0)

m4
〈QQ̄1(

1
S0)|O1(

1
S0)|QQ̄1(

1
S0)〉(0)

+
2 Im f

(0)
1 (1S0)

m4
〈QQ̄1(

1
S0)|O1(

1
S0)|QQ̄1(

1
S0)〉(1)

= Γ̂
(0)

[QQ̄1(
1
S0) → ggg] + Γ̂

(1)
[QQ̄1(

1
S0) → gg]

+Γ̂
(0)

[QQ̄1(
1
S0) → qq̄g].

• We wish to solve for Im f
(1)
1 (1S0).

• 〈QQ̄1(
1S0)|O1(

1S0)|QQ̄1(
1S0)〉(1) contains one-loop cor-

rections that don’t change the color of the initial or final

QQ̄ pair:

The gluon connects to only the initial Q or Q̄ or the final Q

or Q̄.
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• Γ̂(0)[QQ̄1(
1S0) → ggg] contains real corrections to

QQ̄1(
1S0) → gg.

– Its logarithmic IR and collinear divergences are can-

celed by similar divergences from virtual corrections in

Γ̂(1)[QQ̄1(
1S0) → gg].

• Γ̂(1)[QQ̄1(
1S0) → gg] contains virtual corrections to

QQ̄1(
1S0) → gg.

– Its logarithmic IR and collinear divergences are can-

celed by real corrections in Γ̂(0)[QQ̄1(
1S0) → ggg]

and Γ̂(0)[QQ̄1(
1S0) → qq̄g].

– It also contains a power infrared divergence that is as-

sociated with exchange of a Coulomb gluon between

the initial or final QQ̄ pair.
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• Γ̂(0)[QQ̄1(
1S0) → qq̄g] is the Born process for

QQ̄1(
1S0) → qq̄g.

– The gluon is emitted from the Q or Q̄ (C parity).

– It contains collinear divergences that are canceled by

collinear divergences in the virtual corrections in

Γ̂(1)[QQ̄1(
1S0) → gg].
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• NRQCD reproduces full QCD at small momenta.

– The loop correction to the color-singlet matrix element

cancels the power IR divergence in

Γ̂(1)[QQ̄1(
1S0) → gg].

Interpretation: The Coulomb-gluon correction is absorbed

into a re-definition of the QQ̄ wave function.

• Therefore, Im f
(1)
1 (1S0) is IR finite.
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χc0 Decay

• At leading order in v, χc0 decay proceeds through both

color-singlet and color-octet QQ̄ states:

Γ(χc0 → LH) =
2 Im f1(

3P0)

m4
〈χc0|O1(

3
P0)|χc0〉

+
2 Im f8(

3S1)

m2
〈χc0|O8(

3
S1)|χc0〉.

O1(
3
P0) =

1

3
ψ
†
(− i

2 D
↔ · σ)χ χ

†
(− i

2 D
↔ · σ)ψ

O8(
3
S1) = ψ

†
σT

a
χ · χ†σT

a
ψ.

• O1(
3P0) connects to the leading χc0 Fock state, but has

two derivatives, which become two powers of v.

• O8(
3S1) has no derivatives, but it connects to the QQ̄g

Fock state, which is suppressed by two powers of v in the

probability.

• Therefore, both matrix elements are of the same order in

v.
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• At leading order in αs, a QQ̄ pair in a color-singlet 3P0

state decays into two gluons. The matching condition is

2 Im f
(0)
1 (3P0)

m4
〈QQ̄1(

3
P0)|O1(

3
P0)|QQ̄1(

3
P0)〉(0)

= Γ̂
(0)

[QQ̄1(
3
P0) → gg].

• At leading order in αs, a QQ̄ pair in a color-octet 3S1 state

decays through a virtual gluon into a light qq̄ pair. The

matching condition is

2 Im f
(0)
8 (3S1)

m4
〈QQ̄8(

3
S1)|O8(

3
S1)|QQ̄8(

3
S1)〉(0)

= Γ̂
(0)

[QQ̄8(
3
S1) → qq̄].

• Again, the QQ̄ states can be normalized so that the matrix

elements are unity.

• Then, we have for the short-distance coefficients

2 Im f
(0)
1 (3P0)

m4
= Γ̂

(0)
[QQ̄1(

3
P0) → gg],

2 Im f
(0)
8 (3S1)

m4
= Γ̂

(0)
[QQ̄8(

3
S1) → qq̄].
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• At next-to-leading order in αs, the matching condition for a

QQ̄ pair in a color-singlet 3P0 state is

2 Im f
(1)
1 (3P0)

m4
〈QQ̄1(

3
P0)|O1(

3
P0)|QQ̄1(

3
P0)〉(0)

+
2 Im f

(0)
1 (3P0)

m4
〈QQ̄1(

3
P0)|O1(

3
P0)|QQ̄1(

3
P0)〉(1)

+
2 Im f

(0)
8 (3S1)

m4
〈QQ̄1(

3
P0)|O8(

3
S1)|QQ̄1(

3
P0)〉(1)

= Γ̂
(0)

[QQ̄1(
3
P0) → ggg] + Γ̂

(1)
[QQ̄1(

3
P0) → gg]

+Γ̂
(0)

[QQ̄1(
3
P0) → qq̄g].

• We wish to solve for Im f
(1)
1 (3P0).

• 〈QQ̄1(
3P0)|O1(

3P0)|QQ̄1(
3P0)〉(1) contains one-loop cor-

rections that don’t change the color of the initial or final

QQ̄ pair:

The gluon connects to only the initial Q or Q̄ or the final Q

or Q̄.
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• 〈QQ̄1(
3P0)|O8(

3S1)|QQ̄1(
3P0)〉(1) contains one-loop cor-

rections that put the initial and final QQ̄ pairs in 3S1 color-

octet states:

The gluon connects the initial Q or Q̄ to the final Q or Q̄.

It carries off one unit of orbital angular momentum.

• Γ̂(0)[QQ̄1(
3P0) → ggg] contains real corrections to

QQ̄1(
3P0) → gg.

– Its logarithmic IR and collinear divergences are can-

celed by similar divergences from virtual corrections in

Γ̂(1)[QQ̄1(
3P0) → gg].
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• Γ̂(1)[QQ̄1(
3P0) → gg] contains virtual corrections to

QQ̄1(
3P0) → gg.

– Its logarithmic IR and collinear divergences are can-

celed by real corrections in Γ̂(0)[QQ̄1(
3P0) → ggg]

and Γ̂(0)[QQ̄1(
3P0) → qq̄g].

– It also contains a power infrared divergence that is as-

sociated with exchange of a Coulomb gluon between

the initial or final QQ̄ pair.
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• Γ̂(0)[QQ̄1(
3P0) → qq̄g] is the Born process for

QQ̄1(
3P0) → qq̄g.

– The gluon is emitted from the Q or Q̄ (C parity).

– It contains collinear divergences that are canceled by

collinear divergences in the virtual corrections in

Γ̂(1)[QQ̄1(
3P0) → gg].

– After all cancellations among full-QCD processes, it

still contains a logarithmic infrared divergence.

∗ This was a long-standing puzzle in the color-singlet

model.
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• NRQCD reproduces full QCD at small momenta.

– The loop correction to the color-singlet matrix element

cancels the power IR divergence in

Γ̂(1)[QQ̄1(
3P0) → gg].

Interpretation: The Coulomb-gluon correction is absorbed

into a re-definition of the QQ̄ wave function.

– The loop correction to the color-octet matrix element

cancels the logarithmic IR divergence in

Γ̂(0)[QQ̄1(
3P0) → qq̄g].

Interpretation: The real gluon is part of the QQg Fock

state when its momentum is less than Λ. Otherwise, it

contributes to the short-distance coefficient.

40



• Therefore, Im f
(1)
1 (3P0) is IR finite.

• In the color-singlet model, the color-octet matrix element is

absent, and the short-distance coefficient contains a loga-

rithmic IR divergence.

• This inconsistency in the color-singlet model was the orig-

inal motivation for the development of the NRQCD factor-

ization formalism.

• There is a similar matching condition for a QQ̄ pair in a

color-octet 3S1 state that can be used to determine

Im f
(1)
8 (3S1).
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Inclusive Quarkonium Production

• We would like to apply NRQCD methods to heavy-quarkonium

production processes.

• The probability for a QQ̄ pair to evolve into a heavy quarko-

nium can be calculated as a vacuum-matrix element in

NRQCD:

〈0|OH
n |0〉

= 〈0|χ†κnψ

�X
X

|H + X〉〈H + X|
�

ψ
†
κ
′
nχ|0〉.

• This is the matrix element of a four-fermion operator, but

with a projection onto an intermediate state of the quarko-

nium H plus anything.
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• The production matrix elements are the crossed versions

of quarkonium decay matrix elements.

– Only the color-singlet production and decay matrix ele-

ments are simply related by the vacuum-saturation ap-

proximation.

– Replace X with the vacuum in the color-singlet pro-

duction matrix elements:

〈0|OH
n |0〉 ≈ 〈0|χ†κnψ|H〉〈H|ψ†

κ
′
nχ|0〉.

These are same amplitudes that appear in the decay

matrix elements in the vacuum-saturation approxima-

tion.

• In order to prove that the operator is a local product of

four heavy-quark operators, we have to establish that the

QQ̄ production process occurs at short distances (of order

1/m or 1/pT ).
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• To establish the short-distance nature of the production

process and to prove factorization, we must show that

– soft and collinear divergences cancel or can be ab-

sorbed into parton distributions, fragmentation functions,

or NRQCD matrix elements (short-distance process);

– spectator interactions cancel or can be absorbed into

parton distributions fragmentation functions, or NRQCD

matrix elements (topological factorization).

• There is an existing technology for demonstrating this to

all orders in perturbation theory.
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Jet Production at Large pT

• The simple parton model is complicated in QCD by addi-

tional gluon exchanges, possibly involving spectator quarks.

• Many years ago, the technology was developed for deal-

ing with the gluon exchanges to all orders in perturbation

theory for sufficiently inclusive processes

(Collins, Soper, Sterman; GTB; many others).
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• Result at leading order in 1/pT :

– Soft gluons factor completely from the original diagram.

– Collinear gluons factor into separate contributions for

each beam or jet direction.

– Initial-state collinear contributions factor into PDF’s.

– Factored soft and final-state collinear contributions can-

cel by unitarity.

– The remaining hard contributions involve only active

partons and can be calculated in QCD perturbation

theory.

– The cross section is a convolution of PDF’s with per-

turbatively calculable partonic cross sections.

– Corrections to this result:

∗ Order Λ2
QCD/p2

T in the unpolarized case,

∗ Order ΛQCD/pT in the polarized case.
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Inclusive Single-Particle Production at Large pT

• Radiated soft gluons and/or light quarks turn the final-state

parton into a light hadron.

• The cross section is no longer completely inclusive, so the

unitarity cancellation of contributions from gluons collinear

to the final hadron fails.
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• These collinear contributions are factored into the frag-

mentation function for the parton to become a hadron.

• The cross section is a convolution of PDF’s and the frag-

mentation function with a perturbatively calculable partonic

cross section.

• Corrections to this result:

– Order Λ2
QCD/p2

T in the unpolarized case,

– Order ΛQCD/pT in the polarized case.
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Inclusive Heavy-Quarkonium Production at Large pT

• A detailed proof does not exist for this case.

(Qiu, Sterman, work in progress)

• It seems likely that the standard technology can be applied

to prove factorization.

• Again, the cross section is no longer completely inclusive,

so the unitarity cancellation of contributions from gluons

collinear to the quarkonium fails.

• These collinear contributions are soft contributions in the

quarkonium CM frame.

• They are factored into the NRQCD matrix element.
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• Best guess for corrections to this result:

– order Λ2
QCD/p2

T (not m2
Q/p2

T ) in the unpolarized case,

– order ΛQCD/pT ( not mQ/pT ) in the polarized case.

• It is not known if there is a factorization formula at small

pT .

– If there is factorization, it would likely hold only in lead-

ing order in v (Qiu, Sterman):

The Bloch-Nordsieck IR cancellation fails in order v

(Doria, Frenkel, Taylor; Di’Lieto, Gendron, Halliday, Sachra-

jda).

– Since m is now the large scale, there are probably vi-

olations of factorization of order Λ2
QCD/m2 (unpolar-

ized) and ΛQCD/m (polarized).

• The cross section can be written as a sum of products of

NRQCD matrix elements and “short-distance” coefficients:

σ(H) =
X

n

Fn(Λ)

mdn−4
〈0|OH

n (Λ)|0〉.

• The “short-distance” coefficients Fn(Λ) are essentially the

process-dependent partonic cross sections to make a QQ̄

pair convolved with the parton distributions.

– They have an expansion in powers of αs.
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• The sum over matrix elements is an expansion in powers

of v.

In practice, truncate it at a finite order.

• The operator matrix elements are universal (process inde-

pendent).

Universality gives NRQCD factorization much of its predic-

tive power.

• Choose the NRQCD cutoff Λ (NRQCD factorization scale)

large enough so that mv < Λ <∼ m, but αs(Λ) << 1.

– Gluons with k < m are included in the matrix element.

– Gluons with k > m are part of the short-distance co-

efficients and are treated perturbatively.

• NRQCD factorization relies on NRQCD and hard-scattering

factorization.

Comparisons with experiment test both.
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• An important feature of NRQCD factorization:

Quarkonium production occurs through color-octet, as well

as color-singlet, QQ̄ states.

• If we drop all of the color-octet contributions, then we have

the color-singlet model (CSM).

• In contrast, NRQCD factorization for production is not a

model.

– Sometimes erroneously called “the color-octet model.”

– Believed to be a rigorous consequence of QCD in the

limit m, pT À ΛQCD.

• Because of uncanceled IR divergences, the color-singlet

model is inconsistent in the treatment of production of P -

wave states.
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Gluon Radiation in Production Matrix Elements

• As in decays

– Emission of a gluon that doesn’t flip the spin costs v2

in probability;

– Emission of a gluon that flips the spin costs v3 in prob-

ability.

• In quarkonium production, emission of gluons from pro-

duced QQ̄ pairs can be important

– if the production operators with the quantum numbers

of the quarkonium are suppressed by powers of v,

– if production of a QQ̄ state with the quantum numbers

of the quarkonium is kinematically suppressed.
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• A common misconception: color-octet production proceeds

through a higher Fock state.

– In leading color-octet production, the gluons that neu-

tralize the color are in the final state, not the initial state.

• The higher Fock-state process requires the production of

gluons that are nearly collinear to the QQ̄ pair:

• It is suppressed by additional powers of v.
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Summary

• Quarkonia are multi-scale systems.

• The effective field theory NRQCD can be used to separate

– short-distance perturbative scales with momenta of or-

der m and higher,

– long-distance non-perturbative scales with momenta less

than m.

• NRQCD is constructed by integrating out the high-momentum

modes in QCD.

• The NRQCD action is an expansion in powers of the heavy-

quark–antiquark relative velocity v.

• Inclusive quarkonium decay and production rates are given

in NRQCD as a sum of matrix elements of local four-fermion

operators times short-distance coefficients.

– The coefficients can be calculated in perturbation the-

ory by matching amplitudes in full QCD with those in

NRQCD.

– The sum over matrix elements is an expansion in pow-

ers of v that, in practice, is truncated.

• The NRQCD factorization formula for production relies on

both NRQCD and hard-scattering factorization.
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• Production and decay proceed through color-octet, as well

as color-singlet QQ̄ channels.

• The heavy-quark spin symmetry and the vacuum-saturation

approximation can be used to obtain approximate relations

between matrix elements of NRQCD four-fermion opera-

tors.

• Only color-singlet production and decay matrix elements

are simply related.

• Matrix elements of production operators are universal (pro-

cess independent).

• The NRQCD factorization formulas for decay and produc-

tion are not models, but are consequences of QCD in the

limits m, pT À ΛQCD.
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